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THE ALGEBRA OF QUADRATURE FORMULÆ FOR GENERIC

NODES

CLAUDIA FASSINO, GIOVANNI PISTONE, AND EVA RICCOMAGNO

1. Introduction

Consider the classical problem of computing the expected value of a real function
f of the d-variate random variable X as a linear combination of its values f(z) at a
finite set points z ∈ D ⊂ R

d. The general quadrature problem is: determine classes
of functions f : Rd → R, finite set of n nodes D ⊂ R

d and positive weights {λz}z∈D
such that

E(f(X)) =

∫

R

f(x) dλ(x) =
∑

z∈D
f(z)λz(1)

where λ is the probability distribution of the random variable X . In the simplest
univariate case, d = 1, the set D is the set of zeros of a node polynomial, e.g. the
n-th orthogonal polynomial for λ, see e.g. [4, Sec. 1.4]. Not much is known in the
multivariate case, unless the set of nodes is a product of one-dimensional set.

A similar setting appears in statistical Design of Experiment (DoE) where one
considers a finite set of treatments D and experimental outputs as funtion of the
treatment. The set of treatments and the set of nodes are both described efficiently
as zeros of systems of polinomial equations, i.e. as what is called in Commutative
Algebra a 0-dimensional variety. Such a framework has been used in a systematic
way in the literature on Algebraic Statistics using the tools of modern Computa-
tional Commutative Algebra, see e.g. [8] and [5]. In such studies the set D is called
a design and the affine structure of the ring of real functions on D is analyzed in
detail because it represents the set of real responses to treatments in D. However,
the euclidean structure, such as the computation of mean values, is missing in the
algebraic setting. In algebric design of experiment the computation of mean val-
ues has been obtained by considering very special sets called factorial designs, e.g.
{+1,−1}d, see e.g. [3]. Note that {+1,−1} is the zero set of the polynomial x2−1.

The purpose of the present paper is to discuss how both worlds can be treated
together by considering orthogonal polynomials. In particular, we consider algo-
rithms from the world of Commutative Algebra for the cubature problem in (1) by
mixing tools from elementary orthogonal polynomial theory and from probability.
Viceversa, the formula (1) provides an interesting interpretation of the equation in
the RHS as expected value.

We proceed in sequence by increased degree of difficulty.
In Section 2 we consider the univariate case and take λ to admit an orthogonal

system of polynomials. Let g(x) =
∏

d∈D(x− d) and by univariate division given a
polynomial p there exist unique q and r such that p = q g+r and r has degree smaller
than the number of points in D. Furthermore r can be written as

∑

d∈D r(d)ld(x)
where ld is the Lagrange polynomial for d ∈ D. Then we show that

(1) the expected values of p and r coincide if and only if the n-coefficients of
the Fourier expansion of q with respect to the orthogonal polynomials is
zero

(2) the weights are the expected values of the Lagrange polynomials.
1
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When λ is a standard Gaussian probability law and D the zero set of the n-th
Hermite polynomial, the application of Stein-Markov theory premits a representa-
tion of some Hermite polynomials, including those of degree 2n− 1, as sum of an
element in the polynomial ideal generated by the roots of the Hermite polynomial
of degree n and of a reminder, suggests a folding of multivariate polynomials over
a finite set of points.

The point is to describe a ring structure of the space generated by Hermite
polynomials up to a certain order because it is essentially the aliasing on functions
induced by limiting observations to D. The particular structure of the recurrence
relationship for Hermite polynomials makes this possibile and we suspect that the
study of the ring structure over D for other systems of orthogonal polynomials will
require different tools from those we use here.

This result implies a system of equations in Theorem 3.5 (extented to the mul-
tidimensional case in Section 5) which gives an implicitly description of design and
weights via two polynomial equations. We envisage applicability of this in the choice
of D for suitable classes of functions but have not developed this here. The case
when the design is a proper subset of the zero set of the n-th Hermite polynomial
is developed in Section 4.

