
ar
X

iv
:1

20
8.

08
48

v1
  [

cs
.L

G
] 

 3
 A

ug
 2

01
2

Learning Theory Approach to Minimum Error Entropy

Criterion†
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Abstract

We consider the minimum error entropy (MEE) criterion and an empirical risk

minimization learning algorithm in a regression setting. A learning theory approach is

presented for this MEE algorithm and explicit error bounds are provided in terms of

the approximation ability and capacity of the involved hypothesis space when the MEE

scaling parameter is large. Novel asymptotic analysis is conducted for the generaliza-

tion error associated with Renyi’s entropy and a Parzen window function, to overcome

technical difficulties arisen from the essential differences between the classical least

squares problems and the MEE setting. A semi-norm and the involved symmetrized

least squares error are introduced, which is related to some ranking algorithms.

Keywords: minimum error entropy, learning theory, Renyi’s entropy, empirical risk

minimization, approximation error

1 Introduction

Least squares method is a fundamental computational tool in various fields of science and

engineering. It has been well understood mathematically due to the quadratic form of its

related least squares loss function which is perfect to deal with problems involving Gaussian
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noise (such as some from linear signal processing). The least squares method has many

extensions or alternatives for different purposes. An information theoretic alternative, min-

imum error entropy (MEE) criterion [5], is based on entropy, a measurement for average

information, defined in various forms such as Shannon’s entropy and Renyi’s entropy.

Renyi’s entropy (of order 2) for a random variable e is defined in terms of its probability

density function (pdf) fe as H(e) = − logE[fe(e)] = − log
∫
(fe(e))

2de. The pdf is often

unknown. Instead, to estimate the entropy, one needs to learn the density from a sample

{ei}mi=1. A practical way for approximating fe is Parzen [8] windowing 1
mh

∑m
i=1G( (e−ei)

2

2h2 )

by means of a window function G : R+ → R with G(t) = exp{−t} to be a typical example

corresponding to Gaussian windowing. Then Renyi’s entropy can be estimated through its

discretized version called empirical Renyi’s entropy defined by

Ĥ = − log
1

m2h

m∑

i=1

m∑

j=1

G

(
(ei − ej)

2

2h2

)
.

Minimizing this computable quantity with e being an error random variable in various ways

leads to different MEE algorithms. In this paper, we study an MEE learning algorithm for

regression in an empirical risk minimization (ERM) setting.

The regression problem aims at learning a regression function defined on a separable

metric space X (input space for learning) with values in Y = R (output space). To model

the learning problem, we assume that ρ is a Borel probability measure on Z := X × Y and

z = {(xi, yi)}mi=1 is a sample independently drawn according to ρ. With a test function f

on X , the error random variable e on Z for Renyi’s entropy takes the form e = y − f(x).

Putting this into the empirical Renyi’s entropy Ĥ leads to our MEE learning algorithm in

an ERM setting.

Definition 1. Let G be a continuous function defined on [0,∞) and h > 0. Let H be a

compact subset of C(X). Then MEE learning algorithm associated with H is defined by

f
z
= argmin

f∈H

{
− log

1

m2h

m∑

i=1

m∑

j=1

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)}
. (1.1)

The set H is called the hypothesis space for learning. Its compactness ensures the exis-

tence of a minimizer f
z
. Computational methods for solving optimization problem (1.1) and

its applications in signal processing have been described in a vast MEE literature [9, 5, 6, 10].

Asymptotic behaviors of f
z
for small or large MEE Scaling parameter h have also been dis-

cussed for different purposes. It has been observed that the MEE criterion has nice conver-

gence properties when the MEE Scaling parameter h becomes large. The first purpose of
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this paper is to verify this observation in the ERM setting and show that f
z
approximates

the regression function well with confidence. Here the regression function fρ is defined by

fρ(x) =

∫

Y

ydρ(y|x), x ∈ X,

where ρ(·|x) is the conditional distribution of ρ at x ∈ X .

Our mathematical analysis for the convergence of f
z
to fρ is stated in terms of the

approximation ability of the hypothesis space H and its capacity. The approximation ability

is measured by the approximation error. We assume fρ ∈ L2
ρX
.

