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Abstract

In many applications that require matrix
solutions of minimal rank, the underlying
cost function is non-convex leading to an
intractable, NP-hard optimization problem.
Consequently, the convex nuclear norm is
frequently used as a surrogate penalty term
for matrix rank. The problem is that in
many practical scenarios there is no longer
any guarantee that we can correctly estimate
generative low-rank matrices of interest, the-
oretical special cases notwithstanding. Con-
sequently, this paper proposes an alterna-
tive empirical Bayesian procedure build upon
a variational approximation that, unlike the
nuclear norm, retains the same globally min-
imizing point estimate as the rank func-
tion under many useful constraints. How-
ever, locally minimizing solutions are largely
smoothed away via marginalization, allow-
ing the algorithm to succeed when standard
convex relaxations completely fail. While
the proposed methodology is generally ap-
plicable to a wide range of low-rank ap-
plications, we focus our attention on the
robust principal component analysis prob-
lem (RPCA), which involves estimating an
unknown low-rank matrix with unknown
sparse corruptions. Theoretical and empir-
ical evidence are presented to show that
our method is potentially superior to related
MAP-based approaches, for which the con-
vex principle component pursuit (PCP) al-
gorithm (Candès et al., 2011) can be viewed
as a special case.

1 INTRODUCTION

Recently there has been a surge of interest
in finding low-rank decompositions of matrix-
valued data subject to some problem-specific con-
straints (Babacan et al., 2011; Candès & Recht, 2008;
Candès et al., 2011; Chandrasekaran et al., 2011;
Ding et al., 2011). While the methodology proposed
herein is applicable to a wide range of low-rank appli-
cations, we will focus our attention on the robust prin-
cipal component analysis problem (RPCA) described
in Candès et al. (2011). We begin with the observation
model

Y = X + S + E, (1)

where Y ∈ R
m×n is an observed data matrix, X is an

unknown low-rank component, S is a sparse corrup-
tion matrix, and E is diffuse noise, with iid elements
distributed as N(0, λ). Without loss of generality, we
will assume throughout that n ≥ m. To estimate X
and S given Y , one possibility is to solve

min
X,S

1

λ
‖Y −X − S‖2F + nRank [X ] + ‖S‖0, (2)

where ‖S‖0 denotes the matrix ℓ0 norm of S, or a
count of the nonzero elements in S. The reason for
the factor of n is to ensure that the rank and spar-
sity terms are properly balanced, meaning that both
terms range from 0 to nm, which reflects our balanced
uncertainty regarding their relative contributions to
Y . Unfortunately, solving (2) is problematic because
the objective function is both discontinuous and non-
convex. In general, the only way to guarantee that the
global minimum is found is to conduct an exhaustive
combinatorial search, which is intractable in all but
the simplest cases.

The most common alternative, sometimes called prin-
ciple component pursuit (PCP) (Candès et al., 2011),
is to replace (2) with a convex surrogate such as

min
X,S

1

λ
‖Y −X − S‖2F +

√
n‖X‖∗ + ‖S‖1, (3)

http://arxiv.org/abs/1207.2440v1


where ‖X‖∗ denotes the nuclear norm of X (or the
sum of its singular values). Note that the scale factor
from (2) has been changed from n to

√
n; this is an

artifact of the relaxation mechanism balancing the nu-
clear and ℓ1 norms.1 A variety of recent theoretical re-
sults stipulate when solutions of (3), particularly in the
limiting case where λ → 0 (reflecting the assumption
that E = 0), will produce reliable estimates of X and
S (Candès et al., 2011; Chandrasekaran et al., 2011).
However, in practice these results have marginal value
since they are based upon strong, typically unverifi-
able assumptions on the support of S and the struc-
ture of X . In general, the allowable support of S may
be prohibitively small and unstructured (possibly ran-
dom); related assumptions are required for the rank
and structure of X . Thus there potentially remains
a sizable gap between what can be achieved by min-
imizing the ‘ideal’ cost function (2) and the convex
relaxation (3).

In Section 2, as a motivational tool we discuss a
simple non-convex scheme based on a variational
majorization-minimization approach for locally min-
imizing (2). Then in Section 3 we reinterpret this
method as maximum a posteriori (MAP) estimation
and use this perspective to design an alternative em-
pirical Bayesian algorithm that avoids the major short-
comings of MAP estimation. Section 4 investigates
analytical properties of this empirical Bayesian alter-
native with respect to globally and locally minimizing
solutions. Later in Section 5 we compare a state-of-
the-art PCP algorithm with the proposed approach on
simulated data as well as a photometric stereo prob-
lem.

