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Abstract

If an experimental treatment is experienced by both treated and control group units, tests

of hypotheses about causal effects may be difficult to conceptualize let alone execute. In this

paper, we show how counterfactual causal models may be written and tested when theories

suggest spillover or other network-based interference among experimental units. We show that

the “no interference” assumption need not constrain scholars who have interesting questions

about interference. We offer researchers the ability to model theories about how treatment

given to some units may come to influence outcomes for other units. We further show how to

test hypotheses about these causal effects, and we provide tools to enable researchers to assess

the operating characteristics of their tests given their own models, designs, test statistics, and

data. The conceptual and methodological framework we develop here is particularly applica-

ble to social networks, but may be usefully deployed whenever a researcher wonders about

interference between units. Interference between units need not be an untestable assumption;

instead, interference is an opportunity to ask meaningful questions about theoretically interesting

phenomena.
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1 Introduction

In some experiments, intervention assigned to a treatment group is experienced by a control group.

For example, in an election monitoring experiment, observers arriving at assigned-to-treatment

villages find a peaceful election taking place in part because those aiming to unfairly influence the

election saw the monitors arrive and took their intimidation elsewhere. If the thugs left a treatment

village for a control village, what then is the causal effect of the election monitoring? A simple

comparison of what we observe from treated and control villages would tell us about the impact

of the treatment on both treated and control villages rather than how treatment changed the treated

villages. What is more, if election monitoring is to be rolled out as a large-scale policy rather than as

a field experiment, scholars need to assess models of the spillover of treatment from treated to control

villages for the purposes of harnessing (or minimizing) that spillover. When policy makers ask

whether road networks connecting villages would enable more movement of intimidation, or whether

certain aspects of village social structure would make them easier or harder targets, researchers must

be able to provide clear statements about the role of spillover in the proposed policy.

In this paper, we describe a way to formalize models that include explicit spillover between units.

These models are theoretically driven. The method we propose provides wide latitude for researchers

to transcribe the theoretical story of why subjects in a study react the way that they do, including

reacting to the treatment of their neighbors. After writing down a theoretically driven model in a

succinct mathematical form, we connect these models to the potential outcomes generated in the

experiment. We show how to derive hypotheses from the models and how to test the hypothesis

against experimental data. Throughout the paper, we use a simulated data set in which treatment

spills over from treated to control units via a known network. Our simulated data set allows us to

demonstrate that our method does not mislead researchers into rejecting true hypotheses, or failing

to reject false hypotheses, too often. These results apply to hypotheses that include spillover and

those that do not. Also, by varying the parameters of the simulation, we demonstrate techniques that

researchers can use when designing studies and models to improve the efficiency of their designs.

By building on the testing tradition in statistics pioneered by Fisher (1935) and further developed

most intensively by Rosenbaum (2002, 2010), we contribute to the methodological literature on the
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analysis of data from experiments. We show that one can model the flow of causal effects across

networks, and that one can test the parameters of such models without requiring probability models

of observed outcomes. We also remind political scientists that the “no interference” assumption so

often invoked in discussions of causal inference is not a fundamental assumption, but an implication

of the simple use of averages to conceptualize causal effects (Aronow, 2012; Rosenbaum, 2007).

By posing and testing hypotheses about interference, our effort is different from, yet complements,

efforts that have mostly aimed at credible statistical inference built on an estimation framework

that focuses on average treatment effects. There are many variants of this approach, yet they all

involve a decomposition of average treatment effects into parts due to interference and parts not

due to interference, often through clever research designs.1 A very useful advance in this tradition,

and a complement to our work, can be found in Aronow and Samii (2012a), where an approach

to the estimation of average causal effects under general interference is developed. Our proposed

framework, which we call “Fisherian” following Rosenbaum’s terminology, builds a statistical

methodology around testing, not estimation.2 Although one rarely estimates without testing, a

1For only a few examples of this approach, see McConnell, Sinclair and Green (2010); Sinclair

(2011); Nickerson (2008, 2011); Hudgens and Halloran (2008); Sobel (2006); Tchetgen and Vander-

Weele (2010); VanderWeele (2008a,b, 2009, 2010); VanderWeele and Hernan (2011); Miguel and

Kremer (2004); Chen, Humphreys and Modi (2010); Ichino and Schündeln (2011).
2Some of the point-estimation-based approaches cited above follow Neyman (1923 [1990]) in

deriving the properties of estimators based on the randomized assignment of the experimental treat-

ments and is known as “randomization inference.” The testing approach we take in this paper follows

Fisher (1935) and Rosenbaum (2002, 2010) and is also grounded in the randomized assignment

of treatments, and is also known as “randomization inference.” To avoid confusion in this paper,

we talk about a “Fisherian” approach and try to avoid the term “randomization inference” unless

we mean it to refer to both kinds of approaches. When causal models are simple and samples are

large, the two kinds of randomization inference produce equivalent results and thus enable very

convenient and fast computation (Samii and Aronow, 2011; Hansen and Bowers, 2008, 2009). For a

general statement of this relationship between types of randomization-based inference, see Aronow
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framework emphasizing testing has several advantages. Our approach does not require scholars

to conceptualize causal effects in terms of averages, nor does it involve estimating effects. Our

approach goes beyond tests of “no effects” to include theory driven statements about how direct and

indirect effects might occur. Our approach is particularly useful when models of interference are

complex, and when scientific interest does not focus on clarifying average differences but on other

causal, counterfactual, quantities.

Two very different papers provide the proximate foundation for our work. Rosenbaum (2007)

enables the production of confidence intervals for causal effects without assuming anything in

particular about the form of interference between units. The key to his approach is the idea that the

randomization distribution of certain distribution-free rank based test statistics can be calculated

without knowing the distribution of outcomes (i.e. it can be calculated before the experiment has

been run, when no unit at all has received treatment). Rosenbaum (2007) thus successfully enables

randomization-justified confidence intervals about causal effects without requiring assumptions

about interference. Our aim here, however, is more akin to Hong and Raudenbush (2006). They

used a multilevel model to estimate the size of interference effects as they occurred between students

nested within schools. We want to enable statistical inference about particular substantively relevant

and theoretically motivated hypotheses about interference and causal effects simultaneously. Hong

and Raudenbush (2006) also provide precedent for some of our work in collapsing aspects of the

interference into a scalar valued function. Nothing about our approach requires us to collapse the

possible avenues of interference in this way, but, in this, our first foray into asking questions about

interference, such a simplification makes life much easier.

Our proposed framework can be applied to any experimental design, from simple to complex

randomization schemes. Other, perhaps gold standard, approaches begin at the design stage and

involve layered or multilevel randomization that directly assign units to “indirect” or spillover effects

rather than direct effects (McConnell, Sinclair and Green, 2010; Hudgens and Halloran, 2008; Chen,

Humphreys andModi, 2010; Ichino and Schündeln, 2011). Our ideas here complement those designs

by enabling scholars to specify more precisely mechanisms for both direct and indirect effects and

and Samii (2012b).
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to assess the support in the data for such mechanisms. Our simulation examples demonstrate how

design choices can influence experimental sensitivity, and we encourage scholars designing studies

with a complex causal model of interference to replicate these simulations for their own context and

model. We find that design choices regarding the model, the underlying distribution of data, the

sample size, the network density, and even the percentage of treated units can influence the efficiency

of an experimental design, sometimes in counter-intuitive ways.

Finally, as a paper written by social scientists rather than by statisticians, this contribution is not

agnostic about the role of substantive theory in the enterprise of statistical inference about causal

effects. That is, this paper considers interference between units as an implication of social and

political processes to be reasoned about and tested. The conceptual framework and technology

that allow us to engage so directly with interference build on Fisher’s sharp null hypothesis and

subsequent developments linking Fisher’s original ideas with contemporary formal frameworks for

conceptualizing causal effects and establishing statistical inferences (Fisher, 1935; Rosenbaum, 2002,

2010). We extend these developments to show that statistical inference about causally meaningful

quantities is possible even when we hypothesize about interference directly. Social scientific theory

can materially contribute to statistical inference via the specification of testable hypotheses, both

those relating to interference and otherwise.

1.1 Roadmap

Throughout this paper we use a simulated experiment in which subjects are connected in a

network. Treatment is randomly assigned to the subjects and an outcome is measured. In Section 2

we describe this simulated experiment and lay out our notation. In Sections 3 and 4, we demonstrate

how to test hypotheses about treatment effects in this experiment, including hypotheses about explicit

spillover between units. We focus on a small subsample of the entire experiment to make the process

of writing microlevel models, and the implications for the potential outcomes of the subjects, more

manageable. We then show how these hypotheses scale up to a more realistic sample size. In Section

5 we explore the operating characteristics of our method as we vary the parameters of the simulation.