Definition 2. Define a semi-norm ‖| · |‖L2
ρX

on the space L2
ρX

as

‖|f |‖L2
ρX

= min
c∈R

‖f − c‖L2
ρX
, f ∈ L2

ρX
. (1.2)

The approximation error of the pair (H, fρ) is defined by

DH(fρ) = inf
f∈H

‖|f − fρ|‖2L2
ρX

= inf
f∈H

min
c∈R

‖f − fρ − c‖2L2
ρX
. (1.3)

The minimizer in (1.2) is achieved by the constant c∗ =
∫
X
f(x)dρX and in (1.3) by the

constant
∫
X
f(x)−fρ(x)dρX . The approximation error for the least squares ERM regression

was studied in [11]. An essential difference between that and the approximation error here

is an additional constant function, which is similar to an offset in support vector machines

[13].

The capacity of the hypothesis space H is measured by covering numbers in this paper.

Definition 3. For ε > 0, the covering number N (H, ε) is defined to be the smallest integer

l ∈ N such that there exist l disks with radius ε in C(X) covering the set H. We shall assume

that for some constants p > 0 and Ap > 0, there holds

logN (H, ε) ≤ Apε
−p, ∀ε > 0. (1.4)

The asymptotic behavior (1.4) of the covering numbers is typical in learning theory. It

is satisfied by balls of Sobolev spaces on X ⊂ R
n and reproducing kernel Hilbert spaces

associated with Sobolev smooth kernels. See [2, 16, 17, 14].

Throughout the paper we assume that

G ∈ C2[0,∞), G′
+(0) = −1, ‖G′′‖∞ < ∞, ‖tG′(t2/2)‖∞ := sup

t∈R
|tG′(t2/2)| < ∞.
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Note that the special example G(t) = exp{−t} for the Gaussian windowing satisfies the

above assumption with ‖G′′‖∞ = 1 and ‖tG′(t2/2)‖∞ = e−1/2 < ∞.

We also assume
∫
Z
y4dρ < ∞ and fρ ∈ L∞

ρX
. The following error bound for (1.1) with

large h will be proved in Section 5.

Theorem 1. Assume covering number condition (1.4) with some p > 0. Define f
z
by (1.1)

with h ≥ 1 and m > 1. Then for any 0 < η ≤ 1 and 0 < δ < 1, with confidence 1 − δ we

have

‖|f
z
− fρ|‖2L2

ρX
≤ C̃H

η

(
1

h2
+

h2

m
+

h
2+p
1+p

m
1

1+p

)
log

2

δ
+ (1 + η)DH(fρ), (1.5)

where C̃H is a constant independent of m, δ or h (depending on H). In particular, if h =

m
1

4+3p , we have

‖|f
z
− fρ|‖2L2

ρX
≤ 3C̃H

η

(
1

m

) 2

4+3p

log
2

δ
+ (1 + η)DH(fρ). (1.6)

Remark 1. In Theorem 1, we use a parameter η > 0 in the error bounds (1.5) and (1.6)

to show that the bounds consist of two terms, one of which is essentially the approximation

error DH(fρ) since η can be arbitrarily small. The reader can simply set η = 1 to get the

main ideas of our analysis.

When fρ + cρ ∈ H for some constant cρ ∈ R, we know that DH(fρ) = 0. In this case, the

choice η = 1 in Theorem 1 yields the following learning rate.

Corollary 1. Assume (1.4) with some p > 0 and fρ + cρ ∈ H for some constant cρ ∈ R.

Define f
z
by (1.1) with h = m

1

4+3p and m > 1. Then with confidence 1− δ we have

‖|f
z
− fρ|‖2L2

ρX
= ‖f

z
− fρ −

∫

X

f
z
(x)− fρ(x)dρX‖2L2

ρX
≤ 3C̃H

(
1

m

) 2

4+3p

log
2

δ
.

A special example of the hypothesis space is a ball of a Sobolev space Hs(X) with index

s > n
2
on a domain X ⊂ R

n which satisfies (1.4) with p = n
s
. When s is large enough, the

positive index n
s
can be arbitrarily small. Then the power exponent of the following learning

rate can be arbitrarily close to 1
2
.

Example 1. Let X be a bounded domain of Rn with Lipschitz boundary. If fρ ∈ Hs(X) for

some s > n
2
and H = {f ∈ Hs(X) : ‖f‖Hs(X) ≤ R} with R ≥ ‖fρ‖Hs(X), then for f

z
defined

by (1.1) with h = m
1

4+3n/s and m > 1, with confidence 1− δ we have

‖|f
z
− fρ|‖2L2

ρX
≤ 3C̃H

(
1

m

) 2

4+3n/s

log
2

δ
.
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Our error analysis for algorithm (1.1) is based on asymptotic behaviors of the involved

generalization error associated with the window function G. The Taylor expansion G(t) ≈
G(0) + G′

+(0)t leads us to consider the following symmetrized least squares error which has

appeared in the literature of ranking algorithms [3, 1].

