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THE ALGEBRA OF QUADRATURE FORMULZAZ FOR GENERIC
NODES

CLAUDIA FASSINO, GIOVANNI PISTONE, AND EVA RICCOMAGNO

1. INTRODUCTION

Consider the classical problem of computing the expected value of a real function
f of the d-variate random variable X as a linear combination of its values f(z) at a
finite set points z € D C R?. The general quadrature problem is: determine classes
of functions f: R? — R, finite set of n nodes D C R? and positive weights {\.}.cp
such that

1) BUH(X) = [ fa)aNa) = 3 FG)A.

R z€D
where A is the probability distribution of the random variable X. In the simplest
univariate case, d = 1, the set D is the set of zeros of a node polynomial, e.g. the
n-th orthogonal polynomial for A, see e.g. [4, Sec. 1.4]. Not much is known in the
multivariate case, unless the set of nodes is a product of one-dimensional set.

A similar setting appears in statistical Design of Experiment (DoE) where one
considers a finite set of treatments D and experimental outputs as funtion of the
treatment. The set of treatments and the set of nodes are both described efficiently
as zeros of systems of polinomial equations, i.e. as what is called in Commutative
Algebra a 0-dimensional variety. Such a framework has been used in a systematic
way in the literature on Algebraic Statistics using the tools of modern Computa-
tional Commutative Algebra, see e.g. [§] and [5]. In such studies the set D is called
a design and the affine structure of the ring of real functions on D is analyzed in
detail because it represents the set of real responses to treatments in D. However,
the euclidean structure, such as the computation of mean values, is missing in the
algebraic setting. In algebric design of experiment the computation of mean val-
ues has been obtained by considering very special sets called factorial designs, e.g.
{+1,-1}4 see e.g. [3]. Note that {+1, —1} is the zero set of the polynomial 2 — 1.

The purpose of the present paper is to discuss how both worlds can be treated
together by considering orthogonal polynomials. In particular, we consider algo-
rithms from the world of Commutative Algebra for the cubature problem in () by
mixing tools from elementary orthogonal polynomial theory and from probability.
Viceversa, the formula () provides an interesting interpretation of the equation in
the RHS as expected value.

We proceed in sequence by increased degree of difficulty.

In Section [21 we consider the univariate case and take A to admit an orthogonal
system of polynomials. Let g(x) = [[;cp (2 — d) and by univariate division given a
polynomial p there exist unique ¢ and r such that p = q g+ and r has degree smaller
than the number of points in D. Furthermore r can be written as ), p, r(d)la(x)
where [4 is the Lagrange polynomial for d € D. Then we show that

(1) the expected values of p and r coincide if and only if the n-coefficients of
the Fourier expansion of ¢ with respect to the orthogonal polynomials is
zero

(2) the weights are the expected values of the Lagrange polynomials.
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When ) is a standard Gaussian probability law and D the zero set of the n-th
Hermite polynomial, the application of Stein-Markov theory premits a representa-
tion of some Hermite polynomials, including those of degree 2n — 1, as sum of an
element in the polynomial ideal generated by the roots of the Hermite polynomial
of degree n and of a reminder, suggests a folding of multivariate polynomials over
a finite set of points.

The point is to describe a ring structure of the space generated by Hermite
polynomials up to a certain order because it is essentially the aliasing on functions
induced by limiting observations to D. The particular structure of the recurrence
relationship for Hermite polynomials makes this possibile and we suspect that the
study of the ring structure over D for other systems of orthogonal polynomials will
require different tools from those we use here.

This result implies a system of equations in Theorem (extented to the mul-
tidimensional case in Section [B) which gives an implicitly description of design and
weights via two polynomial equations. We envisage applicability of this in the choice
of D for suitable classes of functions but have not developed this here. The case
when the design is a proper subset of the zero set of the n-th Hermite polynomial
is developed in Section [l

Section [0] contains our most general set-up: we restrict to ourselves to product
probability measures on R? but consider any set of n distinct points in R?. Then
a Buchberger-Moller type of algorithm is provided that works exclusively with or-
thogonal polynomials. It gives a generating set of the vanishing ideal of D written
in terms of orthogonal polynomials. Then it is applied to compute the coefficients
of (@) in the Fourier expansion of the interpolatory polynomial at D of the function
whose expectation is wanted. Of course it will is of interest to determine generali-
sations of our results to the cases where A is not a product measure and still admits
an orthogonal system of polynomials.

1.1. Basic commutative algebra. We start with some notation on polynomials:
R[z] is the ring of polynomials with real coefficients and in the d-variables (or
indeterminate) z = (z1,...,xq); for @ = (a1,...,aq) a d-dimensional vector with
non-negative integer entries, z® = z{" ... x3" indicates a monomial; <, indicates
a term-ordering on the monomials in R[z] i.e., a total well ordering on Z<, such
that 2@ <, 2% if 2 divides 2°. If d = 1 there is only one term ordering of the
monomials, which is definitely not the case for d > 2. Design of product form
share some features with the dimension one. Because of that term orders are not
much used in standard quadrature theory. We will see that refining the division
partial order to a proper term-order is actually relevant in some cases, but not in
all multivariate cases.

The total degree of the monomials 2 is Z?Zl a;. The symbol R[] indicates the
set of polynomials of total degree k and R[x]<y, the vector space of all polynomials of
at most total degree k. Let D be a finite set of distinct points in R%, X a probability
measure over R? and X a real-valued random variable with probability distribution
A so that the expected value of the random variable f(X)is E(f(X)) = [ f(z)d\(x).

Given a term ordering <., for p € R[z] there exists unique g and r € R[z| such
that

(2) p(r) = g(x) +r(x), g(x)=0ifzeD,

r is a linear combination of less monomials than points in D, and r is smaller than
g with respect to <. It is a consequence of the multivariate polynomial division,
see e.g. |2, Sec. 2.3]. Furthermore r(x) can be written uniquely as

(3) r(z) =Y p(2)l:(x)

z€D
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where [ is the indicator polynomial of the point z in D, i.e for x € D it is l,(z) =1
ifx =zandl,(x) =0if z # z. Equation @) follows from the fact that {l, : z € D}
is a R-vector space basis of £L(D), the set of real valued functions over D.
The expected value of the random polynomial function p(X) with respect of A
is
E(p(X)) = E(9(X)) +E (r(X)) = E(9(X)) + 3 p(2) E (1. (X))
z€D
by linearity. In this paper we discuss classes of polynomials p and design points D

for which
E(p(X) = 3 p(2)E (1-(X))
z€D
equivalently E (¢(X)) = 0.

The polynomials g and r in [2]) are fundamental in the applications of algebraic
geometry to finite spaces. In multivariate polynomial division if fi,..., f; € Rz]
form a Grébner basis with respect to <, (see [2, Cap. 2]) and generate the ideal of
polynomial functions vanishing over D, then

t
g(z) = Z hi(z)fi(x), hi(x) € Rlz] not unique
i=1

and the unique r has its largest term in <, not divisible by the largest term of
gi, © = 1,...,t. Moreover, monomials not divisible by the largest terms of f;, i =
1,...,t, form vector basis of monomial functions for the vector space £(D) of real
functions on D. Various general purpose softwares, including Maple, Mathematica,
Matlab and computer algebra softwares, like CoCoA, Macaulay, Singular, allows
manipulation with polynomial ideals, in particular can compute the reminder and
the monomial basis.

For all p € R[z], the polynomial r above is referred to as reminder or normal
form. Tt is often indicated with the symbol NF.(p, {f1,..., ft}), or the shorter ver-
sion NF(p), while (f1,..., f:) indicates the polynomial ideal generated by f1, ..., f:.