We show how changes in the information available influence a researcher’s ability to reject false

hypotheses (and also highlight how “information” includes but is not limited to “sample size”). We
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tackle the problem of comparing models and also show that researchers using this framework are

unlikely to be misled into believing that spillover occurs when there is none. Section 6 considers

issues of computational efficiency, the applicability of this method for observational data, and

avenues for future research. Finally, in Appendix A, we show how to go from theory to code, both

to enable the testing of hypotheses about interference, but also to assess the properties of any given

model on any given dataset.

2 Setting

Imagine an experiment, perhaps similar to Panagopoulos (2006) or Ichino and Schündeln (2012),

in which a randomized treatment has been allocated to units in a pre-existing network.3 Figure 1

displays the network for such a simulated experiment graphically. This data set contains 256 subjects

with 512 edges connecting the subjects. Treatment was randomly allocated to 128 of the 256 units.4

We will use this simulated network as a testbed for the rest of this paper. To introduce the

foundations on which our method is built we now concentrate on a small subset of the data. Figure 2

highlights 7 subjects from the larger sample. This figure shows that a network can be represented

both by a graph with nodes and edges as well as with a matrix. Throughout this paper we use an

n × n adjacency matrix labeled S to record network relationships. An adjacency matrix contains a

value of 1 at entry i, j if there is a link between subject i and subject j. In an undirected network, as

shown here, a link from i → j implies a link from j → i. For example, in Figure 2, the adjacency

matrix shows A ↔ D and A ↔ g but no link between A and b. We focus on models for undirected

3In Panagopoulos (2006)’s study of newspaper advertisements applied to US cities, it was

reasonable to consider the possibility that citizens in nearby control cities read the same newspapers

as citizens in treated cities. Ichino and Schündeln (2012)’s study of election observers was designed

to detect positive spillovers, such that election observers may not be needed in every village in order

to ensure clean elections.
4This network is like a road network in that it is relatively sparse: 50% of the nodes have between

2 and 5 edges directly connecting them with other nodes. Notice that the network as drawn may

be fixed — like a road network — or may represent hypotheses (such that unit A and b could, in

principle, interfere, but we have chosen not to model such a connection).
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Figure 1: A simulated data set with 256 units and 512 connections. The 256/2 = 128 treated units are shown

as filled circles and an equal number of control units are shown as as gray squares.

networks in this paper although the method easily extends to directed networks.

S =

A b c D e F g
A 0 0 0 1 0 0 1
b 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0
D 1 0 0 0 1 0 0
e 0 0 0 1 0 0 0
F 0 0 0 0 0 0 0
g 1 0 0 0 0 0 0

(a) Adjacency Matrix

A

b
c

D

e

F

g

(b) Graphical Representation

Figure 2: Graphical and adjacency matrix representations of connections for a subgroup of the large, dense

network displayed in Figure 7. Capital letters indicate treated units, lower case letters control units.

Write Zi = 1 to indicate that subject i is assigned to the treatment condition and Zi = 0 to indicate

subject i is assigned to the control condition and collect those indicators of treatment into a vector,

Z
n×1
. There are 2n possible unique vectors Z. In our experiment, Z is generated by assigning half of

the 256 subjects to each of the treatment and control conditions with equal probability. Let Ω be

the sample space of treatment assignments. There are
(

256

128

)

= |Ω| = 5.77 × 1075 ways that treatment

could be allocated to this subject pool. In our small subset, with only 7 units, there are
(

7

3

)

= 35

ways that Z could be drawn from Ω.5

5For the purpose of simplicity, we restrict our attention to binary treatments assigned to a

fixed percentage of the sample (e.g. precisely 50% of the sample is treated in all Z). Our method
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We formalize the idea that the treatment assigned to the set of units caused some change for unit i

using the counterfactual notion of causal effects: a particular set of treatments applied to this network

causes an effect if unit i would have acted differently with this treatment assignment vector than it

would have under a different set of assignments. We write yi,z to represent the “potential outcome”

that would be observed for unit i if Z = z, and we write yz
n×1

to represent the potential outcomes of

all units to treatment Z = z. We say treatment caused an outcome if yz 6= y′z, where z 6= z′.6 In the

potential outcomes framework there are 2n possible outcomes for each unit, each corresponding to a

unique value of z. As we only allocate treatment in one arrangement to our subjects, we therefore

only observe a single potential outcome for each unit in the sample. In the case of our small network

shown above, the observed treatment allocation was z = {1, 0, 0, 1, 0, 1, 0}. We therefore write the

observed outcome as y1001010, the potential outcome for our observed treatment assignment.
7

Two units can be said to interfere with each other when the potential outcomes of one unit

depend on treatment assigned to another unit. Equivalently, two units interfere when the potential

outcomes of one unit depend on the potential outcomes of another unit (since potential outcomes

are defined in reference to treatment assignment). We write out the entire vector z in describing

potential outcomes to highlight the possibility that the outcome for subject i (yi,z) may depend on

the treatment assignment of some other set of subjects. Readers may be accustomed to thinking

about the causal effect of an experiment in terms of a comparison of the potential outcomes we

would see for subject i if that subject were treated, yi,zi=1 ≡ yi,1, and the outcome we would see if

applies equally well to multiple experimental levels and alternative randomization mechanisms (e.g.,

stratified randomization, independent coin flips, hierarchical and clustered randomizations).
6For an introduction to the idea of using of potential outcomes to formalize counterfactual

notions of causal relations in political science see Sekhon (2008); Brady (2008). For a more general

overview see Rubin (2005).
7It is more common to write Yi for an observed outcome that depends on the random assignment

of treatment and yi,Zi
for the fixed potential outcome to treatment Zi. Yet, with complex interference

we have discovered that it is simpler to write yi,Zi=zi
or “the potential outcome given the observed

treatment assignment vector” as “the observed outcome” rather than to add an equation for Yi with

possibly 2n terms in need of substitution and solution.
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treatment were withheld, yi,zi=0 ≡ yi,0. This notation implies no interference between units. To write

yi,zi=1 or yi,zi=0 is to say that yi,zi ,z−i
= yi,zi ,z

′
−i
for all z 6= z′ (where z−i refers to the treatment vector

excluding the entry for unit i). This manner of writing potential outcomes encodes a decision to

focus attention only on unit i and to exclude from consideration the treatment assignment status of

other units. Much of the literature calls this notational choice a manifestation of an assumption of

no interference. As we show in the following sections, an assumption of no interference is not a

necessity of the potential outcomes framework, but an implication derived from modeling choices.8

3 Method: Hypotheses and Models

We define a causal model to be a functionH(yi,z,w, θ) = yi,w that transforms a potential outcome

for one treatment vector z, yi,z, to the potential outcome for another treatment vector w. In vector

notation, we might replace yi,z with the vector yz to indicateH is applied to the entire sample with

the same z and w arguments.9 The parameter θ defines the causal effect of the model and serves to

generate specific hypotheses, which we demonstrate in more detail in § 4.

To make these definitions more concrete, consider the simplest model: that the treatment

assignment had no causal effect on any unit, often called the “sharp null hypothesis of no effects.”

This model states that any treatment assignment would not change the outcome of any subject in the

experiment:

8Many expositions of the potential outcomes formalization of causal inference make the “no

interference” assumption in the context of a broader umbrella called the Stable Unit Treatment Value

Assumption (or SUTVA) (See, Brady, 2008, for a discussion aimed at political scientists). Whereas

Cox (1958, § 2.4) discusses the need to assume no interference in order to reason simply about

average treatment effects, Rubin (1980, 1986) amplifies this requirement to also include the idea

that treatment assigned to one unit is the same as the treatment assigned to another unit (i.e. there

are no “varieties” or “types” of treatment that are not recorded in our treatment assignment vector).
9When considering models that include an assumption of no interference, we will write

H(yi,zi
,wi) = yi,wi

to indicate that the entries z j ∈ z and w j ∈ w for j 6= i do not change the

potential outcomes for subject i.
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H(yz,w) = yz (1)

By definitionH(yz,w) = yw, therefore this model states that yz = yw. As the sharp null does not

make use of parameters, we omit θ when discussing the sharp null of no effects.

Let z = 0 = {z1 = 0, . . . , zn = 0}, the treatment assignment vector in which all units receive the

control condition (i.e., z is all zeros). The potential outcome to this condition is written y0. We

call this baseline condition the “uniformity trial” following Rosenbaum (2007).10 When the control

condition involves no action by the researcher, we can think of the uniformity trial as the world

we would have observed if no experiment had been carried out at all. In many experiments, the

treatment condition is compared to a standard procedure. For example, drug trials compare the

efficacy of new drugs to the currently available prescription. In these cases, the uniformity trial is

the world in which all subjects received the established drug. Using the uniformity trial, we see that

we could write Equation 1 asH(y0,w) = y0. In other words, for any treatment assignment w, the

potential outcome yw = y0.