Definition 4. The symmetrized least squares error is defined on the space L2
ρX

by

Esls(f) =

∫

Z

∫

Z

[(y − f(x))− (v − f(u))]2 dρ(x, y)dρ(u, v), f ∈ L2
ρX
. (1.7)

The second purpose of this paper is to reveal the following relation between the sym-

metrized least squares error and the square of the semi-norm ‖| · |‖L2
ρX
, to be proved in the

next section. We expect that this result can be applied to error analysis of some ranking

algorithms.

Theorem 2. If
∫
Z
y2dρ < ∞, then

Esls(f) = 2‖|f − fρ|‖2L2
ρX

+ 2

∫

Z

[y − fρ(x)]
2 dρ, ∀f ∈ L2

ρX
. (1.8)

2 Information Error and Its Asymptotic Analysis

In this section we study a functional called information error or generalization error asso-

ciated with the window function G defined over the space of measurable functions on X

as

E (h)(f) =

∫

Z

∫

Z

−h2G

(
[(y − f(x))− (v − f(u))]2

2h2

)
dρ(x, y)dρ(u, v)

and investigate its asymptotic behavior as h tends to infinity.

Denote a constant Cρ associated with the measure ρ as

Cρ =

∫

Z

[y − fρ(x)]
2 dρ.

Theorem 3. If G ∈ C2[0,∞) with ‖G′′‖∞ = sup0<t<∞ |G′′(t)| < ∞ and
∫
Z
y4dρ < ∞, then

for any essentially bounded measurable function f on X, we have

∣∣∣E (h)(f) + h2G(0) +G′
+(0)Cρ +G′

+(0)‖|f − fρ|‖2L2
ρX

∣∣∣ ≤ 64‖G′′‖∞
h2

{∫

Z

y4dρ+ ‖f‖4∞
}
.

(2.1)
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In particular,

∣∣∣E (h)(f) + h2G(0) +G′
+(0)Cρ +G′

+(0)‖|f − fρ|‖2L2
ρX

∣∣∣ ≤ C ′
H

h2
, ∀f ∈ H,

where C ′
H is the constant depending on ρ, h and f given by

C ′
H = 64‖G′′‖∞

{∫

Z

y4dρ+

(
sup
f∈H

‖f‖∞
)4
}
.

Proof. By the Taylor expansion |G(t)−G(0)−G′
+(0)t| ≤ ‖G′′‖∞

2
t2 for t ≥ 0, we know that

∣∣∣∣∣E
(h)(f) + h2G(0) +

∫

Z

∫

Z

G′
+(0)

[(y − f(x))− (v − f(u))]2

2
dρ(x, y)dρ(u, v)

∣∣∣∣∣

≤ ‖G′′‖∞
8h2

∫

Z

∫

Z

[(y − f(x))− (v − f(u))]4 dρ(x, y)dρ(u, v)

≤ 4‖G′′‖∞
h2

∫

Z

[y − f(x)]4 dρ ≤ 4‖G′′‖∞
h2

∫

Z

[y − f(x)]4 dρ

≤ 64‖G′′‖∞
h2

{∫

Z

y4dρ+ ‖f‖4∞
}
.

This together with Theorem 2 proves bound (2.1) and hence our conclusion.

Applying Theorem 3 to a function f ∈ H and fρ ∈ L∞
ρX

yields the following relation on

the excess generalization error E (h)(f)− E (h)(fρ).

Corollary 2. Under the condition of Theorem 3, if fρ ∈ L∞
ρX
, we have

∣∣∣E (h)(f)− E (h)(fρ) +G′
+(0)‖|f − fρ|‖2L2

ρX

∣∣∣ ≤ C ′′
H

h2
, ∀f ∈ H,

where

C ′′
H = C ′

H + 64‖G′′‖∞
{∫

Z

y4dρ+ ‖fρ‖4∞
}
.