In one dimension, a Grébner basis reduces to a polynomial f vanishing over D
and of degree n = |D| and r satisfies three main properties:

(1) r is a polynomial of degree less or equal to n — 1,
(2) p(x) = g(z)+r(z) = q(x)f(x) +r(z) for a suitable ¢ € R[z] and g, f € (f),
and
(3) r(z) = p(x) if  is such that f(z) = 0.
In the next Section we are going to study the algebra of orthogonal polynomials in
one variable.

2. ORTHOGONAL POLYNOMIALS AND THEIR ALGEBRA

In this section let d = 1 and D be the set of zeros of a polynomial which is
orthogonal to the constant functions with respect to A. We recall the basics on
orthogonal polynomials we use next, see e.g. [4].

Let I be a finite or infinite interval of R and A a positive measure over I such
that all moments p; = f: 27 d\(x), j = 0,1,..., exist finite. In particular, each

polynomial function is square integrable on I and the L?()\) a scalar product is
defined the ring R[z] by

(@), g(x)), = / f(@)g(z) dA(z)

We consider only A whose related inner product is definite positive, i.e. ||f|| > 0
if f # 0. In this case there is a unique infinite sequence of monic orthogonal
polynomials with respect to A and we denote them 7, 71, . ... Furthermore we have
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7 € Rlz]k, mo,...,m form a real vector space basis of R[z]<k, 7 is orthogonal

to all polynomials of total degree smaller than k and for p € R[z] and n € Zx>g

there exists unique ¢, (p) € R, called n-th Fourier coefficient of p, such that p(z) =
:i% ¢n(p)mn(x) and only a finite number of ¢, (p) are not zero.

Since the inner product satisfies the shift property

(xp(2), q(2)) \ = (p(), 2q(2)) \ ,
then the corresponding orthogonal polynomial system satisfies a three-term recur-
rence relationship. More precisely, all orthogonal polynomial systems on the real

line satisfy a three-term recurrence relationships. Conversely, Favard’s theorem
holds [9].

Theorem 2.1 (Favard’s theorem). Let vy, an, By be sequences of real numbers and
form >0 let mpi1(2) = (e — an)mn(x) — Pumn—1(x) be defined recurrently with
mo(x) = 1, m_1(z) = 0. The m,(x), n = 0,1,... form a system of orthogonal
polynomials if and only if v, # 0, an # 0 and apVnYn—1 > 0 for alln > 0. If
Yo = 1 for all n then the system is of monic orthogonal polynomials.

(xm, ) (ks )
(Th, The) (Th—1, Th—1)
norm of 7, is computed from the 8’s as ||7,||> = BufBn_1-..Bo. For orthonormal
polynomials 7, = 7 /||7k|| the Christoffel-Darboux formulae hold

n—1 . ~ ﬁ'n(x)frnfl(w — ﬁn,1(1'>77rn (t>
7 (2) 7 () = \/ﬂ_n

xr—t

In the monic case, ap = and B = hold true and the

(4)

|
—

n

Te(t)? = V/Bn (7 () Fn-1(t) — 7y (1) (2))

0

b
i

Non-example 2.2. Inner products of the Sobolev type, namely (u, v)s = (u,v),+
(' vy, -+ (w0 where \; are positive measures possibly having different
support, do not satisfy the shift condition. Neither do the complex Hermitian inner
products.

Theorem 2.3. Let D = {x C R : m,(x) = 0} be the zero set of the n-th orthogonal
polynomial with respect to the probability measure X. If p(x) = q(z)m,(x) + r(x),
then

E(p(X)) = Z p(2)Az,  if and only if c,(q) = 0.

z€D

Remark 2.4. This theorem is a version of a well known result, see e.g. [4, Sec. 1.4].
We include the proof to underline a particular form of the error in the quadrature
formula, to be used again in the next Theorem and in Section 6.

Proof. The zero set of m,, D = {x: m,(z) = 0}, contains n distinct points. For
a univariate polynomial p, we can write uniquely p(z) = q(z)m,(z) + r(x) with
deg(r) < n and deg(q) = max{deg(p) — n,0}. Furthermore, the indicator func-
tions in the expression r(z) = Y5 p(2)l.(x) are the Lagrange polynomials for D:

namely 1.(2) = [ [, epawss % for z € D. Hence we have

E (p(X)) = E (¢(X)ma (X)) + D p(2) E(1:(X))

= Cn(‘l)”WnHi + ZP(Z))‘Z-

z€D
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A particular case of Theorem 2.3l occurs if p has degree less than 2n. In this case
g has degree at most n—1 and ¢,(q) = 0. This shows that the quadrature rule with
n nodes given by the zeros of 7, and weights {)\.}.cp is a Gaussian quadrature
rule and it is exact for all polynomial functions of degree smaller or equal to 2n — 1.
For notes on quadrature rules see for example [4, Chapter 1].

Example 2.5 (Identification). For f polynomial of degree N < 2n—1 we can write
f(z) = chvzo ck(f)mr(x). The constant term is given by
co(f) =E(f(X)) =) _ f(2)X.
z€D
and for all 7 such that N +¢<2n -1
Imil[3ei(f) = E(f(X)mi(X)) = > f(2)mi(2) A
z€D

In particular, if deg f = n — 1 then all coefficients in the Fourier expansion of f can
be computed exactly.

In general for a polynomial of degree N possibly larger than 2n — 1, Theorem
gives the Fourier expansion of its reminder by m,, indeed

Z fR)mi(2)A: = Z NF(fmi)(2)A: = E(NF(f(X)mi(X))) = ||m[[3ei(NF(f))

Theorem below generalises Theorem [2.3] to a generic finite set of n dis-
tinct points in R, say D. As above, the indicator function of z € D is I,(z) =
[lwepiwss % Let g(z) = Jl.ep(® — 2) be the unique monic polynomial
vanishing over D and of degree n. Write a polynomial p € R[x] uniquely as
p(z) = q(x)g(x) + r(x) and consider the Fourier expansions of ¢ and g: ¢(z) =

ZZ:S cr(@)mi(z) and g(x) = 375 cr(g)me(@).
Theorem 2.6. With the above notation, E (p(X)) = > _.pp(2)\: if and only if
3120 er(@)er(g)llmel 3 = 0.

Proof. From
“+oo n
p(@) = q(@)g(@) +r(x) =Y erl@mi(@) Y eilg)mi(@) + D p(2)l:
k=0 §=0 2€D
we have
+oo n
E(p(X)) =YD crl@)e;(9) E(mu(X)m(X) + Y p(2)As
k=0 j=0 2€D
=Y (@@} + D p(2)As
k=0 2€D
and this proves the theorem. ([

The condition we find in Theorem is linear in the Fourier coefficients of ¢,
which is found easily from f by polynomial division. The first |D| Fourier coefficients
of ¢ appearing in the conditions of the theorem are determined by solving the system
of linear equations

(5) M [Ck(Q)]k:O,...,|D|—1 = [Q(z)]kzo,...,\p\—1

where M = [”k(z)]zeb,kzo

orthogonal polynomials.
Theorem can be used in two ways at least. If p is known, the condition in

the theorem can be checked to verify if the expected value of p can be determined

ip|—1 is the design/evaluation matrix for the first | D

.....
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by Gaussian quadrature rule with nodes D and weights E (Hw eDwtz % for
z € D. The Fourier coefficients of g can be computed analogously to those of ¢
adapting Equation (B]). If p is unknown and p(z) = > paz® for a finite number of
non-zero, unknown real numbers p,, Theorem characterizes all the polynomials
for which the Gaussian quadrature rule is exact, namely E (p(X)) = >, cp p(2) ..
Furthermore, the characterization is a linear expression in the unknown p,, where
p(x) =, pax®. This is because in Equation () the ¢(z) are linear combinations
of the coefficients of p.