Section 6 contains our most general set-up: we restrict to ourselves to product
probability measures on R

d but consider any set of n distinct points in R
d. Then

a Buchberger-Möller type of algorithm is provided that works exclusively with or-
thogonal polynomials. It gives a generating set of the vanishing ideal of D written
in terms of orthogonal polynomials. Then it is applied to compute the coefficients
of (1) in the Fourier expansion of the interpolatory polynomial at D of the function
whose expectation is wanted. Of course it will is of interest to determine generali-
sations of our results to the cases where λ is not a product measure and still admits
an orthogonal system of polynomials.

1.1. Basic commutative algebra. We start with some notation on polynomials:
R[x] is the ring of polynomials with real coefficients and in the d-variables (or
indeterminate) x = (x1, . . . , xd); for α = (α1, . . . , αd) a d-dimensional vector with
non-negative integer entries, xα = xα1

1 . . . xαd

d indicates a monomial; ≺τ indicates
a term-ordering on the monomials in R[x] i.e., a total well ordering on Z

d
≥0 such

that xα ≺τ x
β if xα divides xβ . If d = 1 there is only one term ordering of the

monomials, which is definitely not the case for d ≥ 2. Design of product form
share some features with the dimension one. Because of that term orders are not
much used in standard quadrature theory. We will see that refining the division
partial order to a proper term-order is actually relevant in some cases, but not in
all multivariate cases.

The total degree of the monomials xα is
∑d

i=1 αi. The symbol R[x]k indicates the
set of polynomials of total degree k and R[x]≤k the vector space of all polynomials of
at most total degree k. Let D be a finite set of distinct points in R

d, λ a probability
measure over Rd and X a real-valued random variable with probability distribution
λ so that the expected value of the random variable f(X) is E(f(X)) =

∫

f(x)dλ(x).
Given a term ordering ≺τ , for p ∈ R[x] there exists unique g and r ∈ R[x] such

that

(2) p(x) = g(x) + r(x), g(x) = 0 if x ∈ D,
r is a linear combination of less monomials than points in D, and r is smaller than
g with respect to ≺τ . It is a consequence of the multivariate polynomial division,
see e.g. [2, Sec. 2.3]. Furthermore r(x) can be written uniquely as

(3) r(x) =
∑

z∈D
p(z)lz(x)
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where lz is the indicator polynomial of the point z in D, i.e for x ∈ D it is lz(x) = 1
if x = z and lz(x) = 0 if x 6= z. Equation (3) follows from the fact that {lz : z ∈ D}
is a R-vector space basis of L(D), the set of real valued functions over D.

The expected value of the random polynomial function p(X) with respect of λ
is

E (p(X)) = E (g(X)) + E (r(X)) = E (g(X)) +
∑

z∈D
p(z)E (lz(X))

by linearity. In this paper we discuss classes of polynomials p and design points D
for which

E (p(X)) =
∑

z∈D
p(z)E (lz(X))

equivalently E (g(X)) = 0.
The polynomials g and r in (2) are fundamental in the applications of algebraic

geometry to finite spaces. In multivariate polynomial division if f1, . . . , ft ∈ R[x]
form a Gröbner basis with respect to ≺τ (see [2, Cap. 2]) and generate the ideal of
polynomial functions vanishing over D, then

g(x) =
t
∑

i=1

hi(x)fi(x), hi(x) ∈ R[x] not unique

and the unique r has its largest term in ≺τ not divisible by the largest term of
gi, i = 1, . . . , t. Moreover, monomials not divisible by the largest terms of fi, i =
1, . . . , t, form vector basis of monomial functions for the vector space L(D) of real
functions on D. Various general purpose softwares, including Maple, Mathematica,
Matlab and computer algebra softwares, like CoCoA, Macaulay, Singular, allows
manipulation with polynomial ideals, in particular can compute the reminder and
the monomial basis.