One often encounters this model labeled as a hypothesis: H0 : yi,z = yi,0. Yet, when we consider

complex models of interference between units it will be useful for us to think of hypotheses stated in

terms of potential outcomes as generated and made meaningful by models. This model says that

the way that unit i reacted to the treatments given to the network would be the same as the way it

would react to the situation where no treatment is given to any member of the network—where the

experiment is not even fielded. In the Fisherian framework, we can test models in which potential

outcomes are defined with respect to a causal model H , even if we imagine interference among

potential outcomes. (Rosenbaum, 2007; Aronow, 2012). Here we briefly describe how to test the

sharp null of no effects even considering interference between units using our simulated data.11

10Rosenbaum (2007) adopts the term from the name of a method used to calibrate variance

calculations in agricultural experiments by assigning treatment but not applying it.
11We present here a very condensed summary of the Fisherian framework for statistical inference.

For more detail see Keele, McConnaughy and White (2012), Rosenbaum (2010, Chap 2), and

Rosenbaum (2002, Chap 2).
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Figure 3: The observed outcome, yz, for the simulated data set with 256 units and 512 connections, broken

out for treated and control units.

Figure 3 shows the measured outcome distribution for the treated and control groups in the 256

subject experiment, from Figure 1. What ought we to observe if our model,H(y0,w) = y0, held?

If treatment had no effect, we would expect the treated and control groups to be random samples

from a common distribution. If the sharp null hypothesis were true, the two box plots in Figure 3

should look the same except for a little noise arising from the sampling procedure. Conversely, if

the model were wrong, and this experimental manipulation had a causal effect, we would expect

these two distributions to differ in a systematic way.

To score the dissimilarity of treated and control distributions we employ a test statistic, which

we notate T (y0, z). The value T should small when treated and control distributions are similar and

large when they are dissimilar. Although it is common to use differences in means or differences in

sums of ranks to compare distributions, in this paper we rely on the Kolmogorov-Smirnov (KS) test

statistic. As will become clear later when models are more complex, we want a test statistic that

is sensitive to differences in distribution that include diffrences in center as well as differences in

spread, skew, other aspects of distributions.12 Figure 3 displays both a difference in center and an

12The KS test statistic is the maximum difference between the empirical cumulative distribu-

tion function (ECDF) of the treated units F1 and the ECDF of the control units F0: T (y0, z) =

max
i=1,...,n

[

F1(yi,0) − F0(yi,0)
]

, where F(x) = (1/n)
∑n

i=1 I(xi ≤ x) tells us the proportion of the distribu-

tion of x at or below xi (Hollander, 1999, §5.4).
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increase in spread for the treated group relative to the control group.

Consider a replication of the experiment, where everything is the same except that we choose

another z′ from Ω, where z 6= z′. If the sharp null of no effects model were true, we would observe

the same outcome in each trial yz = yz′ = y0. However, the value of the test statistics T (y0, z)

and T (y0, z
′) might differ because of chance variation induced by the values of z and z′. Fisher

(1935, Chap 2) showed how to generate this distribution by enumerating the possible ways for the

experiment to occur: By computing the value of T (y0,Z) for every possible treatment assignment

Z ∈ Ω, we can generate the randomization distribution of the test statistic under the null hypothesis of

effects. The p-value of the hypothesis is defined as Pr(T (y0,Z) > T (y0, z)), where z is the observed

treatment assignment. Recall, that according to our model,H(yz, 0) = yz ≡ y0 for observed data yz

and treatment assignment z. The causal modelH links the observed data with the uniformity trial,

and the research design and scores for T then imply a clear distribution for T . Large-sample normal

approximations also exist for many test statistics including the KS test statistic, and Figure 4 uses

the large-sample approximation to show the distribution under the model of no effects using the data

shown in Figure 3. For the example data, the sharp null of no effects has a p-value of 6.83 × 10−14,

suggesting that there is very good evidence against the hypothesis generated by the model of no

effects.

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
0
.0

2
0
.0

4
0
.0

6

t = KS Statistic

f(
t)

Figure 4: The large-sample distribution of the Kolmogorov-Smirnov test statistic for the example 256 subject

experiment under the model H(yz, 0) = yz ≡ y0. The vertical black line represents the value of the test

statistic for the observed data yz. The p-value (6.83 × 10−14) is computed by taking the area under curve to

the right of the vertical line representing T (yz, z).

In the preceeding discussion of the sharp null, we have made no assumption about whether

interference exists or not. On one hand, all potential outcomes could be the same because the
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treatment has no direct effect and there are no spillover effects. The model of no effects may also be

true because direct and spillover effects precisely cancel. These two scenarios are observationally

equivalent: no matter how we assign treatment, we would measure the same outcome. But the two

processes generating these outcomes are quite different. In the next section, we address how to go

beyond the sharp null of no effects and demonstrate how the Fisherian testing framework can help

researchers model these underlying processes, including processes that lead to spillover between

units.

4 Models of interference

Asking questions about “no effects” is only the beginning. In this section we describe how to

write down and test causal models of interference between units. We focus attention on one particular

model to formalize an intuitive story of how treatment “spills over” from treated to control subjects.

We also demonstrate the use of Hong and Raudenbush’s (2006) simplifying idea of reducing the

network effects to a scalar quantity. We begin by outlining several points as plausible grounds for a

theoretically driven model. We then describe the theoretically derived aspects of our model and

show how we capture them in a mathematical causal model of the formH(yz, z,w, θ).

The core elements of our illustrative substantive theory are:

1. Interference between units is possible, but interference is limited to the network shown in

Figure 1. We represent the network as the adjacency matrix S, where a link between units is

represented by the value 1, and zero otherwise.

2. The spillover effect depends only on the number of neighbors treated. We compute the number

of treated neighbors for each unit using the expression zTS. This expression collapses the

network’s influence into a scalar summary following Hong and Raudenbush (2006).

3. The treatment has a direct effect on the treated units. The direct effect is greater for units that

would have had a larger outcome if treatment hadn’t been applied to any unit (i.e. a larger or

higher outcome in the uniformity trial). This concept implies a multiplicative effect, which

we parameterize as β.
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4. This direct effect is always greater in magnitude than the spillover effect. To limit the magnitude

of the spillover, we employ a non-linear growth curve expression:

β + (1 − β) exp
(

−τ2zTS
)

. (2)

The value of this function will always remain between 1 and β, with a rate of growth controlled

by τ, the second parameter in our model. Figure 5 shows how this expression behaves for

different values of τ as the number of treated neighbors increases.
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Figure 5: Growth curve of spillover effects for the expression β + (1 − β) exp
(

−τ2zT S
)

as the number of

treated neighbors, zT S, increases for β = 2 and a selection of τ values.

5. Spillover only flows from treated units to control units, and not from any other combination.

Thus treated units will not experience a spillover effect from treated neighbors. When units

are treated, they will only experience a multiplicative effect β, regardless of their locations

in the network. We can extend the growth curve expression slightly to filter out the spillover

effect for units where zi = 1:

β + (1 − zi)(1 − β) exp
(

−τ2zTS
)

(3)

SinceH is a function that transforms one potential outcome into another, we begin by considering

the transformation from the uniformity trial y0 to the outcome we would observe with treatment z:

H(y0, z, θ) = yz.