2 NON-CONVEX MAJORIZATION-

MINIMIZATION

One possible alternative to (3) is to replace (2) with
a non-convex yet smooth approximation that can at
least be locally minimized. In the sparse estimation
literature, one common substitution for the ℓ0 norm is
the Gaussian entropy measure

∑

i log |si|, which may
also sometimes include a small regularizer to avoid tak-
ing the log of zero.2 This can be justified (in part) by
the fact that

∑

i

log |si| ≡ lim
p→0

1

p

∑

i

(|si|p − 1) ∝ ‖s‖0. (4)

1Actually, different scaling factors can be adopted to re-
flect different assumptions about the relative contributions
of low-rank and sparse terms. But we assume throughout
that no such knowledge is available.

2Algorithms and analysis follow through much the same
regardless.

An analogous approximation suggests replacing the
rank penalty with log |XXT | as has been suggested for
related rank minimization problems (Mohan & Fazel,
2010), since log |XXT | = ∑

i log σi, where σi are the
singular values of XXT . This leads to the alternative
cost function

min
X,S

1

λ
‖Y −X−S‖2F+n log |XXT |+2

∑

i,j

log |sij |. (5)

Optimization of (5) can be accomplished by a straight-
forward majorization-minimization approach based
upon variational bounds on the non-convex penalty
terms (Jordan et al., 1999). For example, because
log |s| is a concave function of s2, it can be expressed
using duality theory (Boyd & Vandenberghe, 2004) as
the minimum of a particular set of upper-bounding
lines:

log s2 = min
γ≥0

s2

γ
+ log γ − 1. (6)

Here γ is a non-negative variational parameter con-
trolling the slope. Therefore, for any fixed γ we have
a strict, convex upper-bound on the concave log func-
tion. Likewise, for the rank term we can use the anal-
ogous representation (Mohan & Fazel, 2010)

n log
∣

∣XXT
∣

∣ = min
Ψ�0

Trace
[

XXTΨ−1
]

+ n log |Ψ|+ C,

(7)
where C is an irrelevant constant and Ψ is a positive
semi-definite matrix of variational parameters.3 Com-
bining these bounds we obtain an equivalent optimiza-
tion problem

min
X,S,Γ≥0,Ψ�0

1

λ
‖Y −X − S‖2F +

∑

ij

(

s2ij
γij

+ log γij

)

+ Trace
[

XXTΨ−1
]

+ n log |Ψ|, (8)

where Γ is a matrix of non-negative elements composed
of the variational parameters corresponding to each
sij . With Γ and Ψ fixed, (8) is quadratic in X and S
and can be minimized in closed form via

xj → Ψ
(

Ψ+ Γ̄j

)−1
yj ,

sj → Γ̄j

(

Ψ+ Γ̄j

)−1
yj , ∀j (9)

where yj , xj , and sj represent the j-th columns of
Y , X , and S respectively and Γ̄j is a diagonal matrix
formed from the j-th column of Γ. Likewise, with X
and S fixed, Γ and Ψ can also be obtained in closed
form using the updates

Ψ → 1

n
XXT

γij → s2ij , ∀i, j. (10)

3If X is full rank, then Ψ must be positive definite.



While local minimization of (5) is clear cut, finding
global solutions can still be highly problematic just as
before. Whenever any coefficient of S goes to zero, or
whenever the rank of X is reduced, we are necessarily
at a local minimum with respect to this quantity such
that we can never increase the rank or a zero-valued
coefficient magnitude in search of the global optimum.
(This point will be examined in further detail in Sec-
tion 4.) Thus the algorithm may quickly converge to
one of a combinatorial number of local solutions.

3 VARIATIONAL EMPIRICAL

BAYESIAN ALGORITHM

From a Bayesian perspective we can formulate (5) as
a MAP estimation problem based on the distributions

p(Y |X,S) ∝ exp

[

− 1

2λ
‖Y −X − S‖2F

]

p(X) ∝ 1

|XXT |n/2

p(S) ∝
∏

i,j

1

|sij |
. (11)

It is then transparent that solving

max
X,S

p(X,S|Y ) ≡ max
X,S

p(Y |X,S)p(X)p(S) (12)

is equivalent to solving (5) after an inconsequential
−2 log(·) transformation. But as implied above, this
strategy is problematic because the effective posterior
is characterized by numerous spurious peaks render-
ing MAP estimation intractable. A more desirable
approach would ignore most of these peaks and focus
only on regions with significant posterior mass, regions
that hopefully also include the posterior mode. One
way to accomplish this involves using the bounds from
(6) and (7) to construct a simple approximate poste-
rior that reflects the mass of the original p(X,S|Y )
sans spurious peaks. We approach this task as follows.