For all p ∈ R[x], the polynomial r above is referred to as reminder or normal
form. It is often indicated with the symbol NFτ (p, {f1, . . . , ft}), or the shorter ver-
sion NF(p), while 〈f1, . . . , ft〉 indicates the polynomial ideal generated by f1, . . . , ft.

In one dimension, a Gröbner basis reduces to a polynomial f vanishing over D
and of degree n = |D| and r satisfies three main properties:

(1) r is a polynomial of degree less or equal to n− 1,
(2) p(x) = g(x)+ r(x) = q(x)f(x)+ r(x) for a suitable q ∈ R[x] and g, f ∈ 〈f〉,

and
(3) r(x) = p(x) if x is such that f(x) = 0.

In the next Section we are going to study the algebra of orthogonal polynomials in
one variable.

2. Orthogonal polynomials and their algebra

In this section let d = 1 and D be the set of zeros of a polynomial which is
orthogonal to the constant functions with respect to λ. We recall the basics on
orthogonal polynomials we use next, see e.g. [4].

Let I be a finite or infinite interval of R and λ a positive measure over I such

that all moments µj =
∫ b

a x
j dλ(x), j = 0, 1, . . ., exist finite. In particular, each

polynomial function is square integrable on I and the L2(λ) a scalar product is
defined the ring R[x] by

〈f(x), g(x)〉λ =

∫

I

f(x)g(x) dλ(x)

We consider only λ whose related inner product is definite positive, i.e. ||f || > 0
if f 6= 0. In this case there is a unique infinite sequence of monic orthogonal
polynomials with respect to λ and we denote them π0, π1, . . .. Furthermore we have
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πk ∈ R[x]k, π0, . . . , πk form a real vector space basis of R[x]≤k, πk is orthogonal
to all polynomials of total degree smaller than k and for p ∈ R[x] and n ∈ Z≥0

there exists unique cn(p) ∈ R, called n-th Fourier coefficient of p, such that p(x) =
∑+∞

n=0 cn(p)πn(x) and only a finite number of cn(p) are not zero.
Since the inner product satisfies the shift property

〈xp(x), q(x)〉λ = 〈p(x), xq(x)〉λ ,
then the corresponding orthogonal polynomial system satisfies a three-term recur-
rence relationship. More precisely, all orthogonal polynomial systems on the real
line satisfy a three-term recurrence relationships. Conversely, Favard’s theorem
holds [9].

Theorem 2.1 (Favard’s theorem). Let γn, αn, βn be sequences of real numbers and
for n ≥ 0 let πn+1(x) = (γnx − αn)πn(x) − βnπn−1(x) be defined recurrently with
π0(x) = 1, π−1(x) = 0. The πn(x), n = 0, 1, . . . form a system of orthogonal
polynomials if and only if γn 6= 0, αn 6= 0 and αnγnγn−1 > 0 for all n ≥ 0. If
γn = 1 for all n then the system is of monic orthogonal polynomials.

In the monic case, αk =
〈xπk, πk〉
〈πk, πk〉

and βk =
〈πk, πk〉

〈πk−1, πk−1〉
hold true and the

norm of πn is computed from the β’s as ||πn||2 = βnβn−1 . . . β0. For orthonormal
polynomials π̃k = πk/||πk|| the Christoffel-Darboux formulae hold

n−1
∑

k=0

π̃k(x)π̃k(t) =
√

βn
π̃n(x)π̃n−1(t)− π̃n−1(x)π̃n(t)

x− t

n−1
∑

k=0

π̃k(t)
2 =

√

βn
(

π̃′
n(t)π̃n−1(t)− π̃′

n−1(t)π̃n(t)
)

(4)

Non-example 2.2. Inner products of the Sobolev type, namely 〈u, v〉S = 〈u, v〉λ0
+

〈u′, v′〉λ1
· · ·+ 〈u(s), v(s)〉λs

where λi are positive measures possibly having different
support, do not satisfy the shift condition. Neither do the complex Hermitian inner
products.