In Section Bl we shall specialise our study to Hermite polynomials, while in Sec-
tion [6.I] we shall generalise Theorem to higher dimension. To conclude this
section, we observe that the remainder » admits an interpretation as a projection.

Proposition 2.7. Let p(z) € R[z] and write p(x) = q(z)m, () + r(x) where r has
degree less than n. Then q is the unique polynomial such that p — qm, s orthogonal
to all w,, with m > n.

Proof. As r = p — gm, has degree at most n — 1, it can be written as a linear
combination of 7y, 71,...,m,—1 and is orthogonal to m, for all m > n. Let ¢
and ¢z € R[z] such that both p — ¢17, and p — ga7, are orthogonal to m,, for all
m > n. Now (¢1 — g2)m, has degree not smaller than n, hence it is orthogonal

to mg,...,mn—1. Necessarily it is g1 — g2 = 0, because it is orthogonal to all my,
k=0,.... O

Example 2.8. Substituting the Fourier expansions of ¢ and p in the orthogonality
relation, we find that the m-th coefficient in the Fourier expansion of p can be
written as

E (p(X)Wm(X)) =E (Q(X)Trn(X)Trm(X))
D ek 0) B (e (X)mn (X)) =Y ¢5(a) B (5 (X ) (X) 7 (X))
k J
Cm()Tml[* =D ¢5(@) B (5 (X) 70 (X)mm (X))
J
For Hermite polynomials it can be simplified by e.g. using the product formula in
Theorem [B.1] of Section

3. HERMITE POLYNOMIALS

There is another way to look at the algebra of orthogonal polynomials that we
discuss here in the case of Hermite polynomials. The reference measure A is the
—12/2
normal distribution, dA(z) = w(z) dz, with w(z) = e—, z €R.
3.1. Stein-Markov operators for standard normal distribution. For a real
valued, differentiable function f, define

d 2,5 d 2
6f(@) = af(2) = = fla) = == 2= (F(a)e™/2),
d" = dx—nn, and consider Z ~ A. The following identity holds
(6) E(¢(2) 6"(Z)) = E(d"$(Z) ¥(Z))

2

if ¢,1) are such that lim, 4. ¢(z)Y(z)e~* /2 = 0 and are square integrable, see
[6) Ch. V Lemma 1.3.2 and Proposition 2.2.3]). Polynomials satisfy these conditions
and ¢ is also called the Stein-Markov operator for the standard normal distribution.



THE ALGEBRA OF QUADRATURE FORMULZ FOR GENERIC NODES 7

The n-th Hermite polynomial can be defined as H, () = §"1. Direct computa-
tion using d proves the following well-known facts

(1) the first Hermite polynomials are

Hy =
Hy(z) ==z
Ho(x) = 2% —1
Hs(x) = 2® — 3z
Hy(z) =2* — 622 +3
Hs(x) = 2° — 102° + 152
(2) Hp(z) = (=1)"e®*/2d"(e=*"/2) (Rodrigues’ formula)
(3) dd—0d = id from which the relationships dH,, = nH,_1, d™"H,, = :;—!!Hn,m
for m < mn and the three-term recurrence relationship
(7) H,y1 =xH, —nH,_1
are deduced. )
(4) Hermite polynomials are orthogonal with respect to dA(z) = e /2 dzx.

V2
Indeed from Equation (@) we have E (H,,(Z)Hp(Z)) = nldp m where 0y m =

0if n #m and 6, =1 if n =m.
Already we mentioned that {H,(z) : n < d} spans Rlz]<4 and that H, is
orthogonal to any polynomial of degree different from n. The ring structure of the
space generated by the Hermite polynomials is described in Theorem B.11

Theorem 3.1. The Fourier expansion of the product of HxH,, is

nAk

n\ (k\ .
Han = Hn-l—k + Z (l) <Z-)’L!Hn+k—2i
i=1

Proof. Note that (¢,v) = E(¢(Z)y(Z)) is a scalar product on the obvious space
and let n < k with Z ~ N(0,1) and 1, ¢ square integrable functions for which
identity (@) holds. Then

(HicHa, ) = (01, Hiep) = (1, d" (i) = D (1, <7Z> d' Hy, d"~'))

i=0

= (1, Hyd" ) +

M=

a, (7;) d'Hj, d"~ap)

1

= <Hn+ka ¢> +

Ms &M: i

(7)k(k — 1) (b =i+ 1)(Huyp—2i, )

<n> <%>i!Hn+k2i, P)
«\i/\i

Example 3.2 (Aliasing). As an application of Theorem [B1] observe that the three-
term recurrence relation for Hermite polynomials Equation ([7])

HnJrl = :CHn - anfl

3

= <Hn+k7"/)> + <

.
Il

O

evaluated on the zeros of H,(z), say Dy, becomes H,1(x) = —nH,_1(x) where
= indicates that equality holds for z € D,,. In general let H, 1, = Z;:Ol h?JrkH j
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be the Fourier expansion of the normal form of H, 1y at D,,, where we simplified
the notation for the Fourier coefficients. Substitution in the product formula in
Theorem B gives the formula to write h;”rk in terms of Fourier coefficients of
lower order Hermite polynomials:

nAk n k nAk n k n—1 -
NF(Hupp) ==Y (l) (i)i!NF(HnJrk%) =y (l) (z)“ S i
=1 i=1 3=0

Equating coefficients gives a closed formula

nAk n k
n+k __ rn+k—21
Witk = %" <l> <i>z!hj

i=1
In Table [ the normal form of Hy,, with respect to H, is written in terms of

Hermite polynomials of degree smaller than n. For example, H,,+3(z) = —n(n —
1)(n — 2)H,_3(x) + 3nH,,_1(x) for those values of z such that H,(z) = 0.

Hn+k =

*anfl

—n(n—1)H,_2

—n(n—1)(n—2)H,_3 + 3nH,_1

—nn—1)(n—2)(n —3)Hp—4 +8n(n — 1)H,_»

— sy Ha—s + 5nHy—1 + 150(n — 1)(n — 2)Hy 3

— e a6 +24n(n — 1)(n — 2)(n — 3)Hy—q + 10n(n — 1)(2n — 5)Hp—2

TABLE 1. Aliasing of H,4x, k=1,...,6 over D = {H,(x) = 0}

D U W N |

Example 3.3. Observe that if f has degree n + 1 equivalently £ = 1 then

n—1

f = Cz(f)Hz + Cn(f)Hn + CnJrl(f)HnJrl

%

Il
=)

=Y a(f)Hi+ (co1(f) = nenta(f)) Ho
=0

and all coefficients up to degree n — 2 are “clean”.
We give another proof of Theorem 23] for Hermite polynomials.

Corollary 3.4. Let D, = {z : Hy(x) =0} and p € R[z]|. Let p(x) = q(z)Hy(z) +
r(z) with the degree of r smaller than n and let Z ~ N(0,1). Then

E(p(2)) = ) p(2)As if and only if E(d"q(Z)) =0

z€D,
ith \. = E(1.(Z = % zeD
with A\, =E (1.(2)) and 1.(z) = [Lyepawss P €D,.
Proof. From Equation () we have
E(¢(Z2)H,(2)) = E(¢(Z)0"1) = E (d"q(Z))

Now by the same steps followed in the proof of Theorem we conclude that

E(p(2)) =E(d"q(2)) + Y p(2)As
2€D,,
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3.2. Algebraic characterisation of the weights. Theorem [B.5] gives two poly-
nomial equations whose zeros are the design points and the weights. The proof is
based on the Christoffel-Darbouzx formulae, Equations ().