From (6) and (7)) we can infer that

p(S) ∝ max
Γ≥0

p̂(S; Γ) (13)

p(X) ∝ max
Ψ�0

p̂(X ; Ψ) (14)

where

p̂(S; Γ) , exp



−1

2

∑

ij

(

s2ij
γij

+ log γij

)



 (15)

p̂(X ; Ψ) , exp

[

−1

2
Trace

[

XXTΨ−1
]

− n

2
log |Ψ|

]

,

which can be viewed as unnormalized approximate pri-
ors offering strict lower bounds on p(S) and p(X). We

also then obtain a tractable posterior approximation
given by

p̂(X,S|Y ; Γ,Ψ) ,
p(Y |S,X)p̂(S; Γ)p̂(X ; Ψ)

∫

p(Y |S,X)p̂(S; Γ)p̂(X ; Ψ)dSdX
.

(16)
Here p̂(X,S|Y ; Γ,Ψ) is a Gaussian distribution with
closed-form first and second moments, e.g., the means
of S and X are actually given by the righthand sides
of (9). The question remains how to choose Γ and
Ψ. With the goal of reflecting the mass of the true
distribution p(Y,X, S), we adopt the approach from
Wipf et al. (2011) and attempt to solve

min
Ψ,Γ

∫

|p(Y,X, S)− p(Y |S,X)p̂(S; Γ)p̂(X ; Ψ)| dXdS

(17)

= min
Ψ,Γ

∫

p(Y |S,X) |p(X)p(S)− p̂(S; Γ)p̂(X ; Ψ)| dXdS.

(18)

The basic idea here is that we only care that the
approximate priors match the true ones in regions
where the likelihood function p(Y |X,S) is significant;
in other regions the mismatch is more or less irrele-
vant. Moreover, by virtue of the strict lower varia-
tional bound, (18) reduces to

max
Ψ,Γ

∫

p(Y |S,X)p̂(S; Γ)p̂(X ; Ψ)dXdS ≡ min
Ψ,Γ

L(Ψ,Γ)

(19)
where

L(Ψ,Γ) ,

n
∑

j=1

[

y
T
j Σ

−1
yj

yj + log
∣

∣Σyj

∣

∣

]

(20)

with
Σyj

, Ψ+ Γ̄j + λI. (21)

This Σyj
can be viewed as the covariance of the j-th

column of Y given fixed values of Ψ and Γ. To re-
cap then, we need now minimize L(Ψ,Γ) with respect
to Ψ and Γ, and then plug these estimates into (16)
giving the approximate posterior. The mean of this
distribution (see below) can then be used as a point
estimate for X and S. This process is sometimes re-
ferred to as empirical Bayes because we are using the
data to guide our search for an optimal prior distribu-
tion (Berger, 1985; Tipping, 2001).

3.1 UPDATE RULE DERIVATIONS

It turns out that minimization of (20) can be accom-
plished concurrently with computation of the poste-
rior mean leading to simple, efficient update rules.
While (20) is non-convex, we can use a majorization-
minimization approach analogous to that used for
MAP estimation. For this purpose, we utilize simplify-
ing upper bounds on both terms of the cost function as



has been done for related sparse estimation problems
Wipf & Nagarajan (2010).

First, the data-dependent term is concave with re-
spect to Ψ−1 and Γ−1 and hence can be expressed as a
minimization over (Ψ−1,Γ−1)-dependent hyperplanes.
With some linear algebra, it can be shown that

y
T
j Σ

−1
yj

yj = min
xj ,sj

1

λ
‖yj−xj−sj‖2F+x

T
j Ψ

−1
xj+

∑

i

s2ij
γij

(22)
for all j. With a slight abuse of notation, we adopt
X = [x1, . . . ,xn] and S = [s1, . . . , sn] as the varia-
tional parameters in (22) because they end up play-
ing the same role as the unknown low-rank and sparse
coefficients and provide a direct link to the MAP es-
timates. Additionally, the xj and sj which minimize
(22) turn out to be equivalent to the posterior means
of (16) given Ψ and Γ and will serve as our point esti-
mates.

Secondly, for the log-det term, we first use the deter-
minant identity

log
∣

∣Ψ+ Γ̄j + λI
∣

∣ = log |Ψ|+ log
∣

∣Γ̄j

∣

∣+ log |Aj |+ C,
(23)

where

Aj , λ−1

[

I I
I I

]

+

[

Ψ−1 0

0 Γ̄−1
j

]

(24)

and C is an irrelevant constant. The term log |Aj | is
jointly concave in both Ψ−1 and Γ̄−1

j and thus can be
bounded in a similar fashion as (22), although a closed-
form solution is no longer available. (Other decompo-
sitions lead to different bounds and different candidate
update rules.) Here we use

log |Aj | = (25)

min
Uj ,Vj�0

Trace
[

UT
j Ψ−1 + V T

j Γ̄−1
j

]

− h∗(Uj , Vj)

where h∗(Uj , Vj) is the concave conjugate function of
log |Aj | with respect to Ψ−1 and Γ̄−1

i . Note that while
h∗(Uj , Vj) has no closed-form solution, the minimizing
values of Uj and Vj can be computed in closed-form
via