Theorem 2.3. Let D = {x ⊂ R : πn(x) = 0} be the zero set of the n-th orthogonal
polynomial with respect to the probability measure λ. If p(x) = q(x)πn(x) + r(x),
then

E (p(X)) =
∑

z∈D
p(z)λz, if and only if cn(q) = 0.

Remark 2.4. This theorem is a version of a well known result, see e.g. [4, Sec. 1.4].
We include the proof to underline a particular form of the error in the quadrature
formula, to be used again in the next Theorem and in Section 6.

Proof. The zero set of πn, D = {x : πn(x) = 0}, contains n distinct points. For
a univariate polynomial p, we can write uniquely p(x) = q(x)πn(x) + r(x) with
deg(r) < n and deg(q) = max{deg(p) − n, 0}. Furthermore, the indicator func-
tions in the expression r(x) =

∑

z∈D p(z)lz(x) are the Lagrange polynomials for D:

namely lz(x) =
∏

w∈D:w 6=z

x− w

z − w
for z ∈ D. Hence we have

E (p(X)) = E (q(X)πn(X)) +
∑

z∈D
p(z)E (lz(X))

= cn(q)||πn||2λ +
∑

z∈D
p(z)λz.

�
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A particular case of Theorem 2.3 occurs if p has degree less than 2n. In this case
q has degree at most n−1 and cn(q) = 0. This shows that the quadrature rule with
n nodes given by the zeros of πn and weights {λz}z∈D is a Gaussian quadrature
rule and it is exact for all polynomial functions of degree smaller or equal to 2n−1.
For notes on quadrature rules see for example [4, Chapter 1].

Example 2.5 (Identification). For f polynomial of degree N ≤ 2n−1 we can write

f(x) =
∑N

k=0 ck(f)πk(x). The constant term is given by

c0(f) = E(f(X)) =
∑

z∈D
f(z)λz

and for all i such that N + i ≤ 2n− 1

||πi||2λci(f) = E(f(X)πi(X)) =
∑

z∈D
f(z)πi(z)λz

In particular, if deg f = n− 1 then all coefficients in the Fourier expansion of f can
be computed exactly.

In general for a polynomial of degree N possibly larger than 2n−1, Theorem 2.3
gives the Fourier expansion of its reminder by πn, indeed
∑

z∈D
f(z)πi(z)λz =

∑

z∈D
NF(fπi)(z)λz = E(NF(f(X)πi(X))) = ||πi||2λci(NF(f))

Theorem 2.6 below generalises Theorem 2.3 to a generic finite set of n dis-
tinct points in R, say D. As above, the indicator function of z ∈ D is lz(x) =
∏

w∈D:w 6=z

x− w

z − w
. Let g(x) =

∏

z∈D(x − z) be the unique monic polynomial

vanishing over D and of degree n. Write a polynomial p ∈ R[x] uniquely as
p(x) = q(x)g(x) + r(x) and consider the Fourier expansions of q and g: q(x) =
∑+∞

k=0 ck(q)πk(x) and g(x) =
∑n

k=0 ck(g)πk(x).

Theorem 2.6. With the above notation, E (p(X)) =
∑

z∈D p(z)λz if and only if
∑+∞

k=0 ck(q)ck(g)||πk||2λ = 0.

Proof. From

p(x) = q(x)g(x) + r(x) =

+∞
∑

k=0

ck(q)πk(x)

n
∑

j=0

cj(g)πj(x) +
∑

z∈D
p(z)lz

we have

E (p(X)) =

+∞
∑

k=0

n
∑

j=0

ck(q)cj(g)E (πk(X)πj(X)) +
∑

z∈D
p(z)λz

=

n
∑

k=0

ck(q)ck(g)||πk||2λ +
∑

z∈D
p(z)λz

and this proves the theorem. �

The condition we find in Theorem 2.6 is linear in the Fourier coefficients of q,
which is found easily from f by polynomial division. The first |D| Fourier coefficients
of q appearing in the conditions of the theorem are determined by solving the system
of linear equations

M [ck(q)]k=0,...,|D|−1 = [q(z)]k=0,...,|D|−1(5)

where M = [πk(z)]z∈D,k=0,...,|D|−1 is the design/evaluation matrix for the first |D|
orthogonal polynomials.