Theorem 3.5. Let D, = {z: Hy(x) = 0}.
ere exists only one polynomia of degree n — 1 such that A\(xx) = Ak
1) Th ) l l jal A of d 1 h that A A
forallk=1,...,n,
(2) furthermore A\, = @H{El(xk) Equivalently

(3) the polynomial \ satisfies

{ H,(x)=0

M) H2_ (2) = 2=

n

Proof. The univariate polynomial A is the interpolatory polynomial of the values
Ar’s at the n distinct points in D,, and hence it exists, unique of degree n — 1. To
prove item 2., observe that for Hermite polynomials a,, = 0, 8, = n, H,(z) =
H,(x)/v/n! and H'(z) = \/nH,_1(z). Substitution in the Christoffel-Darboux

formulae and evaluation at D,, = {x1,...,x,} give
n—1 n—1

(8) > Hp(wi)Hi(ay) =0ifi#j Y Hy(w:)® =nH, 1(z:)
k=0 k=0

In matrix form Equations (8) becomes

H,HY, = n diag(H, 1 (2:)* i =1,...,n)

where H,, is the square matrix H,, = [H ](zz)} and diag indicates
1=1,..., n;3=0,..., n—1
a diagonal matrix. Observe that H, is invertible and

H;l = Hfln_l diag(ﬁ;fl(:ci) ci=1,...,n)

Now, let f be a polynomial of degree at most n—1, a typical remainder by division

for H,, then f(z) = Z?;g cjHj(x). Write f = H,c where f = [f(2;)]i=1,....n and
¢ = [¢j];. Furthermore note that

c= H;li =H!n! diag(f{;_Ql(aci) vi=1,...,n)f
= H!n ' diag(H, % (z:)f(z;) ;i =1,...,n)

9) cj = % Zgj(xi)f(xi)g;_21($i)

Apply this to the k-th Lagrange polynomial, f(z) = lx(x), whose Fourier expansion
is f(x) = Z;:Ol cx;Hj(z). Using ly(z;) = d; in Equation (9), obtain

(10) crj = —Hj (i) H 2 (w1)

S|

The expected value of I(Z) is

Ju

n—

M =E((2)) =Y ey E (Hj(x)) = o

=0

<.

Substitution in Equation ([IQ) for j = 0 gives A\ = %f{;fl(xk) = @Hgfl(ack).
This holds for all k =1,...,n.

Item 3. is a rewriting of the previous parts of the theorem because the first
equation H,(z) = 0 states that only values of x € D,, are to be considered and the
second equation is what we have just proven. (I
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Item 2 in the theorem states that the weights are strictly positive. Furthermore,
Theorem [2Z.3] applied to the constant polynomial p(z) = 1 shows that they sum to
one. In other words, the mapping that associates z to A,, z € D, is a discrete
probability density. Then Theorem 23] states that the expected value of the poly-
nomial functions of Z ~ AN(0,1) for which ¢,(q) = 0, is equal to the expected
value of a discrete random variables X given by P, (X =) = E (Ix(2)) = Ak,
k=1,....n

n

E(p(2)) = p(zi)Ak = En (p(X))
k=1
Example 3.6. For n = 3 the polynomial A in Theorem [3.5] can be determined by-
hand. For larger values of n an algorithm is provided in Section[3.3l The polynomial
system to be considered is

0= Hz(z) =2® — 3z
2/3 = Nx)H3 = (0 + 012 + 0227)(2* — 1)?

where \(z) = 0y + 012 + 0222, The degree of \(z)H2 is reduced to 2 by using
3 =3z

(11) 2/3 = XNx)H3 = 0p + 014z + (0 + 402)2>

Coefficients in Equation (I are equated to give A(z) = % — %

In some situations, e.g. the design of an experimental plan or of a Gaussian
quadrature rule, the exact computation of the weights might not be necessary
and A(z) is all we need. When the explicit values of the weights are required,
the computation has to be done outside a symbolic computation setting as we
need to solve Hz(xz) = 0 to get D3 = {—+/3,0,4/3} and evaluate A(z) to find
Az =A=V3)=1=2A,5and A\ = A(0) = 2.

3.3. A code for the weighing polynomial. The polynomial A(z) in Theorem[3.3]
is called the weighing polynomial. Table B3] gives a code written in the specialised
software for symbolic computation called CoCoA [1]. to compute the Fourier ex-
pansion of A(z) exploiting Theorem

Line 1 specifies the number of nodes N. Line 2 establishes that the working
environment is a polynomial ring whose variables are the first (N — 1)-Hermite
polynomials plus an extra variable w which encodes the weighing polynomial; here
it is convenient to work with a elimination term-ordering of w, Elim(w), so that
the variable w will appear as least as possible. Lines 3, 4, 5 construct Hermite
polynomials up-to-order N by using the recurrence relationships (7). Specifically
they provide the expansion of H; over Hj, with k < j for k=0,...,N — 1. Line 6
states than Hy = H1Hy_1 — (N — 1)Hy_2 = 0, ‘giving’ the nodes of the quad-
rature. Line 7 is the polynomial in the second equation in the system in Item 3
of Theorem and ‘gives’ the weights. In total there are N equations which are
collected in an algebraic structure called an ideal whose Grobner bases [2] is com-
puted in Line 8. In our application it is interesting that the Grobner bases contains
a polynomial in which w appears alone as a term of degree one. Explicitly w in such
polynomial provides the weighing polynomial written in terms of the first N — 1
Hermite polynomials.

Line 9 in Table gives the polynomial obtained for N = 4, namely A(z)
3

5;—52 = 6152. The nodes are +1/3 &+ /6 and the values of the weights are 115/6,
showing that both nodes and weights are algebraic numbers but not rational num-
bers. On a Mac OS X with an Intel Core 2 Duo processor (at 2.4 GHz) using
CoCoA (release 4.7) the result is obtained for N = 10 in Cpu time = 0.08, User
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Line 1 N:=4;

Line 2 Use R::=Q[w,h[1..(N-1)]], Elim(w);

Line 3 Egs:=[h[2]-h[1]*h[1]+1];

Line 4 For I:=3 To N-1 Do

Line 5 Append (Egs,h[I]-h[1]*h[I-1]+(I-1)*h[I-2]) EndFor;
Line 6 Append(Eqgs,h[1]*h[N-1]-(N-1)*h[N-2]);

Line 7 Append(Egs,N*w*h[N-1]"2-Fact(N-1));

Line 8 J:=Ideal(Egs); GB_J:=GBasis(J); Last(GB_J);
Line 9 3w + 1/4h[2] - 5/4

TABLE 2. Computation of the Fourier expansion of the weighing
polynomial using Theorem

time = 0; for V = 20 in Cpu time = 38.40, User time = 38; for N = 25 in Cpu
time = 141.28, User time = 142 and for N = 30 in Cpu time = 5132.71, User time
= 5186 and gives a weighing polynomial of 22.349 characters. Observe that this
computations can be done once for all and the results stored.

4. FRACTIONAL DESIGN

In this section we return to the case of general orthogonal polynomials, {m;, },,
and positive measure, dA. We assume that the nodes are a proper subset F of
D,, = {z : mp(x) = 0} with a number of points m, 0 < m < n. We work within two
different settings, in one the ambient design D,, is considered while in the other one
it is not.

Consider the indicator function of F as subset of D,,, namely 1x(z) =1ifz € F
and 0 if z € D, \ F. It can be represented by a polynomial of degree n because it
is a function defined over D,, [2[8]. Let p be a polynomial of degree at most n — 1
so that the product p(z)1£(x) is a polynomial of degree at most 2n — 1. Then from
Theorem we have

E((p1#)(X)) = Y p(2)A: = Ea (p(Y)1£(Y)) = Ea (p(Y)|Y € F)Pu(Y € F)
zEF

where X is a random variable with probability law A and Y is a discrete random
variable taking value z € F with probability P,(Y = z) = A,. The first equality
follows from the fact that f(z)1z(z) is zero for € D\ F and the last equality
from the definition of conditional expectation.