H(y0, z, β, τ) =
[

β + (1 − zi)(1 − β) exp
(

−τ2zTS
)]

y0 (4)
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Equation 4 states that when we apply treatment z to the uniformity trial, treated units see their

outcomes multiplied by β, while control units experience a spillover effect that increases up to β as

the the number of treated neighbors increase. By definition,H(y0, z, β, τ) = yz. By replacing the

left hand side with yz and solving for y0, we can writeH to transform the observed data into the

uniformity trial:

H(yz, 0, β, τ) =
[

β + (1 − zi)(1 − β) exp
(

−τ2zTS
)]−1

yz ≡ y0 (5)

Combining these two equations for specific transformations gives us the general form ofH for

our model as:

H(yz,w, β, τ) =
β + (1 − wi)(1 − β) exp(−τ

2wTS)

β + (1 − zi)(1 − β) exp(−τ2zTS)
yz (6)

Notice that this model contains other, simpler models nested within it. When τ = 0, this model

reduces to a model that implies no spillover effects, only a multiplicative direct effect. When β = 1,

this model reduces to the sharp null of no effects, regardless of the value of τ.13

Models with an interference parameter (τ) and a causal effect parameter (β) seem to arise

naturally when we consider interference between units. Statistical inference in the presence of

parameters like τ depends on one’s perspective on τ. If τ is a fixed feature of the design, inference

13Readers may be more familiar with causal models of effects in the form of an identity equation,

rather than a function that transforms between potential outcomes. For example, an additive model

without spillover is often written as yi,1 = yi,0 + τ or H0 : yi,1 = yi,0 + τ . We can translate this

notation to our own by replacing the explicit potential outcomes with zi: yi,zi
= yi,0 + ziτ. This

second identity yields the proper outcome when zi = 1 and zi = 0. We can replace the left hand

side with the model description: H(yi,zi
, 0, τ) = yi,0 + ziτ. As with our spillover example, we can

solve the previous identity for yi,0 to getH(yi,0, zi, τ). Combining the two specific forms ofH into a

general statement yields: H(yi,zi
,wi, τ) = yi,zi

+ (wi − zi)τ. When models only consider two potential

outcomes per unit, yi,1 and yi,0, the identity notation is certainly very convenient. As shown here, our

notation encompasses the identity. We believe our notation has the added advantage of succinctly

covering models of spillover, where the identity style notation quickly becomes cumbersome.
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may proceed by setting such parameters at fixed values, or one may consider τ as a kind of tuning

parameter, and values for it could be chosen using a power analysis or cross-validation. If τ is not

fixed but is considered a nuisance parameter, then one can produce confidence intervals either by (1)

assessing a given hypothesis about β over the range of τ, keeping the hypothesis about β with the

largest p-value (Barnard, 1947; Silvapulle, 1996) or (2) producing a confidence interval for τ and

adjusting the largest p-value from a set of tests about a given β0 over the range of τ in the confidence

interval (Berger and Boos, 1994; Nolen and Hudgens, 2010). Nolen and Hudgens (2010) show

that either solution will maintain the correct coverage of the resulting confidence intervals about

treatment effects, although using the largest p-value is apt to make those confidence intervals overly

conservative. In this paper we take a different approach: Parameters like τ need not be a nuisance.

In this case, we wrote our model so that τ represents the rate of spillover. In fact, we can

easily assess hypotheses about (β, τ) pairs using the same technique introduced in the previous

section. We showed how the sharp null hypothesis of no effects can be tested by computing the

distribution of T (y0,Z), the test statistic applied to the uniformity trial y0 suggested by the null

hypothesis with respect to the randomly allocated treatment assignment Z. In Equation 5, we

have shown how to write a theoretically driven model of spillover that transforms the potential

outcomes observed into the uniformity trial implied by the model. To test the hypothesis H0 :

β = β0, τ = τ0, we substitute the hypothesized values into the adjustment equation to get y0 =
[

β0 + (1 − zi)(1 − β0) exp
(

−τ2
0
zTS
)]−1

yz, with observed data yz. As before, we again compute the

p-value of the hypothesis as Pr(T (y0, z) > T (y0,Z)). If T (y0, z) is small it suggests that after

adjustment the treated and control groups appear to come from the same distribution. If the T (y0, z)

is large, it suggests that the model does not do a good job of describing the effect of treatment. The

p-value quantifies this discrepancy with respect to the values of T we would expect to see if the null

hypothesis were true.

Figure 6 shows a plot of the p-values for a series of (β, τ) hypotheses tested using the KS

test statistic as applied to H(yz, 0, β, τ) for a range of β, τ pairs, where yz and z are the observed

outcome and treatment assignment shown in Figure 3. The figure shows that as we begin to entertain

hypotheses about some positive amount of spill-over, the confidence interval for β expands. This is
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Figure 6: p-values for the model in Equation 6 for a series of joint hypotheses over β and τ. The true values

are τ = 0.5 and β = 2.

sensible: if, when treatment is assigned to one unit, most of that treatment is also experienced by

another unit, then we have less information available about the treatment effect than we would have

if the two units had been independent. Consider the extreme case in which treatment assigned to one

unit is fully experienced by the relevant control unit — then we would not have enough information

to calculate a treatment effect at all and any reasonable procedure should produce an infinite interval.

The hypotheses about which we have least doubt (or highest p-values) cluster around the value

which produced the data (τ = 0.5, β = 2).

This simple illustration shows that models of interference may be conceptualized and tested in

Fisher’s framework. It is not an argument in favor of a particular model. The main point is that one

can reason directly about interference and such reasoning, if formalized, can produce hypotheses

about both causal effects and structural features of the effects. The data can provide evidence

against such hypotheses. Multi-dimensional hypotheses can be tested to produce substantively

interesting and useful p-value regions. The region tells the analyst both about what kinds of values

are implausible under a theoretically informed model and also about the amount of information

available to make such plausibility assessments.

16



4.1 A Fisherian Inference Algorithm

The Fisherian framework can be applied to models that include effects due to interference and

models that assume no interference. In the following algorithm, we detail the procedure for testing a

modelH against observed data, with special attention to interference.

1. Write down a causal counter-factual model that specifies relations among potential outcomes,

H(yi,u,w, θ) (where u and w are arbitrary treatment assignments). Include the treatment

assignments of u j and w j for j 6= i if spillover effects are theoretically motivated.

2. Map the causal model to the observed outcomes (yz) and treatment (z) to the uniformity trial:

H(yz, 0, θ) = y0 for a hypothesized value of θ.

3. Select a test statistic T that will be small when the treated and control distributions in the

adjusted data from step (2) are similar, and large when the distributions diverge.

4. Generate the distribution ofT (y0,Z) under the hypothesis created in (2). The exact distribution

arises from computing tk = T (y0,Zk) for each Zk ∈ Ω. Alternatively, sample from that

distribution or approximate it using limit theorems.

5. The p-value for the specific hypothesis generated from the model is
∑|Ω|

k=1
I(T (y0, z) > tk)

|Ω|
(7)

For a model that includes parameters, this process can be repeated for each unique parameter

combination. One can summarize these p-values with intervals or regions for which the hypotheses

are not rejected at a given α-level.

In this section we demonstrated writing down a concrete model of effects with explicit spillover

effects. Our model used parameters β and τ, and we showed that each pair of parameters formed a

testable hypothesis. While we have demonstrated that testing hypotheses generated by such models

is possible, readers may be left wondering about how this method performs. The key question,

from the perspective of evaluating a statistical procedure is about how our framework’s operating

characteristics change as information changes: as sample size increases, does it more easily reject
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incorrect hypotheses? Do changes in network density, treatment assignment proportion, or test

statistic choice also matter for the power and/or error rate of the procedure? In the next section, we

engage with these questions to provide some guidelines for the use of this approach in analysis as

well as in design.

5 Operating Characteristics of Tests for Models of Interference

Our approach allows models of the substance of the causal process, including interference, to

have direct implications for data. Yet, data also have implications for tests. A well operating test

should, at minimum, have two characteristics: (1) When the test faces a true hypothesis, it should

rarely produce low p-values. That is, a test of a true hypothesis should encourage us to reject the

hypothesis rarely, and, moreover, have a controlled error rate in this regard. This characteristic

is sometimes called “correct coverage” or “unbiasedness of tests”: “An (α)level test is unbiased

against a set of alternative hypotheses if the power of the test against these alternatives is at least

(α)” (Rosenbaum, 2010, Glossary). (2) When a test faces a false hypothesis—a hypothesis which is

incongruent with the processes generating the data—the test should produce small p-values. That

is, a test of a false hypothesis should encourage us to reject hypotheses far from the data often.

This characteristic is called “power”. If a test has sufficient power, it is a “consistent test”: “A

consistent test is one that gets it right if the sample size is large enough. A test of a null hypothesis

(H0) is consistent against an alternative hypothesis (HA) if the power of the test tends to one as the

sample size increases when (HA) is true” (Rosenbaum, 2010, Glossary). It is common practice to

provide analytic proofs of the asymptotic properties of new procedures. Yet, a researcher with her

own model, design, and data never knows whether such a proof applies (and how) in her own case.

To focus squarely on aid to applied researchers, we here present a series of simulation studies to

assess the operating characteristics of the algorithm described in § 4.1 using the model specified in

equation 6. In addition, statistical inference for experiments on networks raises questions about what

“asymptotic” might mean: information about hypotheses might rise and fall with sample size, but

also with density of network connections, and proportion assigned to treatment (if not also with test

statistic choice and the extent to which the network drives the baseline outcomes). Our simulation

framework enables us to explore all of the different ways in which the information available to a test
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may vary.