Theorem 2.6 can be used in two ways at least. If p is known, the condition in
the theorem can be checked to verify if the expected value of p can be determined
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by Gaussian quadrature rule with nodes D and weights E

(

∏

w∈D:w 6=z

X − w

z − w

)

for

z ∈ D. The Fourier coefficients of g can be computed analogously to those of q
adapting Equation (5). If p is unknown and p(x) =

∑

α pαx
α for a finite number of

non-zero, unknown real numbers pα, Theorem 2.6 characterizes all the polynomials
for which the Gaussian quadrature rule is exact, namely E (p(X)) =

∑

z∈D p(z)λz .
Furthermore, the characterization is a linear expression in the unknown pα, where
p(x) =

∑

α pαx
α. This is because in Equation (5) the q(z) are linear combinations

of the coefficients of p.
In Section 3 we shall specialise our study to Hermite polynomials, while in Sec-

tion 6.1 we shall generalise Theorem 2.6 to higher dimension. To conclude this
section, we observe that the remainder r admits an interpretation as a projection.

Proposition 2.7. Let p(x) ∈ R[x] and write p(x) = q(x)πn(x) + r(x) where r has
degree less than n. Then q is the unique polynomial such that p− qπn is orthogonal
to all πm with m ≥ n.

Proof. As r = p − qπn has degree at most n − 1, it can be written as a linear
combination of π0, π1, . . . , πn−1 and is orthogonal to πm for all m ≥ n. Let q1
and q2 ∈ R[x] such that both p − q1πn and p − q2πn are orthogonal to πm for all
m ≥ n. Now (q1 − q2)πn has degree not smaller than n, hence it is orthogonal
to π0, . . . , πn−1. Necessarily it is q1 − q2 = 0, because it is orthogonal to all πk,
k = 0, . . .. �

Example 2.8. Substituting the Fourier expansions of q and p in the orthogonality
relation, we find that the m-th coefficient in the Fourier expansion of p can be
written as

E (p(X)πm(X)) = E (q(X)πn(X)πm(X))
∑

k

ck(p)E (πk(X)πm(X)) =
∑

j

cj(q)E (πj(X)πn(X)πm(X))

cm(p)||πm||2 =
∑

j

cj(q)E (πj(X)πn(X)πm(X))

For Hermite polynomials it can be simplified by e.g. using the product formula in
Theorem 3.1 of Section 3.

3. Hermite polynomials

There is another way to look at the algebra of orthogonal polynomials that we
discuss here in the case of Hermite polynomials. The reference measure λ is the

normal distribution, dλ(x) = w(x) dx, with w(x) =
e−x2/2

√
2π

, x ∈ R.

3.1. Stein-Markov operators for standard normal distribution. For a real
valued, differentiable function f , define

δf(x) = xf(x)− d

dx
f(x) = −ex2/2 d

dx

(

f(x)e−x2/2
)

,

dn =
dn

dxn
, and consider Z ∼ λ. The following identity holds

(6) E (φ(Z) δnψ(Z)) = E (dnφ(Z) ψ(Z))

if φ, ψ are such that limx→±∞ φ(x)ψ(x)e−x2/2 = 0 and are square integrable, see
[6, Ch. V Lemma 1.3.2 and Proposition 2.2.3]). Polynomials satisfy these conditions
and δ is also called the Stein-Markov operator for the standard normal distribution.
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The n-th Hermite polynomial can be defined as Hn(x) = δn1. Direct computa-
tion using δ proves the following well-known facts

(1) the first Hermite polynomials are

H0 = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

(2) Hn(x) = (−1)nex
2/2dn(e−x2/2) (Rodrigues’ formula)

(3) dδ−δd = id from which the relationships dHn = nHn−1, d
mHn =

n!

m!
Hn−m

for m ≤ n and the three-term recurrence relationship

Hn+1 = xHn − nHn−1(7)

are deduced.