Uj =
∂ log |Aj |
∂Ψ−1

, Vj =
∂ log |Aj |
∂Γ̄−1

j

. (26)

When we drop the minimizations over the variational
parameters xj, sj , Uj , and Vj for all j, we arrive at
a convenient family of upper bounds on the cost func-
tion L(Ψ,Γ). Given some estimate of Ψ and Γ, we can
evaluate all variational parameters in closed form (see
below). Likewise, given all of the variational param-
eters we can solve directly for Ψ and Γ because now

L(Ψ,Γ) has been conveniently decoupled and we need
only compute

min
Ψ�0

∑

j

(

x
T
j Ψ

−1
xj +Trace

[

UT
j Ψ−1

])

+ n log |Ψ|

(27)
and

min
γij≥0

s2ij
γij

+
[Vj ]ii
γij

+ log γij , ∀i, j. (28)

We summarize the overall procedure next.

3.2 ALGORITHM SUMMARY

1. Compute κ , 1
nm‖Y ‖2F

2. Initialize Ψ(0) → κI, and Γ̄
(0)
j → κI for all j.

3. For the (k+ 1)-th iteration, compute the optimal
xj and sj via

x
(k+1)
j → Ψ(k)

(

Ψ(k) + Γ̄
(k)
j + λI

)−1

yj

s
(k+1)
j → Γ̄(k)

(

Ψ(k) + Γ̄
(k)
j + λI

)−1

yj (29)

4. Likewise, compute the optimal Uj and Vj via

U
(k+1)
j → Ψ(k) −Ψ(k)

(

Ψ(k) + Γ̄
(k)
j + λI

)−1

Ψ(k)

V
(k+1)
j → Γ̄

(k)
j − Γ̄

(k)
j

(

Ψ(k) + Γ̄
(k)
j + λI

)−1

Γ̄
(k)
j

(30)

5. Update Ψ and Γ using the new variational param-
eters via

Ψ(k+1) → 1

n

∑

j

[

x
(k+1)
j

(

x
(k+1)
j

)T

+ U
(k+1)
j

]

γ
(k+1)
ij →

(

s
(k+1)
ij

)2

+
[

V
(k+1)
j

]

ii
, ∀i, j (31)

6. Repeat steps 3 through 5 until convergence. (Re-
call that Γ̄j is a diagonal matrix formed from the
j-th column of Γ.) This process is guaranteed to
reduce or leave unchanged the cost function at
each iteration.

Note that if we set U
(k+1)
j , V

(k+1)
j → 0 for all

j, then the algorithm above is guaranteed to (at
least locally) minimize the MAP cost function from
(5). Additionally, for matrix completion problems
(Candès & Recht, 2008), where the support of the
sparse errors is known a priori, we need only set each



γij corresponding to a corrupted entry to∞. This lim-
iting case can easily be handled with efficient reduced
rank updates.

One positive aspect of this algorithm is that it is
largely parameter free. We must of course choose some
stopping criteria, such as a maximum number of itera-
tions or a convergence tolerance. (For all experiments
in Section 5 we simply set the maximum number of
iterations at 100.) We must also choose some value for
λ, which balances allowable contributions from a dif-
fuse error matrix E, although frequently methods have
some version of this parameter, including the PCP al-
gorithm. For all of our experiments we simply choose
λ = 10−6 since we did not include an E component
consistent with the original RPCA formulation from
Candès et al. (2011).

From a complexity standpoint, each iteration of the
above algorithm can be computed in O(m3n), where
n ≥ m, so it is linear in the larger dimension of Y and
cubic in the smaller dimension. For many computer
vision applications (see Section 5 for one example),
images are vectorized and then stacked, so Y may be
m =number-of-images by n = number-of-pixels. This
is relatively efficient, since the number of images may
be on the order of 100 or fewer (see Wu et al. (2010)).
However, when Y is a large square matrix, the up-
dates are more expensive to compute. In the future we
plan to investigate various approximation techniques
to handle this scenario.

As a final implementation-related point, when given
access to a priori knowledge regarding the rank of X
and/or sparsity of S, it is possible to bias the algo-
rithm’s initialization (from Step 1 above) and improve
the estimation accuracy. However, we emphasize that
for all of the experiments reported in Section 5 we as-
sumed no such knowledge.

3.3 Alternative Bayesian Methods

Two other Bayesian-inspired methods have recently
been proposed for solving the RPCA problem. The
first from Ding et al. (2011) is a hierarchical model
with conjugate prior densities on model parameters at
each level such that inference can be performed using
a Gibbs sampler. This method is useful in that the
λ parameter balancing the contribution from diffuse
errors E is estimated directly from the data. More-
over, the authors report significant improvement over
PCP on example problems. A potential downside of
this model is that theoretical analysis is difficult be-
cause of the underlying complexity. Additionally, a
large number of MCMC steps are required to obtain
good estimates leading to a significant computational
cost even when Y is small. It also uses an estimate of

Rank[X ] which can effect the convergence rate of the
Gibbs sampler.