In what follows, we compare the size of a test (the probability that it rejects a correct hypothesis)

with its level (the pre-specified probability of rejecting a correct hypothesis). Rosenbaum (2010,

Glossary) calls the level of a test the “promise” of a given error rate. So, this assessment can be

thought of as asking whether a given hypothesis testing procedure fulfills (size) its promises (level).

In our simulations, we demonstrate that our method keeps its promises. We also assess the test’s

power to reject false hypotheses. As we test hypotheses that diverge from the truth, we should prefer

models that allow us to reject these hypotheses at a high rate. In our simulations, we observe that

test power does not always behave as expected. Increasing sample size leads to increased power, as

we might expect, but due to the complex interaction of the model and the fixed network, there can

be non-monotonic relationships with network density and the percentage of units that are treated.14

In the previous section, we used a theoretically derived model to show that reasoning about

interference was possible and encouraged researchers to write down their own models of interference.

In this section, we demonstrate simulation techniques for our model and again encourage researchers

to follow our lead with respect to assessing the characteristics their own models and experimental

designs. To further aid applied researchers, all simulations in this section and all hypothesis tests in

Sections 3 and 4 are based on the development version of our freely available, open-source software

package, RItools, available at https://github.com/markmfredrickson/RItools. Appendix A

contains annotated code fragments used in this paper, and the source code to the entire document is

available in the online supplemental materials at [URL].

5.1 Simulation setup

Our canonical experiment involves 256 subjects with 512 edges connecting them using the data

already discussed in Section 2. To maintain continuity across simulations that vary sample size and

network density, we employ the following rules when generating the simulated data. First, there is a

pre-specified order in which units are added to the sample. This order is randomly generated, but is

the same for all simulations. Therefore, all simulations with the same sample size use the same units.

14We thank an anonymous reviewer for bringing this second relationship to our attention.
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Second, units have a pre-specified location on the grid, and edges are placed between closest pairs

first. Figure 7 shows three networks that vary on sample size and the total number of edges. These

three plots also demonstrate example treatment assignments (circles indicate the control condition,

squares the treatment condition). The rightmost panel is the network used in the previous examples.
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(c) 256 units, 512 edges

Figure 7: Example undirected, random, social networks assigned to treatment (circle) or control (square).

Unless otherwise noted, we use the model shown in equation 6 to generate the observed data

from a fixed uniformity trial data set. We fix the values τ = 0.5 and β = 2.

Our simulation study uses 1000 repetitions of the following algorithm:

1. Generate the uniformity trial data, the world in which the experiment was never fielded.

2. Draw a vector of treatment assignments from the set of possible assignments consistent with

the design.

3. Generate a set of observed outcomes from the fixed uniformity trial following the treatment

assignment and the spillover model in Equation 6.

4. Test hypotheses using the algorithm listed in Section 4.1. A hypothesis is any model and

parameter set. For example, the true functional form with the true parameters τ = 0.5 and

β = 2 is one hypothesis, in fact a true hypothesis. A hypothesis that combines the true

functional form and parameters β = 3 and τ = 1 would be a false hypothesis. Hypotheses can

also include other functional forms.

Size is calculated from the proportion of true hypotheses rejected in step 4 at the range of α levels.
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Similarly, power is calculated as the percentage of false hypotheses rejected at a given level. For

these simulations, we use an α = 0.05. We report these rejection rates in the following simulations.

5.1.1 Test Statistics

Testing requires test statistics. A useful test statistic should be small when models do a good job

of aligning the treated and control groups. When models do a poor job, the value of the test statistic

should be large. This property is known as “effect increasing” (Rosenbaum, 2002, Proposition 2,

Chap 2). With respect to the parameters in the model, we want to find a test statistic that is effect

increasing on both β and τ. The first test statistic, a mean difference statistic, compares the means

of the treated and control groups. The second test statistics, the KS test, takes the supremum of

the absolute difference between the empirical CDFs of the control and treated distributions. The

final test statistic, the Mann-Whitney U, is the normalized sum of the ranks of the treated units.

We selected these three test statistics to represent a range of trade offs available to researchers.

Differences of means are very efficient when data are Normal, but can lack power on non-Normal

data. Like the difference of means, the Mann-Whitney U statistic is a location based statistic, but

retains good power on non-Normal data (Keele, McConnaughy and White, 2012). The final test

statistic, the Kolmogorov-Smirnov (KS) test statistic represents a different approach in that it can

detect more general divergences between the treated and control distributions that include but are

not limited to means or medians (or other specific locations).

Figure 8 shows how well three potential test statistics perform as we vary β and τ away from

the true values used in our simulation. For this simulation, we use a sample size of 256 units, with

512 edges (i.e. the network shown in Figure 1) and a uniformity trial where baseline outcomes for

unit i depend on the density of the network connections for that unit: using the function f (x) =

β + (1 − β) exp
(

−τ2x
)

, our growth curve equation, we set y0 = U(30, 70) · f (1TS). The plot labeled

“Size” shows that all three test statistics maintain appropriate size when the null hypothesis is true.

That is, if we are willing to tolerate an error rate of 5%, this test rejects falsely no more than 5%

of the time (that this is true for all α is shown by the clustering of the distribution right along and

below the 45 degree line and within the dashed lines showing the ±2 bounds of the standard error of

simulation). The plots labeled “Power” show that all three statistics have similar power as β varies

21



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size

α(level)

P
ro

p
. 

R
e
je

c
te

d
 (

s
iz

e
)

Mean Diff

KS Test

Mann−Whitney U

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Power

β

P
ro

p
. 

R
e
je

c
te

d
 a

t 
α

=
.0

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Power

τ

P
ro

p
. 

R
e
je

c
te

d
 a

t 
α

=
.0

5

Figure 8: Simulations for the true spillover model tested with three different test statistic. The three statistics

are a mean difference statistic, the Mann-Whitney U (rank) statistic, and the Kolmogorov-Smirnov statistic.

For β-power simulations, τ = 0.5. For τ-power simulations, β = 2. Dashed lines on the “Size” panel show ±2

standard errors of simulation where SEsim =
√

p(1 − p)/n (Imbens and Rubin, 2009, Chap 5).

away from the truth: that is, as we test hypotheses about β which are further from β = 2, more and

more of our tests will produce low p-values (indicating a lack of congruence between our hypotheses

and the data) until almost all tests of certain extreme hypotheses will produce p-values less than

.05 (power of 1.0 for α = .05). With respect to τ, all three statistics again perform similarly. We

omit simulation error bars on the power analyses plots to avoid clutter. We use the KS statistic in all

the subsequent simulations because differences between treatment and control groups arising from

hypotheses about interference are likely to cause more than simple shifts in the location of the two

groups and so test statistics sensitive only to differences in location will tend to miss differences in

spread, skew, kurtosis that might indicate useful model.

5.1.2 Baseline Outcomes

In this simulation, we vary the uniformity trial used to generate the data (i.e., the result that

would be observed if all units received the control condition). We consider three kinds of fixed

uniformity trial data. In the first case, we generate the uniformity trial data by sampling uniformly

from 30 to 70: y0 = U(30, 70). We label these data the “base” uniformity trial data. For the second

uniformity trial vector, we multiply the base uniformity data by the maximum possible spillover for

each unit using the function f (x) = β + (1 − β) exp
(

−τ2x
)

: y0 = U(30, 70) · f (1TS). While the first

uniformity data set is completely independent of the network, in the second data set, units with many

connections will have systematically higher uniformity trial data. These data can be thought to be
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“pre-dosed,” in the sense that each unit has received the equivalent effect as if all her neighbors had

been treated. All yi,0 in the second trial are somewhere between 1 and β times as large as the first

uniformity data set. As the network multiplies outcomes, we label these data “network plus.” For the

last data set, we again use the base data, this time dividing by the function f : y0 = U(30, 70)/ f (1TS).

We label these data “network minus.”

Figure 9 shows how the test performs under these different initial conditions. For each uniformity

trial data, we create 1000 simulated data sets using our spillover model and parameters β = 2 and

τ = 0.5. For each data set, we apply the algorithm given in § 4.1 using the KS test statistic. All three

uniformity trials are comparable with respect to β. With respect to the τ parameter, the pre-dosed

“network plus” makes rejecting false hypotheses somewhat harder, though power approaches one

within a factor of two to the true τ parameter. All three approaches maintain appropriate size within

expected simulation error (grey bars). In an effort to make our simulations more realistic, we select

the “network plus” distribution for the uniformity trial in all the other simulations in this section.15
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Figure 9: Uniformity trial simulations for the true spillover model. For β-power simulations, τ = 0.5. For

τ-power simulations, β = 2.