(4) Hermite polynomials are orthogonal with respect to dλ(x) =
e−x2/2

√
2π

dx.

Indeed from Equation (6) we have E (Hn(Z)Hm(Z)) = n!δn,m where δn,m =
0 if n 6= m and δn,m = 1 if n = m.

Already we mentioned that {Hn(x) : n ≤ d} spans R[x]≤d and that Hn is
orthogonal to any polynomial of degree different from n. The ring structure of the
space generated by the Hermite polynomials is described in Theorem 3.1.

Theorem 3.1. The Fourier expansion of the product of HkHn is

HkHn = Hn+k +

n∧k
∑

i=1

(

n

i

)(

k

i

)

i!Hn+k−2i

Proof. Note that 〈φ, ψ〉 = E(φ(Z)ψ(Z)) is a scalar product on the obvious space
and let n ≤ k with Z ∼ N (0, 1) and ψ, φ square integrable functions for which
identity (6) holds. Then

〈HkHn, ψ〉 = 〈δn1, Hkψ〉 = 〈1, dn(Hkψ)〉 =
n
∑

i=0

〈1,
(

n

i

)

diHk d
n−iψ〉

= 〈1, Hkd
nψ〉+

n
∑

i=1

〈1,
(

n

i

)

diHk d
n−iψ〉

= 〈Hn+k, ψ〉+
n
∑

i=1

(

n

i

)

k(k − 1) . . . (k − i+ 1)〈Hn+k−2i, ψ〉

= 〈Hn+k, ψ〉+ 〈
n
∑

i=1

(

n

i

)(

k

i

)

i!Hn+k−2i, ψ〉

�

Example 3.2 (Aliasing). As an application of Theorem 3.1, observe that the three-
term recurrence relation for Hermite polynomials Equation (7)

Hn+1 = xHn − nHn−1

evaluated on the zeros of Hn(x), say Dn, becomes Hn+1(x) ≡ −nHn−1(x) where

≡ indicates that equality holds for x ∈ Dn. In general let Hn+k ≡ ∑n−1
j=0 h

n+k
j Hj
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be the Fourier expansion of the normal form of Hn+k at Dn, where we simplified
the notation for the Fourier coefficients. Substitution in the product formula in
Theorem 3.1 gives the formula to write hn+k

j in terms of Fourier coefficients of
lower order Hermite polynomials:

NF(Hn+k) ≡ −
n∧k
∑

i=1

(

n

i

)(

k

i

)

i! NF(Hn+k−2i) ≡ −
n∧k
∑

i=1

(

n

i

)(

k

i

)

i!

n−1
∑

j=0

hn+k−2i
j Hj

Equating coefficients gives a closed formula

hn+k
j = −

n∧k
∑

i=1

(

n

i

)(

k

i

)

i!hn+k−2i
j

In Table 1 the normal form of Hk+n with respect to Hn is written in terms of
Hermite polynomials of degree smaller than n. For example, Hn+3(x) = −n(n −
1)(n− 2)Hn−3(x) + 3nHn−1(x) for those values of x such that Hn(x) = 0.

k Hn+k ≡
1 −nHn−1

2 −n(n− 1)Hn−2

3 −n(n− 1)(n− 2)Hn−3 + 3nHn−1

4 −n(n− 1)(n− 2)(n− 3)Hn−4 + 8n(n− 1)Hn−2

5 − n!
(n−5)!Hn−5 + 5nHn−1 + 15n(n− 1)(n− 2)Hn−3

6 − n!
(n−6)!Hn−6 + 24n(n− 1)(n− 2)(n− 3)Hn−4 + 10n(n− 1)(2n− 5)Hn−2

Table 1. Aliasing of Hn+k, k = 1, . . . , 6 over D = {Hn(x) = 0}

Example 3.3. Observe that if f has degree n+ 1 equivalently k = 1 then

f =

n−1
∑

i=0

ci(f)Hi + cn(f)Hn + cn+1(f)Hn+1

≡
n−2
∑

i=0

ci(f)Hi + (cn−1(f)− ncn+1(f))Hn−1

and all coefficients up to degree n− 2 are “clean”.