We end this section by proving Theorem 2 stated in the introduction.
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Proof of Theorem 2. By the definition of the regression function, we have

Esls(f) =

∫

Z

∫

Z

[(y − f(x))− (v − f(u))]2 dρ(x, y)dρ(u, v)

=

∫

Z

{∫

X

[fρ(x)− f(x)− (v − f(u))]2 dρX(x) +

∫

Z

[y − fρ(x)]
2 dρ(x, y)

}
dρ(u, v)

=

∫

X

∫

X

[fρ(x)− f(x)− (fρ(u)− f(u))]2 dρX(x)dρX(u)

+

∫

X

∫

Z

[v − fρ(u)]
2 dρ(u, v)dρX(x) +

∫

Z

∫

Z

[y − fρ(x)]
2 dρ(x, y)dρ(u, v)

=

∫

X

∫

X

[f(x)− fρ(x)− (f(u)− fρ(u))]
2 dρX(x)dρX(u) + 2

∫

Z

[y − fρ(x)]
2 dρ.

Let c∗ be the best approximation in L2
ρX

of f − fρ from the subspace of the constant

functions. That is,

c∗ = argmin
c∈R

‖f − fρ − c‖L2
ρX
.

Then the function f − fρ − c∗ is orthogonal to any constant function in the Hilbert space

L2
ρX
, and ‖f − fρ − c∗‖L2

ρX
= ‖|f − fρ|‖L2

ρX
. It follows that

∫

X

(f(x)− fρ(x)− c)2 dρX(x) = |c− c∗|2 + ‖|f − fρ|‖2, ∀c ∈ R.

With c = f(u)− fρ(u) ∈ R, this implies that for any fixed u ∈ X , there holds

∫

X

[f(x)− fρ(x)− (f(u)− fρ(u))]
2 dρX(x) = |f(u)− fρ(u)− c∗|2 + ‖|f − fρ|‖2L2

ρX
.

Hence
∫

X

∫

X

[f(x)− fρ(x)− (f(u)− fρ(u))]
2 dρX(x)dρX(u)

=

∫

X

|f(u)− fρ(u)− c∗|2dρX(u) + ‖|f − fρ|‖2L2
ρX

= 2‖|f − fρ|‖2L2
ρX
.

Then the desired equality follows. This proves Theorem 2.

3 Error Decomposition for the ERM Algorithm

Error decomposition has been a standard technique to analyze least squares ERM regression

algorithms [2, 4, 12, 15]. It decomposes the error ‖f−fρ‖2L2
ρX

into the sum of E ls(f)−E ls(f ls
H)

7



(sample error) and E ls(f ls
H)− E ls(fρ) = ‖f ls

H − fρ‖2L2
ρX

(approximation error) where E ls(f) =
∫
Z
(f(x)− y)2dρ and f ls

H is a minimizer (called target function) of E ls(f) in H. A technical

difficulty arises for the error decomposition of ERM algorithm (1.1) since there might be two

ways to define a target function in H, one to minimize the information error and the other

to minimize the distance to fρ under the semi-norm ‖| · |‖L2
ρX
. These possible candidates for

the target function are defined as

fH := argmin
f∈H

E (h)(f), (3.1)

fapprox := argmin
f∈H

‖|f − fρ|‖L2
ρX

= argmin
f∈H

min
c∈R

‖f − fρ − c‖L2
ρX
. (3.2)

The first technical novelty of this paper is to show that then the MEE scaling parameter h

is large, these two functions are actually very close.

Theorem 4. Under the condition of Corollary 2, if G′
+(0) < 0, then

E (h)(fapprox) ≤ E (h)(fH) +
2C ′′

H
h2

and

‖|fH − fρ|‖2L2
ρX

≤ ‖|fapprox − fρ|‖2L2
ρX

+
2C ′′

H
−G′

+(0)h
2
.

Proof. By Corollary 2 and the definitions of fH and fapprox, we have

E (h)(fH)− E (h)(fρ) ≤ E (h)(fapprox)− E (h)(fρ) ≤ −G′
+(0)‖|fapprox − fρ|‖2L2

ρX
+

C ′′
H

h2

≤ −G′
+(0)‖|fH − fρ|‖2L2

ρX
+

C ′′
H

h2
≤ E (h)(fH)− E (h)(fρ) +

2C ′′
H

h2

≤ −G′
+(0)‖|fapprox − fρ|‖2L2

ρX
+

3C ′′
H

h2
.

Then the desired inequalities follow.

Corollary 2 actually yields the following error decomposition for our algorithm.

Lemma 1. Under the condition of Corollary 2, if G′
+(0) < 0, then

‖|f
z
− fρ|‖2L2

ρX
≤ 1

−G′
+(0)

{
E (h)(f

z
)− E (h)(fH)

}
+ ‖|fapprox − fρ|‖2L2

ρX
+

2C ′′
H

−G′
+(0)h

2
. (3.3)

Proof. By Corollary 2,

−G′
+(0)‖|fz − fρ|‖2 ≤ E (h)(f

z
)− E (h)(fρ) +

C ′′
H

h2

≤
{
E (h)(f

z
)− E (h)(fH)

}
+ E (h)(fH)− E (h)(fρ) +

C ′′
H

h2
.