These simulation results indicate that the distribution of the baseline outcomesmatters to the test’s

ability to discriminate between hypotheses. While researchers will never observe the uniformity trial

as would be experienced by subjects in the actual experiment, there are opportunities to learn about

the uniformity trial from existing data on baseline outcomes. For example, in a turnout experiment, it

15It was also the uniformity trial used in generating the data in section 3.
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is likely the uniformity trial would be similar to historical turnout data. In an experiment conducted

on a panel subject pool, pre-tests or previous experimental results can serve to suggest a distribution

for the uniformity trial.

5.1.3 Sample Size

In this simulation we vary the sample size from small to large with sample sizes of 32, 256,

and 1024. At each sample size, we fix the number of edges in the network equal to 2n. The 1000

observed data sets are generated using the “network plus” uniformity trial data and the standard

β = 2 and τ = 0.5 values. The models are assessed using the KS test statistic. Figure 10 shows the

size of the test and the power to reject false hypotheses across a range of false τ and β values.
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Figure 10: Sample size simulations for the true spillover model. For β-power simulations, τ = 0.5. For

τ-power simulations, β = 2.

As expected, a small sample size of 32 units has difficulty rejecting hypotheses close to the truth.

It takes roughly a four fold increase or decrease in the hypothesized value of β before the 32 unit

sample can reject false hypotheses at the α = 0.05 level. The small sample size lacks the power to

reject almost any tested value of τ at this level. Larger sample sizes, however, do enable rejection of

false hypotheses even when these hypotheses are quite close to the true β, and power increases as

sample size increases. Sample size matters slightly more in discriminating for spillover hypotheses,

related to τ at least for this particular model. Even for small sample sizes, test size remains within

simulation error, and tends to be slightly conservative, failing to reject the true null more often than

necessary as given in the α-level (x-axis).

These plots, unsurprisingly, suggest that larger sample sizes are always better for increasing
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power. At the same time, even small sample sizes appropriately limit type I error, so researchers are

unlikely to be misled into rejecting true hypotheses too often. Researchers will have to balance the

costs of increasing sample sizes against the benefits of additional power. At least for this simulation

setup, if a researcher were primarily interested in the direct effect of β, the largest sample size does

not confer much additional power over a sample one quarter the size. If the spillover parameter

is more important, the large sample size premium may be worth the additional cost depending on

expected effect size.

5.1.4 Network Density

More dense networks may have either more, or less, information available for assessing hypothe-

ses, depending on the model at hand. For example, very dense networks may provide excellent

information about spillover effects but enable us to learn very little about direct treatment effects. In

this simulation, we vary the number of edges in the network, the network density, to learn about our

model and data. To vary the network density, we fix the sample size at 256 units and investigate the

test properties when there are n · (0.25, 1, 2, 5) edges in the network. Edges are added by finding the

closest pair, adding an edge between the pair, and repeating the process until enough edges are in

the network. The uniformity trial is the “network plus” uniformity trial, created for the 256 unit,

512 edge network. We use the KS test statistic as before. Figure 11 shows that the test continues to

maintain the appropriate size, as specified in the α-level. The power plots display several interesting

results. First, while having zero edges in the network provides great power against false hypotheses

over β, we are unable to say anything about τ. This result makes sense: When there are no edges in

the network, there is no observed spillover. Therefore, the experiment provides no insight into the

true value of τ. All hypotheses about τ imply the same adjustment to the data and therefore have

the same test statistic value. Consequently, the design provides no useful information about τ and,

correctly, would produce infinite confidence intervals. We will see this result again in § 5.2, when

we use a data set with a network but with data that are generated with a true τ = 0 parameter.

Conversely in the power plots, having a dense network (i.e., having 256 × 5 = 1280 edges)

diminishes power for β but increases power for τ. In fact, there appears to be a minimum density

required, at least for this data set, somewhere around 1, for maintaining power against reasonable,
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Figure 11: Network density simulations for the true spillover model. For β-power simulations, τ = 0.5. For

τ-power simulations, β = 2.

but false, values of τ. Researchers who control networks (such as those in laboratories) may desire

to trade sample size for network characteristics like density to achieve optimal power against both

direct and indirect parameters depending on the results of simulations like these using their own

theoretical causal models.

5.1.5 Percent Treated

To vary the percent treated, we fix the sample size at 256 and the number of edges at 512. As

usual, we use the “network plus” uniformity trial and the KS test statistic. We then test hypotheses

when the number of treated units in the simulation is 10%, 25%, 50% and 75% of the sample size.

Figure 12 shows these results.
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Figure 12: Percent of subjects that are assigned to treatment simulations for the true spillover model. For

β-power simulations, τ = 0.5. For τ-power simulations, β = 2.

For our network and model, the most powerful design involves randomly assigning half of the
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units to treatment and half to control. Note, however, that the designs over-sampling and under-

sampling treated units do not perform equally with respect to rejecting large, false values of τ. While

assigning 75% of the subject pool to the treated condition performs almost as well as assigning

50%, assigning only 25% of the subjects to treatment performs much worse across the entire plotted

range. For other datasets, networks, and models, these results may even be exacerbated to the point

that over or under-sampling strictly dominates equal numbers of treated and control units. While

not shown here, we have seen this result in other simulations. The exact nature of these curves

depends strongly on the underlying data, network, and model, so we strongly encourage researchers

to perform similar power simulations before deciding how to allocate treatment or how to interpret

the p-values from their tests.

5.1.6 Simultaneous Power Analysis of β and τ

In the previous simulations, in the name of clarity, we have presented separate power analysis for

β and τ. For the β power analyses, we have held τ fixed at the true value of τ = 0.5. For the τ power

analyses, we have held β fixed at β = 2. In this simulation, we vary both parameters simultaneously

and display the results. We again use the 256 unit network with 512 edges, with outcome generated

from applying the true model to the “network plus” uniformity trial. As before, we employ the KS

test statistic. Figure 13d shows the size of the test, which shows that the test continues to reject the

true joint null at appropriate rates. Moreover, looking across all repetitions of simulation, the true

value is within the 2-dimensional 95% confidence region 96.7 percent of the time, within expected

simulation error.

Figure 13a shows the proportion of hypotheses rejected as hypotheses over both β and τ vary:

Joint hypotheses that diverge from the truth are rejected nearly always for most of the plot. Yet,

rejection rates decrease from 100% for hypotheses with large direct and large spillover effects, an

intuitive result. Large amounts of spillover can mask direct treatment effects in this model, so this

simulation teaches about our model: these hypotheses are observationally very similar to the true

hypothesis. The lines bisecting the plot correspond to the true values of β and τ. Subplot 13b shows

the power along the line τ = 0.5, while subplot 13c shows the power along the line β = 2. These

plots correspond to the power plots in the previous simulations.
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(c) τ-power
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Figure 13: Size (rejection of true hypothesis at given level) and power (rejection rate of false hypotheses)

plots for a single model investigation. Horizontal gray lines in panels (b) and (c) show that 5% of hypotheses

about the true values are rejected at the α = .05 level.

5.2 Comparing Models

Recall that to reject a hypothesis, the adjustment implied by the model H(yz, 0, θ) = y0, the

function that turns observed data into the uniformity trial, must produce large differences in the

treated and control groups. Conversely, a hypothesis that we fail to reject will do a good job of

making the treated and control groups appear similar. One method for assessing models in this way

was suggested by Rosenbaum (2010, Chap 2, p.48) in which distributions of outcomes after and

before application of models were displayed using boxplots. Figure 14 shows the distribution of the

observed data and the distribution of the model adjusted data for three hypotheses: the true data

generating process, a hypothesis for which we have low power in Figure 13, and a hypothesis that we

would reject at a high rate from that same figure. Since we are in the position to know the uniformity

trial data, we display that as well. Both the true hypothesis and the false, but low power, hypothesis

clearly align the data better than the high power hypothesis, with the true hypothesis aligning the
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distributions more closely. Of course, since we know the uniformity trial, we can see that the true

model restores the treated and control groups to be, what are in essence, random samples from

the uniformity trial. In practice we do not have access to this knowledge. As Rosenbaum (2007)

points out, we cannot distinguish between models that imply similar effects to both treated and

control groups. In the low power hypothesis, increased spillover and a larger main effect makes

the treated and control groups appear very similar. Even with more nuanced models of spillover

effects, there is a price to be paid when spillover occurs: it is increasingly difficult to discriminate

between competing models. Yet, the hypothesis against which we have high power keeps the two

distributions fairly distant, even if closer than the observed difference.
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Figure 14: Comparison of models: the true model (τ = 0.5, β = 2), an infrequently rejected false hypothesis

(τ = 0.75 and β = 3), and a frequently rejected false hypothesis (τ = 1 and β = 2). Data are grouped by

treatment (Z = 1) and control (Z = 0). Note also that the observed data are equivalent to the adjustment

implied by the sharp null of no effects.