We give another proof of Theorem 2.3 for Hermite polynomials.

Corollary 3.4. Let Dn = {x : Hn(x) = 0} and p ∈ R[x]. Let p(x) = q(x)Hn(x) +
r(x) with the degree of r smaller than n and let Z ∼ N (0, 1). Then

E (p(Z)) =
∑

z∈Dn

p(z)λz if and only if E (dnq(Z)) = 0

with λz = E (lz(Z)) and lz(x) =
∏

w∈D:w 6=z

x− w

z − w
, z ∈ Dn.

Proof. From Equation (6) we have

E (q(Z)Hn(Z)) = E (q(Z)δn1) = E (dnq(Z))

Now by the same steps followed in the proof of Theorem 2.3 we conclude that

E (p(Z)) = E (dnq(Z)) +
∑

z∈Dn

p(z)λz

�
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3.2. Algebraic characterisation of the weights. Theorem 3.5 gives two poly-
nomial equations whose zeros are the design points and the weights. The proof is
based on the Christoffel-Darboux formulae, Equations (4).

Theorem 3.5. Let Dn = {x : Hn(x) = 0}.
(1) There exists only one polynomial λ of degree n − 1 such that λ(xk) = λk

for all k = 1, . . . , n,

(2) furthermore λk = (n−1)!
n H−2

n−1(xk). Equivalently
(3) the polynomial λ satisfies

{

Hn(x) = 0

λ(x)H2
n−1(x) =

(n− 1)!

n

Proof. The univariate polynomial λ is the interpolatory polynomial of the values
λk’s at the n distinct points in Dn and hence it exists, unique of degree n− 1. To
prove item 2., observe that for Hermite polynomials αn = 0, βn = n, H̃n(x) =

Hn(x)/
√
n! and H̃ ′

n(x) =
√
nH̃n−1(x). Substitution in the Christoffel-Darboux

formulae and evaluation at Dn = {x1, . . . , xn} give

n−1
∑

k=0

H̃k(xi)H̃k(xj) = 0 if i 6= j

n−1
∑

k=0

H̃k(xi)
2 = nH̃n−1(xi)

2(8)

In matrix form Equations (8) becomes

HnH
t
n = n diag(H̃n−1(xi)

2 : i = 1, . . . , n)

where Hn is the square matrix Hn =
[

H̃j(xi)
]

i=1,...,n;j=0,...,n−1
and diag indicates

a diagonal matrix. Observe that Hn is invertible and

H
−1
n = H

t
nn

−1 diag(H̃−2
n−1(xi) : i = 1, . . . , n)

Now, let f be a polynomial of degree at most n−1, a typical remainder by division

for Hn, then f(x) =
∑n−1

j=0 cjH̃j(x). Write f = Hnc where f = [f(xi)]i=1,...,n and

c = [cj ]j . Furthermore note that

c = H
−1
n f = H

t
nn

−1 diag(H̃−2
n−1(xi) : i = 1, . . . , n)f

= H
t
nn

−1 diag(H̃−2
n−1(xi)f(xi) : i = 1, . . . , n)

cj =
1

n

n
∑

i=1

H̃j(xi)f(xi)H̃
−2
n−1(xi)(9)

Apply this to the k-th Lagrange polynomial, f(x) = lk(x), whose Fourier expansion

is f(x) =
∑n−1

j=0 ckjH̃j(x). Using lk(xi) = δik in Equation (9), obtain

ckj =
1

n
H̃j(xk)H̃

−2
n−1(xk)(10)

The expected value of lk(Z) is

λk = E (lk(Z)) =

n−1
∑

j=0

ckj E
(

H̃j(x)
)

= ck0

Substitution in Equation (10) for j = 0 gives λk = 1
nH̃

−2
n−1(xk) =

(n−1)!
n H−2

n−1(xk).
This holds for all k = 1, . . . , n.