A second method from Babacan et al. (2011) similarly
employs a hierarchial Bayesian model but uses a fac-
torized mean-field variational approximation for infer-
ence (Attias, 2000). Note that this is an entirely dif-
ferent type of variational method than ours, relying on
a posterior distribution that factorizes over X and S,
meaning p(X,S|Y ) ≈ q(X |Y )q(S|Y ), where q(X |Y )
and q(S|Y ) are approximating distributions learned by
minimizing a free energy-based cost function.4 Unlike
our model, this factorization implicitly decouples X
and S in a manner akin to MAP estimation, and may
potentially produce more locally minimizing solutions
(see analysis below). Moreover, while this approach
also has a mechanism for estimating λ, there is no
comprehensive evidence given that it can robustly ex-
pand upon the range of corruptions and rank that can
already be handled by PCP.

To summarize both of these methods then, we would
argue that while they offer a compelling avenue for
computing λ automatically, the underlying cost func-
tions are substantially more complex than PCP or our
method rendering more formal analyses somewhat dif-
ficult. As we shall see in Sections 4 and 5, the empirical
Bayesian cost function we propose is analytically prin-
cipled and advantageous, and empirically outperforms
PCP by a wide margin.

4 ANALYSIS

In this section we will examine global and local minima
properties of the proposed method and highlight po-
tential advantages over MAP, of which PCP can also
be interpreted as a special case. For analysis purposes
and comparisons with MAP estimation, it is helpful
to convert the empirical Bayes cost function (20) into
(X,S)-space by first optimizing over Uj , Vj , Ψ and Γ,
leaving only the unknown coefficient matrices X and
S. Using this process, it is easily shown that the es-
timates of X and S obtained by globally (or locally)
minimizing (20) will also globally (or locally) minimize

min
X,S

‖Y −X − S‖2F + λgEB(X,S;λ), (32)

where the penalty function is given by

gEB(X,S;λ) , (33)

min
Γ≥0,Ψ�0

n
∑

i=1

xjΨ
−1

xj +s
T
j Γ̄

−1
j sj +log

∣

∣Ψ+ Γ̄j + λI
∣

∣ .

4Additional factorizations are also included in the
model.



Note that the implicit MAP penalty from (5) is nearly
identical:
gmap(X,S) , (34)

min
Γ≥0,Ψ�0

n
∑

i=1

xjΨ
−1

xj+s
T
j Γ̄

−1
j sj+log |Ψ|+log

∣

∣Γ̄j

∣

∣ .

The primary distinction is that in the MAP case the
variational parameters separate whereas in empirical
Bayesian case they do not. (Note that, as discussed
below, we can apply a small regularizer analogous to λ
to the log terms in the MAP case as well.) This implies
that gmap(X,S) can be expressed as some gmap(X) +
gmap(S) whereas gEB(X,S;λ) cannot. A related form
of non-separability has been shown to be advantageous
in the context of sparse estimation from overcomplete
dictionaries (Wipf et al., 2011).

We now examine how this crucial distinction can be
beneficial in producing maximally sparse, low-rank so-
lutions that optimize (2). We first demonstrate how
(32) mimics the global minima profile of (2). Later we
show how the smoothing mechanism of the empirical
Bayesian marginalization can mitigate spurious locally
minimizing solutions.

The original RPCA development from Candès et al.
(2011) assumes that E = 0, which is somewhat easier
to analyze. We consider this scenario first.

Theorem 1. Assume that there exists at least one so-
lution to Y = X+S such that Rank[X ]+maxj ‖sj‖0 <
m. Then in the limit as λ → 0, any solution that glob-
ally minimizes (32) will globally minimize (2).

Proofs will be deferred to a subsequent journal pub-
lication. Note that the requirement Rank[X ] +
maxj ‖sj‖0 < m is a relatively benign assumption, be-
cause without it the matrices X and S are formally
unidentifiable even if we are able to globally solve (2).
For E > 0, we may still draw direct comparisons be-
tween (32) and (2) when we deviate slightly from the
Bayesian development and treat gEB(X,S;λ) as an
abstract, stand-alone penalty function. In this context
we may consider gEB(X,S;α), with α 6= λ as a more
general candidate for estimating RPCA solutions.