The previous simulations suggest that the methodology presented here does fulfill the minimal

criteria that we tend to expect from our statistical procedures: test size is less than or equal to the

level of the test and the test has good power against false sets of parameters. Both of these properties

derive from the model being true. What about when the model is false?
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We begin to address this question by starting from the simplest alternative true model: the

sharp null of no effects. This model states that the intervention had no effect on the population.

In other words, the observed data are precisely what would have been observed if no intervention

had been made. In fact, the sharp null of no effects is a special case of the model in equation 6

when β = 1. Many parameterized models exhibit this trait. For the additive, non-interference

model H(yi, z,w, α) = yi,z − α(zi − wi), the sharp null occurs at α = 0. Testing the sharp null as

parameterized for one model is equivalent to testing the sharp null as parameterized for a different

model as the adjustment of the data is the same. Therefore, if we reject or fail to reject the sharp null

for one functional form, we need not try a different functional form. The sharp null will be rejected

or not for the new model as well.

For some models with multiple parameters, only one of the parameters will represent the sharp

null hypothesis. In the case of the spillover model of Equation 6, when there is no direct effect, no

spillover effects are possible. When β = 1, all values of τ imply the same adjustment to the data. To

demonstrate this property, we simulate 1000 experiments in which treatment had no effect using

our standard 256 unit, 512 edge subject pool and based on the “network plus” uniformity trial. As

the power plot in Figure 15 shows, the test almost always fails to reject the true model (the line

β = 1), the sharp null of no effects. Looking across all simulations and using an α-level of 0.05,

for all values τ, hypotheses that include β = 1 are rejected in 3.3 percent of the simulations, within

simulation error. If the intervention had no effect, our method protects researchers from rejecting

this null too often.

We next consider the case where the direct effect is correct, but there are no spillover effects.

Specifically, we test the model where β = 2 and τ = 0. Figure 16 shows the now standard power

graph for the simulation. As before, the true model is infrequently rejected, as expected. Moreover,

the range of plausible hypotheses for which spillover exists is small. A researcher would be unlikely

to be misled into thinking spillover occurred in large amounts if none in fact existed.

In our final simulations, we consider the performance of the test when the functional form of the

model is misspecified. In the next simulation, instead of generating data from the multiplicative

model of Equation 6, we generate data for this simulation using a simple additive model:
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Figure 15: Proportion of p-values below .05 for joint hypotheses about β and τ as defined in equation 6 when

the true model is the sharp null model (setting β = 1 in the simulation engine as described in § 5.1.6.
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Figure 16: No spillover data (τ = 0), with a main effect of β = 2. The data are 256 units, with 512 edges

using the “network plus” uniformity trial.

H(yi, z,w, α) = yi,z − α(zi − wi) (8)

For each of the 1000 repetitions, we generate outcomes consistent with Equation 8 with a true

α = 48. This value was chosen as it is the average difference between the treated and control groups
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in the data used in Section 2; therefore, both models set the treated and control group means to

similar values. We continue to use the “network plus” uniformity trial and the KS test statistic.
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(a) Proportion of hypotheses rejected for hypothe-

ses generated by the spillover model applied to

data generated by the additive model. Minimum

achieved at β = 2 and τ = 0.395.
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(b) Example observed data (from one of the 1000

trials) and adjustments implied by the true addi-

tive model and the spillover model at β = 2 and

τ = 0.395.

Figure 17: Simulation results for data generated by the true additive model (Eq. 8, α = 48) and tested using

the spillover model (Eq. 6).

Figure 17a shows the rate of rejection (at the α = 0.05 level) for hypotheses generated using

the multiplicative spillover model of Equation 6. Almost all of these hypotheses are rejected in

almost all of the 1000 tests. The least rejected hypothesis is β = 2 and τ = 0.395, which is rejected

in 71.4% of the simulations. As intended, this hypothesis is close to the true values we used in

the previous simulations; however, the rejection rate is much, much higher. For these data, the test

maintains good power against incorrectly specified models, rejecting false hypotheses at a high rate.

Yet, rejecting so often is a sign that the model is quite incongruent with the data.

In Figure 18a we put the shoe on the other foot. We generate data consistent with the spillover

model and test using the additive model. In this plot, we see the least rejected hypothesis is

α = 48.718, which is rejected in 10.8% of the simulations. As noted previously, this is roughly the

value of α that most closely mimics the true values of β and τ.

In these two simulations, we see that incorrect functional forms are not always rejected. When
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(b) Example observed data (from one of the

1000 trials) and adjustments implied by the true

spillover model and the additive model at α =

48.718.

Figure 18: Simulation results for data generated by the true spillover model (Eq. 6, β = 2 and τ = 0.5) and

tested using the additive model (Eq. 8).

data are generated from one process, it can appear similar to data generated by another process.

Figures 17b and 18b provide some insight into how these two models are similar. Both plots—one

for each of the previous two simulations—show the uniformity trial data and the observed data

generated by the true model. For Figure 17b, the additive model (at the true parameter) aligns the

data very well. The spillover model adjustment, while not perfectly aligned, is still reasonably close.

Misalignment would be achieved in 71.4% of experiments, just due to chance, even if the spillover

model were true. Likewise, in Figure 18b, the misalignment created by the additive model adjustment

would occur in 10.8% of experiments, just due to chance. These plots illustrate an important point:

our statistical methods are not oracles. They can only tell us if the model’s perspective on the data is

implausible. For a given data set, many hypotheses are likely. This testing framework can only help

us eliminate implausible hypotheses, not accept plausible models.

5.3 Summary of Simulation Studies

Different researchers will have different models arising from different theories, and face diverse

designs and datasets. Our aim in this section has been to suggest some approaches to model and

test assessment while also answering some important questions about a new method. We show that

our method meets the standards commonly required of statistical tests: it is never overly likely to
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encourage us to reject a true null hypothesis, and, in a wide variety of situations, it has power to

reject hypotheses that are not true—and such power is a function, as one would hope, of the amount

of relevant information used in the testing procedure. Here, relevant information includes sample

size, network density, baseline outcomes, relationships with the network, and proportion treated.

Test statistics use information differently, and we also assessed differences between the operating

characteristics of a few test statistics. Even with increases in power, data may be consistent with

more than one model. Graphical methods provide insight on the adjustments implied by models.

The studies that we have shown here will be useful both for the design of studies but also for learning

about the ways that complex models may interact with complex designs and data.

6 Discussion

When treatments given to one unit can change the potential outcomes for another unit, the

consequences of ignoring interference may be serious. Imagine a development project aiming

to assess a policy applied to different villages in need of aid. If members of control villages

communicate with members of treated villages, then scholars will have trouble advising policy

makers about whether the policy should be rolled out at a large scale. We have long known, in fact,

that the average treatment effect is not even well identified or meaningful under interference (Cox,

1958).

So far attempts to enable statistical inference about treatment effects with interference have taken

for granted the average treatment effect framework and worked to partition the average into parts

attributable to interference and parts attributable to direct experience with the treatment. In this paper,

we propose a different approach based on asking direct questions about specific forms of interference.

Fisher’s test of the sharp null is still meaningful even when each unit may have many potential

outcomes due to interference. Additionally, Fisher’s framework allows detection of interference

(Aronow, 2012), and under certain conditions, allows the creation of intervals for hypotheses about

treatment effects without requiring specific statements about the form of interference (Rosenbaum,

2007). Our paper contributes to this literature by showing how one may directly specify and assess

hypotheses about theorized forms of interference. We also show that one may present and summarize

information that illuminates the information contained in a dataset regarding different combinations
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of hypotheses about interference and treatment effects. This form of statistical inference does not

require asymptotic justifications or assumptions about the stochastic processes generating outcomes

although fast and reliable approximations are available as samples grow in size.

While not required, such additional assumptions can profitably speed computation. For example,

in our simulation, we employed several test statistics, all of which have convenient large sample

approximations. While the asymptotic justification would have been inappropriate for a small sample,

in larger samples it can be quite useful. For small samples, the enumeration scheme suggested in the

§ 4.1 provides exact p-values without requiring any appeals to asymptotic results. As computational

power increases, researchers may prefer exact solutions even when approximations exist. This

framework is flexible enough to accommodate both approaches. A benefit of our simulation based

approach to assessing the method is that one would detect whether the large sample approximations

were a problem (for example, by noticing that the Type I error rate was not controlled).