Another approach is to consider the polynomial whose zeros are the elements of
F,say wr(z) = [] (z—2). Now consider the Lagrange polynomials for F, namely

zeF
17 (z) = wl;[zjiz for z € F.

weF

Lemma 4.1. Let F C D,,. The Lagrange polynomial for z € F is the remainder
of the Lagrange polynomial for z € D,, with respect to wr(x), namely

17 (x) = NF (I.(2), (wr(2)))
Proof. There exists unique NF(I.)(z), polynomial of degree small than m, such
that
Iz(2) = q(x)wr(z) + NF(I2)(x)
Furthermore, for a € F we have [,(a) = NF(l.)(a) = 6,.. = IZ(a). The two

polynomials I7 (z) and NF(l,)(z) have degree smaller than m and coincide on m
points, by interpolation they must be equal. O
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For a polynomial p of degree N, write p(z) = q(z)wr(x) +r(z) with f(z) = r(2)
if z € Fand r(z) =Y, rp(2)l (x). Let q(z) = Z;V:Bm bjmi(z) and wr(z) =
Yoty cimi(z) as wr has degree m. Then

N—m m
E(pX)=E| Y bm(X)Y em(X) | +E@r(X))
=0 i=0

= b000||7T0||§\ + blcl||7'r1||§\ +.F b(me)/\mc(me)/\ml|7T(N7m)/\m||?\ + Z p(Z))\f
zeF

where A\ = E (NF(1,(X), (wr(X))), z € F.

Note that the error of the Gaussian quadrature rule, boco||mo||3+b1c1||m |3+ . .+
b(me)/\mc(me)/\ml|7T(N7m)/\m||§a is linear in the Fourier coefficients b;, and also
in the Fourier coefficients c; relative to the node polynomial. This is generalised
in Section [G.Il If the fraction F coincides with the ambient design D,, and hence
contains n points and if p is a polynomial of degree at most 2n — 1, then we obtain
the well known result of zero error because (N —n) An < n — 1 and the only
non-zero Fourier coefficient of the node polynomial 7, is of order n. In general one
should try to determine pairs of F and sets of polynomials for which the absolute
value of the errors is minimal.

5. HIGHER DIMENSION: ZERO SET OF ORTHOGONAL POLYNOMIALS AS DESIGN
SUPPORT

In this section we return to the higher dimensional set-up of Section [l but
we restrict ourselves to consider the product measure A4 = x% ;X and Xy,..., X,
independent random variables each one of which is distributed according to the
probability law A. As design we take a product grid of zeros of orthogonal poly-
nomials with respect to A, more precisely our design points or interpolation nodes
are

Dir,oong = {x =(x1,...,24) € RY Ty (1) = Ty (22) = oo = Ty (24) = 0}

where 7y, is the orthogonal polynomial with respect to A of degree ny.

The Lagrange polynomial of the point y = (y1,...,%d) € Dp,,...n, is defined as
ly(z1,...,2q) = HZ:l lyk (), the apex "* indicates that [;* (zx) is the univariate
Lagrange polynomial for yi € {xy, : m,, () =0} = D, CR.

The Span (I : y € Dn,,....ny), is equal to the linear space generated by the mono-
mials whose exponents lie on the integer grid {0,...,n1 —1} x...x{0,...,nq—1}.
Any polynomial f € R[z] can be written as

d
fx,...,zq) = qu(acl, cos )Ty () + (21, .0 24)
k=1
where r is unique, its degree in the variable xj is smaller than ng, for k=1,...,d
and belongs to that Span.
The coefficients of the Fourier expansion of ¢, with respect to the variable xj

are functions of x1,...,24 but not of zx. Let x_; denote the (d — 1)-dimensional
vector obtained from (z1,...,z4) removing the k-th component and write
d +oo
F@r,oma) =D Y eilarn)@i)mj(@r) | mng (k) + (21, 7a)
k=1 \j=0

Only a finite number of ¢;(gx)(z—%) are not zero.
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From the independence of X1, ..., X,, the expected value of the Lagrange poly-
nomial [, is
d
(e (Xe)) = T A
k=1

Eya (Iy(X1,..., X

HE&

where \}* = E (I7%(X})) is the expected value of a univariate random Lagrange
polynomial as in the previous sections.

Theorem 5.1. It holds

Exa (f(X1,...,Xa)) =
d
ZE/\UZ 1 Ck Qk X,k))||7rk||§+ Z f(:El,...,xd))\;ll.../\Z:
k=1 (21,--sZn)€Dny...ny,

Proof. The proof is very similar to that of Theorem 2.3 and we do it for d = 2 only.
In a simpler notation the design is the n x m grid given by Dy, = {(z,y) : m(z) =
0=mn(y)} and X and Y are independent random variables distributed according
to A. The polynomial f is decomposed as

flz,y) =
q1 (xa y)ﬂ-n(‘r) + qg(x,y)ﬂn(y) + Z f(a” b) lg(x)lin(y) =
(a,b)E€EDn,m
+o0
> eila) )y +ch @)@ W) @)+ Y, flab) @) ()
j=0 (a,b)€EDn,m

Taking expectation, using mdependence of X and Y and orthogonality of the m;,
we have

Ey: (f(Xa Y)) =
Ex (en(@)(V)) [[mnl[3 + Ex (em(g2) X)) [mml R+ D f(a,D)AA)
(a,b)EDpn,m
[l

Note in the proof above that a sufficient condition for Ey (¢, (¢1)(Y)) being zero
is that f has degree in 2 smaller then 2n — 1, similarly for Ey (¢, (g2)(X)). We
retrieve the well-known results that if for each i the degree in z; of f is smaller
than 2n; — 1, then

Eya (f(X1,...,Xq)) = > For, o xg) AL LA
(21,--s2n)€Dny...ny,

In the Gaussian set-up, by Theorem applied to each variable, weights and
nodes satisfy the polynomial system

I{n1 (.Tl) =0
|
)\1 (xl)Hnl_l(:L.l)Q ( - 1)
Hnd(xd) =0
2 (ng —1)!
)\d(iﬁd)Hnd—l(iﬁd) T

For the grid set-up of this section and for the Gaussian case, in analogy to
Example some Fourier coefficients of polynomials of low enough degree can be
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determined exactly from the values of the polynomials on the grid points as shown
in Example below.

Example 5.2. Consider a square grid of size n, D,,,,, and a polynomial f of degrees
in x and in y smaller than n, the Hermite polynomials and the standard normal
distribution. Then we can write

n—1

f(@,y) = Z cijHi(z)H;(y)

i,j=0
As both the degree in = of f Hy and the degree in y of f Hj, are smaller than 2n —1,

we have

E (f(Z1, Z2) Hy(X1)Hi(X2)) = | [H (X1)|]*]| Ha(X2)|?