Corollary 1. Assume that X(λ) and S(λ) are a

unique, optimal solution to (2) and that Rank
[

X(λ)

]

+

maxj ‖
[

s(λ)

]

j
‖0 < m. Then there will always exist

some λ′ and α′ such that the global minimum of

min
X,S

‖Y −X − S‖2F + λ′gEB(X,S;α′), (35)

denoted X(λ′,α′) and S(λ′,α′), satisfies the conditions
∥

∥X(λ′,α′) −X(λ)

∥

∥ < ǫ and
∥

∥S(λ′,α′) − S(λ)

∥

∥ < ǫ, where
ǫ can be arbitrarily small.

Of course MAP estimation can satisfy a similar prop-
erty as Theorem 1 and Corollary 1 after a minor mod-
ification. Specifically, we may define

gmap(X,S;α) , (36)

min
Γ≥0,Ψ�0

n
∑

j=1

xjΨ
−1

xj+s
T
j Γ̄

−1
j sj+log |Ψ+ α|+log

∣

∣Γ̄j + α
∣

∣

and then achieve a comparable result to the above us-
ing gmap(X,S;α′). The advantage of empirical Bayes
then is not with respect to global minima, but rather
with respect to local minima. The separable, addi-
tive low-rank plus sparsity penalties that emerge from
MAP estimation will always suffer from the following
limitation:

Theorem 2. Let S
(a)
ij denote any matrix S with sij =

a. Now consider any optimization problem of the form

min
X,S

g1(X) + g2(S), s.t. Y = X + S, (37)

where g1 is an arbitrary function of the singular values
of X and g2 is an arbitrary function of the magnitudes
of the elements in S. Then to ensure that a global
minimum of (37) is a global minimum of (2) for all
possible Y , we require that

lim
ǫ→0

g2

[

S
(ǫ)
ij

]

− g2

[

S
(0)
ij

]

ǫ
= ∞ (38)

for all i and j and S. An analogous condition holds
for the function g1.

This result implies that whenever an element of S
approaches zero, it will require increasing the asso-
ciated penalty g2(S) against an arbitrarily large gra-
dient to escape in cases where this coefficient was in-
correctly pruned. Likewise, if the rank of X is prema-
turely reduced in the wrong subspace, there may be no
chance to ever recover since this could require increas-
ing g1(X) against an arbitrarily large gradient factor.
In general, Theorem 2 stipulates that if we would like
to retain the same global minimum as (2) using a MAP
estimation-based cost function, then we will necessar-
ily enter an inescapable basin of attraction whenever
either Rank[X ] < m or ‖sj‖0 < m for some j. This
is indeed a heavy price to pay.

Crucially, because of the coupling of low-rank
and sparsity regularizers, the penalty function
gEB(X,S;λ) does not have this limitation. In fact, we
only encounter insurmountable gradient barriers when
Rank[X ] + ‖sj‖0 < m for some j, in which case the



covariance Σyj
from (21) becomes degenerate (with λ

small), a much weaker condition. To summarize (em-
phasize) this point then, MAP can be viewed as heav-
ily dependent on degeneracy of the matrices Ψ and Γ
in isolation, whereas empirical Bayes is only sensitive
to degeneracy of their summation.

This distinction can also be observed in how the
effective penalties on X and S, as imbedded in
gEB(X,S;λ), vary given fixed values of Γ or Ψ re-
spectively. For example, when Ψ is close to being full
rank and orthogonal (such as when the algorithm is ini-
tialized), then the implicit penalty on S is minimally
non-convex (only slightly concave). In fact, as Ψ be-
comes large and orthogonal, the penalty converges to
a scaled version of the ℓ1 norm. In contrast, as Ψ be-
comes smaller and low-rank, the penalty approaches
a scaled version of the ℓ0 norm, implying that max-
imally sparse corruptions will be favored. Thus, we
do not aggressively favor maximally sparse S until the
rank has already been reduced and we are in the basin
of attraction of a good solution. Of course no heuristic
annealing strategy is necessary, the transition is han-
dled automatically by the algorithm.

Additionally, whenever Ψ is fixed, the resulting cost
function formally decouples into n separate, canoni-
cal sparse estimation problems on each sj in isolation.
With λ = 0, it not difficult to show that each of these
subproblems is equivalent to solving

min
sj

‖yj − Φsj‖22 + gEB(sj) (39)

where

gEB(sj) , min
γj≥0

n
∑

j=1

s
T
j Γ̄

−1
j sj + log

∣

∣ΦΓ̄jΦ
T + I

∣

∣ (40)

is a concave sparsity penalty on sj and Φ is any ma-
trix such that ΦΨΦT = I.5 When Φ is nearly orthog-
onal, this problem has no local minima and a global
solution that approximates the hard thresholding of
the ℓ0 norm; however, direct minimization of the ℓ0
norm will have 2n local minima (Wipf et al., 2011).
In contrast, when Φ is poorly conditioned (with ap-
proximately low-rank structure, it has been argued in
Wipf et al. (2011) that penalties such as gEB(sj) are
particularly appropriate for avoiding local minima.