The software used in this analysis is not difficult to use. In Appendix A we provide several

example code snippets to illustrate the simple relationship between a formal model of effects and a

statistical test of relevant hypotheses. If researchers can write down amodel of effects mathematically,

they can use the software involved. Appendix A shows how the model used in this paper can be

implemented, which we hope serves to show how straight-forward the process is. We continue to

extend and simplify the software, especially in the area of generating simulations such as those used

in this paper.

In this paper, we have allowed theory to be prior to selection and application of a statistical

technique. As we have portrayed our method, researchers first select a theory or set of theories,

and then write models that capture the implications of those theories for subjects in an experiment,

including spillover effects. We hope that our method also encourages researchers to generate and

engage with new theories and models. By adding another tool to their toolbox, researchers now have

a new language to transcribe theories, opening up new avenues for theoretical advances. We are

especially optimistic about the opportunities for assessing models arising from formal theories using

the techniques in this paper. We think that our framework is especially well suited to assess actor

level models in which actors observe the treatment status of others and anticipate the actions of their
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neighbors. Connecting the Fisherian method of inference to game theoretic models and concepts is

an area ripe for exploration.

Our proposed method focuses attention on unit level models: models that explain how individual

subjects take on values in our experiments. The natural evaluation tool for models is the hypothesis

test, which also has a central role in our proposal. Excellent research also exists on estimating effects,

specifically average treatment effects in the presence of spillover (see § 1 for an extensive list). We

consider it an opportunity for future research to connect average effect estimation with the unit level,

testing based framework suggested in this paper. For example, randomization-based approaches to

the estimation of average treatment effects (Aronow, 2012; Tchetgen and VanderWeele, 2010) and

testing weak null hypotheses (Rosenblum and Van Der Laan, 2009) may provide both computational

advances and conceptual advances when we think about them from the perspective of the sharp

null hypothesis. This set of approaches have similar goals and serve complementary purposes. One

might imagine a workflow in which average direct and indirect effects are reported along with tests

of the weak null and models of unit level processes leading to those effects are assessed. We suggest

that our method is especially useful to researchers who have a clear substantive theory as to how

spillover occurs. By writing down unit level models, these theories enter the statistical analysis very

directly.

Additional work is needed in categorizing, describing, and diagnosing models. For example,

different models may exhibit different parameter sensitivity (or lack effect increasing characteristics).

An ability to describe the features of a model, even before data have been collected, appears useful.

When models contain more than two parameters, we will have to consider how to present and

summarize such results, as the 1 and 2 dimensional plots in this paper would be insufficient. As

we noted in our simulation studies, models sometimes imply similar adjustments to data. Precisely

describing the relationships between models is an open topic. We encourage researchers to engage

with these issues as they apply the techniques in this paper in their own work. It is clear that we

have just scratched the surface of the of the world of theoretically driven interference models.
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Appendix A Code Examples
This appendix provides a brief behind the scenes look at how the simulations in § 5 were

implemented. The simulations rely heavily on the software package RItools . This appendix is a

useful demonstration of how an applied researcher might begin an experiment by first simulating

outcomes and trying different design elements (e.g., sample sizes) and models. For a complete

picture of how our simulations were generated, see the source code to this entire paper at [URL].

Appendix A.1 Model

Our model here is based on a particular network described in an adjacency matrix S. To generate

the model function, we parameterize on S and return a UniformityModel object, which is an

amalgam of two functions. The first maps observed data to the uniformity trialH(yz, 0, β, τ). The

second maps uniformity trial data to what would be observed under the modelH(y0, z, β, τ). These

functions are parameterized on β and τ as discussed in § 5.

## The UniformityModel is a datatype defined in the R package on CRAN.

## The first argument is a function to go from observed data to the uniformity trial

## The second argument is the inverse of the first model (it generates

## observed data from the uniformity trial)

## y0 is the uniformity trial

## y is the observed outcome

## z is 0 or 1 denoting treatment assignment

## Since this model depends on S, we need to generate for a specific S

## The growthCurve function specifies how spillover happens.

growthCurve <- function(beta , tau , x) {

(beta + (1 - beta) * exp(-(tau ^2) * x))

}

interference.model.maker <- function(S) {

## just to be safe about lazy argument evaluation ,

## probably not needed

force(S)

## we will return a UniformityModel object

UniformityModel(

function(y, z, beta , tau) {

zS <- as.vector(z %*% S)

z * (1 / beta) * y +

(1 - z) * y / growthCurve(beta , tau , zS)

},

function(y0, z, beta , tau) {

zS <- as.vector(z %*% S)

z * beta * y0 +

(1 - z) * growthCurve(beta , tau , zS) * y0

})

}

Appendix A.2 Sample Size Simulation

We include here the sample size simulation as an illustration. The general flow of this simulation

(and the other simulations as well) is as follows:

1. Create the uniformity trial data for each sample size.

2. For each sample size:

(a) Draw 1000 treatment assignments consistent with the design.
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(b) Generate 1000 observed datasets using the uniformity trial data and the treatment as-

signments from the previous step based on the true model.

(c) Run RItest on a search space of parameter values. These parameter values include the

true model.

The RItest function handles the statistical inference algorithm, reporting a p-value for each

parameter value tested. By looking across these results, we get a picture of how often the true

parameter value is rejected at a given α-level (type I error) and how often false parameter values are

rejected (power). The last part of the simulation does a little processing to make these error rates

easier to display and report.

# Read in the constants (like DENSITY , REPETITIONS , SEARCH , TRUTH) and

# functions like simulationData (), and load relevant packages (such

# as the package containing RItest () and invertModel () and sampler (), etc.

source (" simulation/setup.R")

# Simulation 1: Increasing sample size.

sampleSizes <- c(32, 256, 1024)

edges <- floor(sampleSizes * DENSITY) # fix the number of edges per sim

## For each sample size make a dataset with baseline data depending on

## and adjacency matrix , S, which , in turn , depends on DENSITY.

sampleSizeData <- vector ("list", length(sampleSizes))

for (i in 1: length(sampleSizes)) {

sampleSizeData [[i]] <- simulationData(sampleSizes[i], edges[i])

}

runSim <-function(d,SEARCH){

## create data consistent with the interference model

data <- d$data

n <- dim(data)[1]

nt <- n/2 # also equals nc in this simulation

sampler <- simpleRandomSampler(total = n, treated = nt)

## get the particular model given this network

model <- interference.model.maker(d$S)

Zs <- sampler(REPETITIONS)$samples # discard the weight element

res <- apply(Zs, 2, function(z) {

y <- invertModel(model , data$y0 , z, TRUTH$beta , TRUTH$tau)

RItest(y, z, ksTestStatistic , model , SEARCH , type = "asymptotic ")

})

return(res)

}

# For each element of simOneData run RItest for a set of values around

# the truth. Here , we speed computation by assessing each parameter

# separately. We could search the 2d grid by simply using SEARCH

# (defined in setup.R) rather than SEARCH.TAU and SEARCH.BETA. RItest

# will search any size grid.

sampleSizeTauResults <- lapply(sampleSizeData , function(d){

runSim(d,SEARCH.TAU) })

sampleSizeTauPower <- simulationPower(sampleSizeTauResults)

sampleSizeBetaResults <- lapply(sampleSizeData , function(d) {

runSim(d,SEARCH.BETA)})

sampleSizeBetaPower <- simulationPower(sampleSizeBetaResults)

names(sampleSizeTauPower) <- names(sampleSizeTauResults) <-
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names(sampleSizeBetaResults) <- names(sampleSizeBetaPower) <- names(sampleSizeData) <-

sampleSizes

save(file = "simulation/samplesize.rda", sampleSizeTauResults , sampleSizeTauPower ,

sampleSizeBetaResults , sampleSizeBetaPower , sampleSizeData)

Appendix A.3 Testing Hypotheses from a Model

In the preceding simulation hypotheses were tested many times. To assess one set of hypotheses

as generated by one model (for example, as shown in Figure 6) one would do the following (although

one would not have to create data for use in testing in a real application):

source (" simulation/setup.R")

## Create the canonical dataset

canonicalData <- simulationData (256, 512)

canonicalZ <- as.vector(canonicalData$sampler (1) $samples)

canonicalModel <- interference.model.maker(canonicalData$S)

canonicalOutcome <- invertModel(canonicalModel ,

canonicalData$data$y0 ,

canonicalZ ,

beta = TRUTH$beta ,

tau = TRUTH$tau)

## Test joint hypotheses generated from the model

canonicalRI <- RItest(canonicalOutcome ,

canonicalZ ,

ksTestStatistic ,

moe = canonicalModel ,

parameters = SEARCH ,

type = "asymptotic ")
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