1
ckn =15 D f@y)Hi(@) Ha(y)Aady
(#,9)EDnn
Note if f is the indicator function of a fraction F C D, then

1 .
Ckh = T > Hp(x)Hp(y)Aedy — with0< bk <n

(z,y)eF

Example B3] deals with a general design and introduces the more general theory
of Section

Example 5.3. Let F be the zero set of

g=2"—y* = Hy(z)—Hs(y)=0
g2=y>—-3y = Hi(y)=0
gs =xy?* —3x = Hi(z)(Ha(y) —2Hp) =0

namely F is given by the five points (0,0), (+v/3,4+/3). Write a polynomial
f € Rlz,y] as f = > qigi + r where r(x,y) = f(x,y) for (z,y) € F and r belongs
to Span (Ho, Hi(z), H1(y), Hi(z)Hi1(y), H2(y)) = Span (1,z,y, zy,y?). If, further-
more, f is such that

q1(x,y) = ao + a1 H1(x) + asH1(y) + azH1(z) H1(y)

g2 = 01(x) + O2(x) Hi (y) + O3(x) Ha(y)

q3 = as +asHy(y)
with ai,Gj € R for i = 0, .. .,5 and _j = 1, .. .,3, then E(gi(Zl,ZQ)qi(Zl,Zg)) =0
fori=1,2,3 and for Z; and Z5 independent normally distributed random variables.
Write r as a linear combination of the indicator functions of the points in F, i.e.
r(z,y) = Z(a byer f(a,b)1(aper(x,y). Eachindicator function 1, e+ belongs to
Span (Ho, H1(x), H1(y), Hi(x)H1(y), H2(y)) and they are

2 1
Lo,0)er(r,y) = gHo - §H2(y)

1 1 \/— 1 \/_ 1 1

Lavaer(®.y) = 5 Ho+ 5 V3H(x) + T V3H(y) + 5 Hi(2) Hi(y) + 5 Ha()
1 1 1 1 1

L —vaer(@y) = 75 Ho — 75 V3H (2) + 5 VBH(y) — S Hi(2) Hi(y) + 75 Ha(y)
1 1 1 1 1

L vavaer(®,y) = EHO + E\/ng(x) - E\/ng(y) - EH1(z)H1(y) + EHg(y)

1 1 1 1
L v —vayer(®:y) = 5 Ho — E\/ng(x) - E\/ng(y) + (@) Hi(y) + 5 Ha ()
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Their expected values are given by the Hy-coefficients. Furthermore, by linear-
ity E(f(Z1,22)) = E(r(Z1, Z2)) = X (apyer [(a,0) E(L(ap)er(Z1, Z2)) and we can
conclude

E(f(Z1, Z2)) = E(r(Z1, Z2)) =
3 12

The key points in Example are

(1) determine the class of polynomial functions for which E(g;(Z1, Z2)q:(Z1, Z2)) =
0 and
(2) determine the Hy-coefficients of the indicator functions of the points in F.

In Section [6]l we give algorithms to do this for any fraction F.

6. HIGHER DIMENSION: GENERAL DESIGN SUPPORT

In the previous sections we considered particular designs whose sample points
were zeros of orthogonal polynomials. In the Gaussian case we exploited the ring
structure of the set of functions defined over the design in order to obtain recur-
rence formula and to write Fourier coefficients of higher order Hermite polynomials
in terms of those of lower order Hermite polynomials (Example B2). Also we
deduced a system of polynomial equations whose solution consists the weights of
a quadrature formula. The mathematical tool that allowed this is Equation (@)
and the particular structure it implies for Hermite polynomials on the recurrence
relation for general, orthogonal polynomials

(12) i1 (z) = (e — o) (x) — Brmp—1(x) rzeR

with v, ap # 0 and agyEye—1 > 0.

In this section we switch focus and consider a generic set of points in R? as
a design, or nodes for a cubature, and a generic set of orthogonal polynomials.
We gain something and loose something. The essential computations are linear:
such is the computation of a Grobner basis for a finite set of distinct points [7]; the
Buchberger Moller type of algorithm in TableBlis based on finding solutions of linear
systems of equations; in Section we give a characterisation of polynomials with
the same expected values which is a linear expression of some Fourier coefficients
and a square free polynomial of degree two in a larger set of Fourier coefficients
(see Equation [T6])

Given a set of points and a term-ordering the algorithm in Table [3] returns
the reduced Grobner basis of the design ideal expressed as linear combination of
orthogonal polynomial of low enough order. It does so directly; that is it computes
the Grobner basis by working only in the space of orthogonal polynomials.

We loose the equivalent of Theorem Bl for Hermite polynomials, in particular
we do not know yet how to impose a ring structure on Span(mny, ..., m,) for generic
orthogonal polynomials 7 and we miss a general formula to write the product 77,
as linear combination of m; with ¢ = 0,...,n A k,n + k, which is fundamental for
the aliasing structure discussed for Hermite polynomials.

For multivariate cubature formulae we refer e.g. to [10] which, together with [7],
are basic references for this section. We are writing up in another manuscript our
results on the degree of the cubature formula we obtain. For clarity we repeat
some basics and notation. Let A be a one-dimensional probability measure and
{Tn}nez-, be its associated orthogonal polynomial system. To a multi-index o =
(c1,...,aq) € Z4, associate the monomial z{* - - - 2%, in short z, and the product
Ty (1) .. . T, (4), in short 74 (x). Note that {ma}a are a system of orthogonal
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polynomials for the product measure A%. Theorem describes the one-to-one
correspondence between the z%s and the 7, (z)s.

Theorem 6.1. (1) For d =1 and k € Z>o, in the notation of Equation (I2)
we have that

k
2t = ei(a")my(x)

=0
where co(2°) =1, c_1(2°) = c1(2°) = 0, and, for k=1,2,...,
caa(@®) = (@) =0
_ k—1 (k=13 _ k—1Y3.
cj(xk) _ cji—1(@") + ci(z" oy T ¢+ (2" )B4 j=0,.. k-1
Vi1 Vi Vi+1
1

k

cg(z¥) = ——
@) Y0 Vh—1

(2) For d > 1, the monomial z* is a linear combination of mg, with § < «
component wise, and vice versa. In formulae

(13) T = Z agz? and % = Z bgma

Bl B<a

where B < a holds component wise.

Proof. The proof of Item[lis by induction and that of Ttem Rlfollows by rearranging
the coefficients in the product. See Appendix [1 (|

Example 6.2. For 7; the j-th Hermite polynomial H;, Item 1 of Theorem
gives the well known result

cj(z®) =0 if k+ 7 is odd

cj(xk):(j )(k—j—l)!! if k+jis even

Direct application of Theorem is cumbersome and we need only to charac-
terise the polynomial functions for which the cubature formula is exact. So we
proceed by another way. The finite set of distinct points D C R? is associated to
its vanishing polynomial ideal

I(D) ={f eRlz]: f(z) =0 for all z € D}

Let LT,(f) or LT(f) denote the largest term in a polynomial f with respect to
a term-ordering o. Let [f(z)].ep be the evaluation vector of the polynomial f at
D and for a finite set of polynomials G C R[z] let [g(2)].ep,gec be the evaluation
matrix whose columns are the evaluation vectors at D of the polynomials in G.

As mentioned at the end of Section [[T] the space £L(D) of real valued functions
defined over D is a linear space and particularly important vector space bases can be
constructed as follows. Let LT (I(D)) = (LT,(f) : f € I(D)). If G is the o-reduced
Grobner basis of I(D), then LT(I(D)) = (LT, (f) : f € G). Now we can define two
interesting vector space bases of £(D). Let L = {a € Z, : 2 ¢ LT(I(D))}, then
we define -

B={z%:a€clL} and OB={r,:a€L}

The sets L, B and OB depend on o. It is well known that if ¢ € B and r divides ¢,
then r € B; it follows that if « € L and 8 < a component wise then also 8 belongs
to L and mg to OB. For example for d = 2, let L = {(0,0), (1,0), (0,1), (2,0)}, then
B = {17 Z,Y, 12} and OB = {WO(:C)WO (y)v 1 (1’)7T0(y), 7T0(1')7T1 (y)v 2 (:L')Wo(y>} =
{1,m (), 71 (y), m2(z)}. Note that o induces a total ordering also on the orthog-
onal polynomials: m, <, ms if and only if 2% <, 2P analogously, with abuse of
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notation, a <, A if and only if z® <, x? for each o, § € Zio. Further, given a < 8
componentwise, since z® divides z° and since 27~ >, 1, we have z® <, 2, that
isa <, .