Something similar occurs when Γ is now fixed and
we evaluate the penalty on X . This penalty ap-
proaches something like a scaled version of the nu-
clear norm (less concave) when elements of Γ are set
to a large constant and it behaves more like the rank
function when Γ is small. At initialization, when Γ
is all ones, we are relatively free to move between

5We have assumed here that Ψ is full rank.

solutions of various rank without incurring a heavy
penalty. Later as Γ becomes sparse, solutions satisfy-
ing Rank[X ] + ‖sj‖0 < m for some j become heavily
favored.

As a final point, the proposed empirical Bayesian ap-
proach can be implemented with alternative varia-
tional bounds and possibly optimized with something
akin to simultaneous reweighted nuclear and ℓ1 norm
minimization, a perspective that naturally suggests
further performance analyses such as those applied to
sparse estimation in Wipf & Nagarajan (2010).

5 EMPIRICAL RESULTS

This section provides some empirical evidence for the
efficacy of our RPCA method. First, we present com-
parisons with PCP recovering random subspaces from
corrupted measurements. Later we discuss a photo-
metric stereo application. In all cases we used the the
augmented lagrangian method (ALM) from Lin et al.
(2010) to implement PCP. This algorithm has efficient,
guaranteed convergence and in previous empirical tests
ALM has outperformed a variety of other methods in
computing minimum nuclear norm plus ℓ1 norm solu-
tions.

5.1 RANDOM SUBSPACE SIMULATIONS

Here we demonstrate that the empirical Bayesian al-
gorithm from Section 3.2, which we will refer to as EB,
can recovery unknown subspaces from corrupted mea-
surements in a much broader range of operating condi-
tions compared to the convex PCP. In particular, for a
given value of Rank[X ], our method can handle a sub-
stantially larger fraction of corruptions as measured by
ρ = ‖S‖0/(nm). Likewise, for a given value of ρ, we
can accurately estimate an X with much higher rank.
Consistent with Candès et al. (2011), we consider the
case where E = 0, such that all the error is modeled by
S. This allows us to use the stable, convergent ALM
code available online.6

The first experiment proceeds as follows. We gener-
ate a low-rank matrix X with dimensions reflective of
many computer vision problems: number-of-images ×
number-of-pixels. Here we choosem = 20 and n = 104,
the later dimension equivalent to a 100 × 100 pixel
image. For each trial, we compute an m × n matrix
with iid N (0, 1) entries. We then compute the SVD
of this matrix and set all but the r largest singular
values to zero to produce a low-rank X . S is gen-
erated with nonzero entries selected uniformly with
probability ρ = 0.2. Nonzero values are sampled from
an iid Uniform[-10,10] distribution. We then compute

6http://perception.csl.uiuc.edu/matrix-rank/

http://perception.csl.uiuc.edu/matrix-rank/


Y = X+S and try to estimate X and S using the EB
and PCP algorithms. Estimation results averaged over
multiple trials as r is varied from 1 to 10 are depicted
in Figure 1. We plot normalized mean-squared error

(MSE) as computed via
〈

‖X − X̂‖2F/‖X‖2F
〉

as well

as the average angular error between the estimated and
true subspaces. In both cases the average is across 10
trials.
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Figure 1: Estimation results where the corruption
probability ρ is 0.2 and Rank[X ]/m is varied from 0.05
to 0.50, meaning up to 50% of full rank. Top: Nor-
malized mean-squared error (MSE). Bottom: Average
angle (in degrees) between the estimated and true sub-
spaces.

From Figure 1 we observe that EB can accurately es-
timate X for substantially higher values of the rank.
Interestingly, we are also still able to estimate the cor-
rect subspace spanned by columns of X perfectly even
when the MSE of estimating X starts to rise (compare
Figure 1(Top) with Figure 1(Bottom)). Basically, this
occurs because, even if we have estimated the sub-
space perfectly, reducing the MSE to zero implicitly
requires solving a challenging sparse estimation prob-
lem for every observation column yj . For each column,

this problem requires learning dj , Rank[X ] + ‖sj‖0
nonzero entries given only m = 20 observations. For
our experiment, we can have dj > 14 with high prob-
ability for some columns when the rank is high, and
thus we may expect some errors in Ŝ (not shown).
However, the encouraging evidence here is that EB
is able to keep these corrupting errors at a minimum
and estimate the subspace accurately long after PCP
has failed. Moreover, if an accurate estimate of X is

needed, as opposed to just the correct spanning sub-
space, then a postprocessing error correction step can
potentially be applied to each column individually to
improve performance.