8



Since fapprox ∈ H, the definition of fH tells us that

E (h)(fH)− E (h)(fρ) ≤ E (h)(fapprox)− E (h)(fρ).

Applying Corollary 2 to the above bound implies

−G′
+(0)‖|fz − fρ|‖2 ≤

{
E (h)(f

z
)− E (h)(fH)

}
−G′

+(0)‖|fapprox − fρ|‖2 +
2C ′′

H
h2

.

Then desired error decomposition (3.3) follows.

4 Sample Error Estimates

In this section, we estimate the sample error E (h)(f
z
)−E (h)(fH). In this step, we demonstrate

our second technical novelty. Define the empirical information error for measurable functions

f on X as

E (h)
z

(f) = − h2

m(m− 1)

m∑

i=1

∑

j 6=i

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)
.

Then

E (h)(f
z
)− E (h)(fH) = E (h)(f

z
)− E (h)

z
(f

z
) + E (h)

z
(f

z
)− E (h)

z
(fH) + E (h)

z
(fH)− E (h)(fH).

By the definition of f
z
, we have E (h)

z (f
z
)− E (h)

z (fH) ≤ 0. Hence

E (h)(f
z
)− E (h)(fH) ≤ E (h)(f

z
)− E (h)

z
(f

z
) + E (h)

z
(fH)− E (h)(fH) = S1 + S2, (4.1)

where

S1 : =
[
E (h)(f

z
)− E (h)(fρ)

]
−
[
E (h)
z

(f
z
)− E (h)

z
(fρ)

]
,

S2 : =
[
E (h)
z

(fH)− E (h)
z

(fρ)
]
−
[
E (h)(fH)− E (h)(fρ)

]

We use Hoeffding’s probability inequality for U-statistics [7] to bound S1 and S2.

Lemma 2. If U is a symmetric real-valued function on Z × Z satisfying a ≤ U(z, z′) ≤ b

almost surely and var(U) = σ2, then for any ε > 0,

Prob

{
1

m(m− 1)

m∑

i=1

∑

j 6=i

U(zi, zj)− EU ≥ ε

}
≤ exp

{
− (m− 1)ε2

4σ2 + (4/3)(b− a)ε

}
.
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Lemma 3. For any 0 < δ < 1, with confidence of 1− δ
2
, there holds

S2 ≤ ‖tG′(t2/2)‖∞ log
2

δ

{
6

m− 1
+

4‖|fH − fρ|‖L2
ρX√

m− 1

}
h.

Proof. Let U be the symmetric real-valued function on Z×Z defined in terms of two variables

z = (x, y), z′ = (u, v) ∈ Z as

U(z, z′) = −h2G

(
[(y − fH(x))− (v − fH(u))]

2

2h2

)
+ h2G

(
[(y − fρ(x))− (v − fρ(u))]

2

2h2

)
.

Define a function g on R by

g(t) = G(t2/2), t ∈ R. (4.2)

We see that g ∈ C2(R), g(0) = G(0), g′(t) = tG′(t2/2) with g′(0) = 0. Moreover,

U(z, z′) = −h2g

(
(y − fH(x))− (v − fH(u))

h

)
+ h2g

(
(y − fρ(x))− (v − fρ(u))

h

)
.

It follows that

|U(z, z′)| ≤ h2‖g′‖∞
|[fH(u)− fρ(u)]− [fH(x)− fρ(x)]|

h
.

This tells us that

|U(z, z′)| ≤ 2‖tG′(t2/2)‖∞‖fH − fρ‖∞h

almost surely. Moreover, putting the constant

c∗ = argmin
c∈R

‖fH − fρ − c‖L2
ρX

into

[fH(u)− fρ(u)]− [fH(x)− fρ(x)] = [fH(u)− fρ(u)− c∗]− [fH(x)− fρ(x)− c∗]

we find that

var(U) ≤ E(U2) ≤ 4‖tG′(t2/2)‖2∞‖fH − fρ − c∗‖2L2
ρX
h2 = 4‖tG′(t2/2)‖2∞‖|fH − fρ|‖2L2

ρX
h2.

Note that EU = E (h)(fH) − E (h)(fρ) and 1
m(m−1)

∑m
i=1

∑
j 6=i U(zi, zj) = E (h)

z (fH) − E (h)
z (fρ).