Given a term-ordering o, any g € GG can be uniquely written as its leading term,
x® = LT(g), and tail which is a linear combination of terms in B preceding LT(g)
in o, that is g = 2% + Y 4c; 5., apr’ with ag € R.

Theorem [6.3] provides an alternative to the classical method of rewriting a poly-
nomial f in terms of orthogonal polynomials by substituting each monomial in f
by applying Theorem It gives linear rules to rewrite the elements of G and
the remainder of a polynomial divided by G as linear combinations of orthogonal
polynomials of low enough order. The proof is in Appendix [7l

Theorem 6.3.
(1) Span(B) = Span(OB);
(2) Let G be the reduced o-Grébner basis of I(D). The polynomial g € G with
LT(g) = x* is uniquely written as

g=Tao— Z bgms

BEL15<<104

where b = [bgler,p<,a solves the linear system [m5(2)],cp ger pe,ab =
[Ta(2)],cp; in words the coefficient matriz is the evaluation matriz over
D of the orthogonal polynomials mg with 2 in tail of g and the vector of
constant terms is the evaluation vector of me,.

(3) Let p € Rlz] be a polynomial and [p(2)].ep its evaluation vector. The

polynomial p* defined as

(14) Pt =Y asmg
BeL
where a = [ag]ger solves the linear system [m5(2)],cp gepa = [P(2)].ep
is the unique polynomial such that p*(z) = p(z) for all d € D and p* €
Span(OB).

Theorem provides a pseudo-algorithm to compute a Grébner basis for I(D)
and interpolating polynomials at D in terms of orthogonal polynomials of low order
directly from D and OB. In Table [3] we give a variation of the Buchberger-Moller
algorithm [7] which starting from a finite set of distinct points D and a term-
ordering o returns L and the expressions g = 7, — ZﬂeLﬁ%a bgmg for g in the
reduced o-Grobner basis of I(D). It does so by performing linear operations. If
the real vector [p(z)].ep is assigned, then the expression p* = 5., agms can now
be found using Item 3 in Theorem This permits to rewrite every polynomial
p € R[z] as a linear combination of orthogonal polynomials.

Summarising: given a function f, a finite set of distinct points D C R? and a
term-ordering o, a probability product measure A over R?, its system of product
orthogonal polynomials, and a random vector with probability distribution A%, then
the expected value of f with respect to A? can be approximated by

(1) computing L with the algorithm in Table Bl and
(2) determining the unique polynomial p* such that p*(z) = f(z) for all z € D,
by solving the linear system [m5(2)],cp scz @ = [f(2)]4ep- The polynomial
p* is expressed as linear combination of orthogonal polynomials.
(3) The coefficient ag of g is the wanted approximation.
Recall that p*(z) = > p f(2)la(x) is a linear combination of the indicator func-
tions of the points in D (Lagrange polynomials) and hence ag = > ., f(2) E (14(X)).
In particular, Eya (I,(X)) = A;, 2 € D, can be computed by applying the above
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Input: a set D of distinct points in R?, a term-ordering ¢ and any vector norm || - ||.
Output: the reduced o-Grobner basis G of I(D) as linear combination of orthogonal

polynomials and the set L.
Step 1: Let L={0€ Z%,}, OB=[1], G =[] and M = [21,...,74].
Step 2: If M =[] stop; else set * = min, (M) and deleted z* from M.
Step 3: Solve in b the overdetermined linear system [mg(z)] b =

[Ta(2)],cp and compute the residual

p=[Ta(2)].ep — [Wﬁ(z)]zep,ﬂeL b

z€D,BeL

Step 4:

(1) If |lp|l > 0, then include « in L, and include in M those elements of
{z12%,...,242*} which are not multiples of an element in M or of
LT(g), g € G. Return to Step 2.

(2) If ||p|| = 0, then include in Gthe polynomial

g =Tao— Z bgmg
BeL
where the values bg, 8 € L, are the components of the solutions b of
the linear system in Step 3. Delete from M all multiples of .
TABLE 3. Buchberger-Moller algorithm using Orthogonal Polynomials

to f = l.. Notice however that as A? is a product measure, the \, can be ob-
tained from the one-dimensional ones as noticed before Theorem .11 It would be
interesting to generalise this section to non-product measures.

6.1. Characterisation of polynomial functions with zero expectation. In
this section we characterise the set of polynomials with the same expected value.

As mentioned in Section [[T] given D, its vanishing ideal I(D), a term-ordering
o and a Grobner basis G of I(D) with respect to o, then any polynomial p € R|x]
can be written as

px) =Y qy(x)g(x) + (@)
geG

where r(x) is unique in Span(B) such that r(z) = p(z) for all z € D and can be
written as r(x) = ) _.pp(2)la(z), where I, z € D, are the product Lagrange
polynomials in Section Bl Theorem says how to write r over OB.

If p € Rlz] is such that E (p(X)) = E (r(X)) then E (p(X) — (X)) = 0. Fur-
thermore we have p — r € I(D). Hence instead of studying directly the set

{peR[z]: E(p(X)) =E(r(X))}
we characterize the set
& ={g € I(D) : E(9(X)) = 0}

in Theorem whose proof can be found in Appendix [l Hence if p € R[z] is
such that p = g + r with ¢ € & and r € Span(B) then by linearity E(p) =

Z(Z1,~~~,Zn)€D p(zlv ceey Zn))\gll e )\?;

Theorem 6.4. Let \¢ be a product probability measure with product orthogonal
polynomials 7, (x), a € Z‘io and let X be a random vector following \*. Let
D C R be a set of distinct points, o a term-ordering, G be the o-reduced Grébner
basis of I(D) written as linear combination of orthogonal polynomials, that is for
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g € G and x* = LT (g) write

9="Ta,— Y, cslg)ms

ag>oBEL

Let p = deG qq9 € I(D) for suitable q; € Rz], and consider the Fourier
expansion of each q4 , g € G,

(15) 49 = Z cs(qq)ms + co(qq)ma, + Z cs(d9)7p

B>sag,ag>sB¢L >,B€L
Then E (p(X)) = 0 if and only if
(16) > lImagllkeolag) =D D lImslica(ag)eslg) =0

geG 9€G ag>,BEL

Note that any polynomial can be written according to Equation (I3 where the
first sum includes terms higher in o than LT(g) and terms that do not appear in
g, the last sum includes terms lower than LT(g) in 0. Hence, the key observation
in the proof is that E (m, m,) = 0 is n # m and then linearity of E is used.
Importantly, only terms of low enough Fourier order (the second and third terms
in Equation (1)) matter for the computation of the expectation.