The second experiment is similar to the first only now
we hold Rank[X ] fixed at 4, meaning Rank[X ]/m =
0.2, and vary the fraction of corrupted entries in S
from 0.1 to 0.8. Figure 2 shows that EB is again able
to drastically expand the range whereby successful es-
timates are obtained. Notably it is able to recover the
correct subspace even with 70% corrupted entries.
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Figure 2: Estimation results with Rank[X ]/m = 0.2
and ρ varied from 0.1 to 0.8. Top: Normalized mean-
squared error (MSE). Bottom: Average angle (in de-
grees) between the estimated and true subspaces.

As a final comparison, we tested PCP and EB on a
400 × 400 observation matrix Y generated as above
with a Rank[X ]/m = 0.1 and ρ = 0.5. The estima-
tion results are reported in Table 1. PCP performs
poorly since the normalized MSE is above one, mean-
ing we would have been better off simply choosing
X̂ = 0 in this regard. Additionally, the angular er-
ror is very near 90 degrees, consistent with the error
from a randomly chosen subspace in high dimensions.
In contrast, EB provides a reasonably good estimate
considering the difficulty of the problem.

5.2 PHOTOMETRIC STEREO

Photometric stereo is a method for estimating surface
normals of an object or scene by capturing multiple
images from a fixed viewpoint under different light-
ing conditions (Woodham, 1980). At a basic level,



Table 1: Estimation results with m = n = 400,
Rank[X ]/m = 0.1 and ρ = 0.5.

PCP EB

MSE (norm.) 1.235 0.066
Angular Error 88.50 5.01

this methodology assumes a Lambertian object sur-
face, point light sources at infinity, an orthographic
camera view, and a linear sensor response function.
Under these conditions, it has been shown that the
intensities of a vectorized stack of images Y can be
expressed as

Y = LTNΥ, (41)

where L is a 3 × m matrix of m normalized lighting
directions, N is a 3 × n matrix of surface normals at
n pixel locations, and Υ is a diagonal matrix of dif-
fuse albedo values (Woodham, 1980). Thus, if we were
to capture at least 3 images with known, linearly in-
dependent lighting directions we can solve for N us-
ing least squares. Of course in reality many common
non-Lambertian effects can disrupt this process, such
as specularities, cast or attached shadows, and image
noise, etc. In many cases, these effects can be modeled
as an additive sparse error term S applied to (41).

As proposed in Wu et al. (2010), we can estimate
the subspace containing N by solving (2) assuming
X = LTNΥ and E = 0. The resulting X̂, combined
with possibly other a priori information regarding the
lighting directions L can lead to an estimate of N .
Wu et al. (2010) propose using a modified version of
PCP for this task, where a shadow mask is included to
simplify the sparse error correction problem. However,
in practical situations it may not always be possible to
accurately locate all shadow regions in this manner so
it is desirable to treat them as unknown sparse cor-
ruptions.

For this experiment we consider the synthetic Caesar
image from the INRIA 3D Meshes Research Database7

with known surface normals. Multiple 2D images
with different known lighting conditions can easily be
generated using the Cook-Torrance reflectance model
(Cook & Torrance, 1981). These images are then
stacked to produce Y . Because shadows are extremely
difficult to handle in general, as a preprocessing step
we remove rows of Y corresponding to pixel locations
with more than 10% shadow coverage. Specular cor-
ruptions were left unfiltered. We tested our algorithm
as the number of images, drawn randomly from a batch
of 40 total, was varied from 10 to 40. Results averaged

7http://www-roc.inria.fr/gamma/gamma/download/download.php

across 5 trials are presented in Figure 3. The error
metrics have been redefined to accommodate the pho-
tometric stereo problem. We now define the normal-

ized MSE as
〈

‖X − X̂‖2F/‖X − Y ‖2F
〉

, which mea-

sures how much improvement we obtain beyond just
using the observation matrix Y directly. Similarly we
normalized the angular error by dividing by the angle
between Y and the true X for each trial.
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Figure 3: Estimation results using photometric stereo
data as the number of images m is varied from 10 to
40. Top: Normalized MSE (see altered definition in
the main text). Bottom: Normalized angle between
the estimated and the true subspaces.

From Figure 3 it is clear that EB outperforms PCP in
both MSE and angular error, especially when there are
fewer images present. It is not entirely clear however
why the MSE and angular error are relatively flat for
EB as opposed to dropping lower as m increases. Of
course these are errors relative to using Y directly to
predict X , which could play a role in this counterintu-
itive effect.

6 CONCLUSIONS

In this paper we have analyzed a new empirical
Bayesian approach for matrix rank minimization in
the context of RPCA, where the goal is to decompose
a given data matrix into low-rank and sparse compo-
nents. Using a variational approximation and subse-
quent marginalization, we ultimately arrive at a novel
regularization term that couples low-rank and spar-
sity penalties in such a way that locally minimizing

http://www-roc.inria.fr/gamma/gamma/download/download.php


solutions are effectively smoothed while the global op-
timum matches that of the ideal RPCA cost function.
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