Then by Lemma 2 we have

Prob {S2 ≥ ε} ≤ exp

{
− (m− 1)ε2

16‖tG′(t2/2)‖2∞‖|fH − fρ|‖2L2
ρX

h2 + 6‖tG′(t2/2)‖∞‖fH − fρ‖∞hε

}
.
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By setting the above probability bound to be δ/2 and solving the corresponding quadratic

equality, we know that with confidence at least 1− δ
2
, we have

S2 ≤
6‖tG′(t2/2)‖∞‖fH − fρ‖∞h

m− 1
log

2

δ
+

4‖tG′(t2/2)‖∞‖|fH − fρ|‖L2
ρX
h

√
m− 1

log
2

δ
.

Then our desired estimate follows.

Estimating S1 is more involved. One possible way to get tight bounds is by Hoeffding’s

decomposition, as done for ranking algorithms in [3]. We take another way of applying a

ratio probability inequality. Since f
z
depends on the sample z, we use covering numbers of

the set H to give our bounds.

A key difficulty in estimating S1 is caused by an essential difference between the informa-

tion error E (h)(f) associated with the entropy and the generalization error associated with

the least squares loss: E (h)(fj)− E (h)(fρ) is not equal to ‖fj − fρ‖2L2
ρX

. The second technical

novelty of this paper is to apply Corollary 2 to bound a variance term (σ2 in Lemma 2) by

the following inequality

if ε ≥ C ′′
H

h2
, then E (h)(f)−E (h)(fρ)+ε ≥ E (h)(f)−E (h)(fρ)+

C ′′
H

h2
≥ −G′

+(0)‖|f−fρ|‖2L2
ρX
. (4.3)

While this inequality is a easy consequence of Corollary 2, its special role in our estimation

of S1 needs to be demonstrated with details in the following proof.

Lemma 4. Under conditions of Corollary 2, if G′
+(0) < 0, ‖tG′(t2/2)‖∞ < ∞ and

ε ≥ C ′′
H

h2
, (4.4)

then we have

Prob



sup

f∈H

[
E (h)(f)− E (h)(fρ)

]
−
[
E (h)
z (f)− E (h)

z (fρ)
]

√
E (h)(f)− E (h)(fρ) + ε

> 4
√
ε



 ≤ N

(
H,

ε

2‖tG′(t2/2)‖∞h

)

exp

{
− (m− 1)ε

16‖tG′(t2/2)‖2∞h2/(−G′
+(0)) + 6‖tG′(t2/2)‖∞ supf∈H ‖f − fρ‖∞h

}
.

Proof. From the argument in the proof of Lemma 3, we see that for any f, g ∈ H, we have

∣∣E (h)(f)− E (h)(g)
∣∣ ≤ 2‖tG′(t2/2)‖∞‖f − g‖∞h

and almost surely ∣∣E (h)
z

(f)− E (h)
z

(g)
∣∣ ≤ 2‖tG′(t2/2)‖∞‖f − g‖∞h

11



Thus, if ‖f − fj‖∞ ≤ ε
2‖tG′(t2/2)‖∞h

, then

[
E (h)(f)− E (h)(fρ)

]
−
[
E (h)
z (f)− E (h)

z (fρ)
]

√
E (h)(f)− E (h)(fρ) + ε

> 4
√
ε

implies [
E (h)(fj)− E (h)(fρ)

]
−
[
E (h)
z (fj)− E (h)

z (fρ)
]

√
E (h)(fj)− E (h)(fρ) + ε

>
√
ε.

Thus by taking {fj}Nj=1 to be an ε
2‖tG′(t2/2)‖∞h

net of the set H with N being the covering

number N
(
H, ε

2‖tG′(t2/2)‖∞h

)
, we find

Prob



sup

f∈H

[
E (h)(f)− E (h)(fρ)

]
−
[
E (h)
z (f)− E (h)

z (fρ)
]

√
E (h)(f)− E (h)(fρ) + ε

> 4
√
ε





≤ Prob



 sup

j=1,...,N

[
E (h)(fj)− E (h)(fρ)

]
−
[
E (h)
z (fj)− E (h)

z (fρ)
]

√
E (h)(fj)− E (h)(fρ) + ε

>
√
ε





≤
∑

j=1,...,N

Prob





[
E (h)(fj)− E (h)(fρ)

]
−
[
E (h)
z (fj)− E (h)

z (fρ)
]

√
E (h)(fj)− E (h)(fρ) + ε

>
√
ε



 .