Example 6.5. Consider Z; and Zs two independent standard normal random
variables and hence the Hermite polynomials. Consider also the five point design

D ={(-6,-1),(-5,0),(-2,1),(3,2),(10,3)}

and the o =Deglex term-ordering over the monomials in R[z,y]. The algorithm
in Table Bl gives OB = {1, H1(y), H1(z), H1(x)H; (y), H2(z)} and G = {¢1, 92,93}
where

g1 = Ha(y) — Hi(x) + 2H1(y) — 4

92 = Ha(x)Hi(y) — 9H2(x) + 4THy (2)H (y) — 123H: (x) + 271H: (y) — 399

— Hy(x) — ATHy(x) + 300H, () Hi (y) — S45H: (z) + 2040 H; () — 2987
By Theorem [6.4] for the purpose of computing its expectation a polynomial p =

@191 + g292 + qsgs € I(D) can be simplified to have the form

1 1 !
p = (e Ha(y) + (i oy () + (o) Hi(y) + c{gy)) 1
(2

+ (e Ha(x) Hy (y) + c{3) Ha(w) + ety Hi (@) Hi(y) + (o) Hn (2) + (g Hi (y) + c{)o) )92
+ (c§” Ha(w) + ey Ha (@) + ey Hy(2) Hi(y) + ey o) Hn (@) + e Hi (y) + (o)) )9
and furthermore by Equation (L6

(1) (1) (1) (1)
cy 2! — (1,0 + 20(011) — 4c(070)

(2) (2) (2) () (2) (2)
+ 20— 9¢(3) 20+ 4Te))) — 123¢(D) + 271y — 399c(p

+ i3l — 47c(3)y 21+ 300c(;), ) — 845c(Vy +2040¢(y), ) — 2987cy)

0.1) (00) =0

In practice, for i = 1,2, 3, put coefficients of g; and ¢; in two vectors, multiply them
component wise and sum the result. For example the above equation is satisfied by

(1) _ (1 1 _ 1 _
¢y’ =—34 cgl 0 =0 CEO’l) =-2 CEO’O) = -8
) =0 CE?O) —0 CE?” =1 CE?O) =2 52) h=1 cohy=2
(3) 3) 3) _ 3)  _ 3) 3)
=10 =2 iy =0 ¢y =-5 oy =1 clpy = 5863/2987
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by adding Hy(x) to g1 and Hy4(y) to g2 which are not influent in the computation
of the expectation we get the following zero mean polynomial
p(Z1,22) =
Z375 +1028 + 2123 — 973 75 + ATZ\ Z5 — 46977 + 300221 Zo + Z3 25 — 673 7
—1232,Z3 + 27025 — 86147, 4 2099073 Zo 4+ 96 Z2 72 — 2827, 73 — 4247

71785814
4—87898560/2987Zf4—6700ZfZ24—1389Z12§——1690Z§47—7ii§7— f
218275468 307862660 5937584 5931425
— 717, + 484573 - -
087 ‘142t 2 Tt Y17 Taos7 2T o087
7. APPENDIX: PROOF
Theorem

Proof. 1. The proof is by induction on the monomial degree k. From the three
terms recurrence formula 741 = (y;& — a;)7; — B;7mj—1 we have

- . ,
SC7T]': It +—jﬂj+&ﬂj,1
Vi Vi i
For k = 0 we have 2° = mo(z) = co(2%)m. For k = 1 from the three terms
recurrence formula we have
T«
T =am = — + —70 = c1(z)m1 + co(a)mo
Y 70

In the inductive step the thesis holds for & and we prove it for £ 4+ 1. From the
three recurrence formula we have

k k

T = pak =N (@) =) ej(ab) (M + &Wj + &le)
s s Vi Vi Vi
k+1 k k k—1
cj—1(z Q; j
=) 1_( )Wj + ) i) Ly + ch‘ﬂ(wk)ﬁj_ﬂﬁj
= Vi—1 =0 Vi =0 Vi+1
k—1 & &
cj—1(z j j cr—1(z ck(z
_ ( J 1( )+ ](:Ek)—]JerJrl(:Ck)ﬂ]Jrl)ﬂqu k 1( )7Tk+ k( )7Tk+1
=1 V-1 Vi Yi+1 Yk—1 Yk
k k (k)
co(z™)a ck(2™)a c
+ o(z?) O7T0+ k(2?) kﬂk+ 1 ﬁlT(o
o Tk "M
k—1 (k) (k) (k) (k)
Cp” ¢ o e’ c
= c§k+1)7rj+c,(ﬁrll)7rk+1+ kol Tk TR e+ | 22—+ 1= b 0
= Ve-1 Yk Yo el

This concludes the proof of the first part of the theorem. To prove the second part
we apply what we just proved and unfold the multiplication.

Given 2% = (" ---x3?, the polynomial 7, = 7o, (1) - - - Ta, (24) is the product
of d univariate polynomials m,, each of degree ; in x;, j = 1,...,d. Clearly if
a; = 0 then 7o, =1 and z; does not divide z¢. Furthermore we have

d o
T = szdg)zf

j=1k=0

We deduce that 7, is a linear combination of z“ and of the power products which
divide 2%, that is of power products z” with 8 < a component wise. Vice versa,
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applying the first part of the theorem we have

d d Qg
& = H zr = H Z o ()T, (k)
k=1 k=1 | jx=0

and commuting product with sum shows that ¢ is a linear combination of products
of ms,(x;) where 8 = (B1,...,[4) is such that 8 < a component wise, that is z”
divides x*. O

Theorem

Proof. Recall that B and OB are defined in terms of a common set L of d-dimensional
vectors with non-negative integer entries satisfying the property of ‘factor-closeness’
, that is if (a1,...,a4) € L then (f1,...,84) € L if and only if 8; < «; for all
i=1,...,d.
(1) If 2 € B for some «, then by Theorem Bl z* =35, bgms Since 8 < «
then 8 € L and so each g € OB: we have that ® belongs to Span(OB).
The vice-versa is proved analogously.
(2) The matrix [73(2)].ep,ger is a square matrix since L has as many elements
as D and has full rank. The linear independence of the columns of such
a matrix follows from the fact that each linear combination of its columns
corresponds to a polynomial in Span(OB) which coincides with Span(5)
whose elements do not vanish at D.
Any polynomial g € G in the Gébner basis can be written as

g=xz%— Z 05505

ag>spBEL

where x* = LT (g) is a multiple of an element of B. By Theorem [6.1] we

have
g=> af’ms— > sy d9m,

BLla ag>aBeL v<B

The polynomial 7, appears only in the first sum, for the other terms in the
first sum observe that as 8 < « then § € L and also 8 <, a. Analogously,
for the second sum we consider v < 8 < «; since 8 € L then v € L and
since v < «a then v <, a. And so, with obvious notation,

g =Ta — Z bgms

ag>,BEL

Since g(z) = 0 for z € D, then the vector b = [bg]s of the coeffi-
cients in the identity above solves the linear system [75(2)].eD,a,>,8eLb =
[Ta(2)]zep. Furthermore, since [75(2)].ep,a,>,8er is a full rank matrix,
then b is the unique solution of such a system.

(3) Let p* =>4, apmp be a polynomial whose coefficients are the elements
of the solution of the linear system [mg(2)].ep,pera = [p(2)]:ep. Such a
polynomial obviously interpolates the values p(z), z € D, and, since the
columns of [73(2)].ep ger are the evaluation vectors of the elements of OB
at D, it belongs to Span(OB). We conclude that p* is the unique polynomial
interpolating the values p(d), d € D, w.r.t. (D, Span(OB)).

O

Theorem
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Proof. As G is a Grobuer basis of I(D), then for every p € I(D) and g € G there
exist g5 € R[z] such that p =} 5 ¢gg9. Since by linearity

E(> a9 |=>Y Elgo)

geG geG

the thesis follows once we show that, for each g € G and z% = LT(g)

E(Qgg) = Hﬂagllico(%) - Z CB(Qg)Cﬂ(Q)HWBHi

ag>sBEL
holds.
From Equation (T3] we have
199 = > cplag)mg+colag)ma g+ D> cslag)Tag
16>60497049><15¢L 049><15€L

and substitute the Fourier expansion of g given in Theorem [6.3]

g="Ta,— Y. calg)ms

ag>s,BEL

In computing the expectation we use the fact that E (7,7) = 0 for different mono-
mials h and k. Then the expectation of the first sum vanishes, the expectation of the
middle term gives || ma, [|I3co(gy) and the last sum gives — 37, - 5o ca(gg)cs(9) H7rgD||§
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