Fix j ∈ {1, . . . , N}. Consider the function

U(z, z′) = h2G

(
[(y − fj(x))− (v − fj(u))]

2

2h2

)
− h2G

(
[(y − fρ(x))− (v − fρ(u))]

2

2h2

)
.

It satisfies

|U(z, z′)| ≤ 2‖tG′(t2/2)‖∞‖fj − fρ‖∞h

almost surely and

var(U) ≤ 4‖tG′(t2/2)‖2∞‖|fj − fρ|‖2L2
ρX
h2.

Also, −EU = E (h)(fH)−E (h)(fρ) and
1

m(m−1)

∑m
i=1

∑
j 6=i U(zi, zj) = −

{
E (h)
z (fj)− E (h)

z (fρ)
}
.

Set

ε̃ = E (h)(fj)− E (h)(fρ) + ε, (4.5)

12



by Lemma 2 we find

Prob





[
E (h)(fj)− E (h)(fρ)

]
−
[
E (h)
z (fj)− E (h)

z (fρ)
]

√
E (h)(fj)− E (h)(fρ) + ε

>
√
ε





= Prob
{[

E (h)(fj)− E (h)(fρ)
]
−
[
E (h)
z

(fj)− E (h)
z

(fρ)
]
>

√
ε
√
ε̃
}

≤ exp



− (m− 1)εε̃

16‖tG′(t2/2)‖2∞‖|fj − fρ|‖2L2
ρX

h2 + 6‖tG′(t2/2)‖∞‖fj − fρ‖∞h
√
ε
√
ε̃



 .

Now we apply the important relation (4.3) to the function f = fj and find by noting the

definition (4.5) for ε̃ that

‖|fj − fρ|‖2L2
ρX

≤ ε̃

−G′
+(0)

=
E (h)(fj)− E (h)(fρ) + ε

−G′
+(0)

.

This together with the inequalities
√
ε
√
ε̃

ε̃
≤ 1 and ‖fj − fρ‖∞ ≤ supf∈H ‖f − fρ‖∞ gives

Prob





[
E (h)(fj)− E (h)(fρ)

]
−
[
E (h)
z (fj)− E (h)

z (fρ)
]

√
E (h)(fj)− E (h)(fρ) + ε

>
√
ε





≤ exp

{
− (m− 1)ε

16‖tG′(t2/2)‖2∞h2/(−G′
+(0)) + 6‖tG′(t2/2)‖∞ supf∈H ‖f − fρ‖∞h

}
.

Therefore,

Prob



sup

f∈H

[
E (h)(f)− E (h)(fρ)

]
−
[
E (h)
z (f)− E (h)

z (fρ)
]

√
E (h)(f)− E (h)(fρ) + ε

> 4
√
ε





≤ N exp

{
− (m− 1)ε

16‖tG′(t2/2)‖2∞h2/(−G′
+(0)) + 6‖tG′(t2/2)‖∞ supf∈H ‖f − fρ‖∞h

}
.

This proves the required inequality.

We are in a position to bound S1 and hence the sample error.

Proposition 1. Under conditions of Corollary 2, if G′
+(0) < 0, ‖tG′(t2/2)‖∞ < ∞ and

covering number condition (1.4) is satisfied, then with confidence of 1− δ, we have

E (h)(f
z
)− E (h)(fH) ≤ CH,G,ρmax

{
h−2,

h2 + h

m− 1
log

2

δ
,
‖|fH − fρ|‖L2

ρX
h

√
m− 1

,
h+ h(2+p)/(1+p)

(m− 1)
1

1+p

}
,

where CH,G,ρ is a constant independent of m, δ or h.
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Proof. By condition (1.4), the probability bound in Lemma 4 is at most

exp

{
Ap

(
2‖tG′(t2/2)‖∞h

ε

)p

− (m− 1)ε

Ch

}
,

where

Ch = 16‖tG′(t2/2)‖2∞h2/(−G′
+(0)) + 6‖tG′(t2/2)‖∞ sup

f∈H
‖f − fρ‖∞h.

Requiring this bound to be at most δ/2 is equivalent to the inequality

ε1+p − Ch

m− 1
log

2

δ
εp −Ap

(2‖tG′(t2/2)‖∞h)
p
Ch

m− 1
≥ 0.

By Lemma 7.2 in [4], we know that the above inequality is satisfied as long as

ε ≥ max

{
2Ch

m− 1
log

2

δ
,
(
Ap

(
2‖tG′(t2/2)‖∞h

)p
Ch

)1/(1+p)
(m− 1)−

1

1+p

}
.

Now let us take a constant

C ′′′
H = C ′′

H + 32‖tG′(t2/2)‖2∞/(−G′
+(0)) + 12‖tG′(t2/2)‖∞ sup

f∈H
‖f − fρ‖∞ + 16A1/(1+p)

p

(
‖tG′(t2/2)‖(2+p)/(1+p)

∞ (−G′
+(0))

−1/(1+p) + ‖tG′(t2/2)‖∞ sup
f∈H

‖f − fρ‖1/(1+p)
∞

)

and take ε to be ε∗ given by

ε∗ = C ′′′
H max

{
h−2,

h2 + h

m− 1
log

2

δ
, (h+ h(2+p)/(1+p))(m− 1)−

1

1+p

}
.

With this choice, by Lemma 4, we know that with confidence at least 1− δ/2, we have

sup
f∈H

[
E (h)(f)− E (h)(fρ)

]
−
[
E (h)
z (f)− E (h)

z

]

√
E (h)(f)− E (h)(fρ) + ε∗

≤ 4
√
ε∗,

which implies in particular

[
E (h)(f

z
)− E (h)(fρ)

]
−
[
E (h)
z

(f
z
)− E (h)

z
(fρ)

]
≤ 4

√
ε∗
√

E (h)(f
z
)− E (h)(fρ) + ε∗.

This together with the elementary inequality 4
√
a
√
b ≤ a

2
+ 8b that

S1 ≤
1

2

(
E (h)(f

z
)− E (h)(fρ)

)
+ 12ε∗.
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We combine this estimate with Lemma 3 and (4.1), and see that with confidence of 1− δ,

E (h)(f
z
)− E (h)(fH) ≤

1

2

(
E (h)(f

z
)− E (h)(fρ)

)
+ 12ε∗

+‖tG′(t2/2)‖∞ log
2

δ
h

{
6

m− 1
+

4‖|fH − fρ|‖L2
ρX√

m− 1

}

and hence

E (h)(f
z
)− E (h)(fH) ≤ 24ε∗ + ‖tG′(t2/2)‖∞ log

2

δ
h

{
12

m− 1
+

8‖|fH − fρ|‖L2
ρX√

m− 1

}
.

By setting the constant CH,G,ρ as

CH,G,ρ = 24C ′′′
H + 20‖tG′(t2/2)‖∞,

we verify the conclusion of Proposition 1.

5 Proof of the Error Bounds

We are now in a position to prove our error bounds for algorithm (1.1) stated in the intro-

duction.

Proof of Theorem 1. Since G′
+(0) = −1 and ‖|fapprox − fρ|‖2L2

ρX

= DH(fρ), by Lemma 1, we

have

‖|f
z
− fρ|‖2L2

ρX
≤
{
E (h)(f

z
)− E (h)(fH)

}
+DH(fρ) +

2C ′′
H

h2
.

Combining this with the bound in Proposition 1 for the sample error and the restriction

h ≥ 1 tells us that with confidence of 1− δ,

‖|f
z
− fρ|‖2L2

ρX
≤ CH,G,ρmax

{
h−2,

4h2

m
log

2

δ
,
2‖|fH − fρ|‖L2

ρX
h

√
m

,
4h

2+p
1+p

m
1

1+p

}
+DH(fρ) +

2C ′′
H

h2
.

But

CH,G,ρ

2‖|fH − fρ|‖L2
ρX
h

√
m

≤ η‖|fH − fρ|‖2L2
ρX

+
C2

H,G,ρh
2

ηm

and according to Theorem 4, ‖|fH−fρ|‖2L2
ρX

≤ DH(fρ)+
2C′′

H

h2 . It follows that with confidence
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of 1− δ,

‖|f
z
− fρ|‖2L2

ρX
≤ CH,G,ρmax

{
h−2,

h2

m

(
2 log

2

δ
+

CH,G,ρ

η

)
,
4h

2+p
1+p

m
1

1+p

}

+(1 + η)DH(fρ) +
(2 + 2η)C ′′

H
h2

≤ C̃H
η

(
1

h2
+

h2

m
+

h
2+p
1+p

m
1

1+p

)
log

2

δ
+ (1 + η)DH(fρ),

where

C̃H = max {CH,G,ρ + 4C ′′
H, CH,G,ρ (2 + CH,G,ρ) , 4CH,G,ρ} .

This proves (1.5) and thereby Theorem 1.
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