Item 3. is a rewriting of the previous parts of the theorem because the first
equation Hn(x) = 0 states that only values of x ∈ Dn are to be considered and the
second equation is what we have just proven. �
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Item 2 in the theorem states that the weights are strictly positive. Furthermore,
Theorem 2.3 applied to the constant polynomial p(x) = 1 shows that they sum to
one. In other words, the mapping that associates z to λz , z ∈ Dn, is a discrete
probability density. Then Theorem 2.3 states that the expected value of the poly-
nomial functions of Z ∼ N (0, 1) for which cn(q) = 0, is equal to the expected
value of a discrete random variables X given by Pn (X = xk) = E (lk(Z)) = λk,
k = 1, . . . , n

E (p(Z)) =
n
∑

k=1

p(xk)λk = En (p(X))

Example 3.6. For n = 3 the polynomial λ in Theorem 3.5 can be determined by-
hand. For larger values of n an algorithm is provided in Section 3.3. The polynomial
system to be considered is

0 = H3(x) = x3 − 3x

2/3 = λ(x)H2
2 = (θ0 + θ1x+ θ2x

2)(x2 − 1)2

where λ(x) = θ0 + θ1x + θ2x
2. The degree of λ(x)H2

2 is reduced to 2 by using
x3 = 3x

(11) 2/3 = λ(x)H2
2 = θ0 + θ14x+ (θ0 + 4θ2)x

2

Coefficients in Equation (11) are equated to give λ(x) = 2
3 − x2

6 .

In some situations, e.g. the design of an experimental plan or of a Gaussian
quadrature rule, the exact computation of the weights might not be necessary
and λ(x) is all we need. When the explicit values of the weights are required,
the computation has to be done outside a symbolic computation setting as we
need to solve H3(x) = 0 to get D3 = {−

√
3, 0,

√
3} and evaluate λ(x) to find

λ−
√
3 = λ(−

√
3) = 1

6 = λ√3 and λ0 = λ(0) = 2
3 .

3.3. A code for the weighing polynomial. The polynomial λ(x) in Theorem 3.5
is called the weighing polynomial. Table 3.3 gives a code written in the specialised
software for symbolic computation called CoCoA [1]. to compute the Fourier ex-
pansion of λ(x) exploiting Theorem 3.5.

Line 1 specifies the number of nodes N . Line 2 establishes that the working
environment is a polynomial ring whose variables are the first (N − 1)-Hermite
polynomials plus an extra variable w which encodes the weighing polynomial; here
it is convenient to work with a elimination term-ordering of w, Elim(w), so that
the variable w will appear as least as possible. Lines 3, 4, 5 construct Hermite
polynomials up-to-order N by using the recurrence relationships (7). Specifically
they provide the expansion of Hj over Hk with k < j for k = 0, . . . , N − 1. Line 6
states than HN = H1HN−1 − (N − 1)HN−2 = 0, ‘giving’ the nodes of the quad-
rature. Line 7 is the polynomial in the second equation in the system in Item 3
of Theorem 3.5 and ‘gives’ the weights. In total there are N equations which are
collected in an algebraic structure called an ideal whose Gröbner bases [2] is com-
puted in Line 8. In our application it is interesting that the Gröbner bases contains
a polynomial in which w appears alone as a term of degree one. Explicitly w in such
polynomial provides the weighing polynomial written in terms of the first N − 1
Hermite polynomials.

Line 9 in Table 3.3 gives the polynomial obtained for N = 4, namely λ(x) =
5−h2
12 = 6−x2

12 . The nodes are ±
√

3±
√
6 and the values of the weights are 3±

√
6

12 ,
showing that both nodes and weights are algebraic numbers but not rational num-
bers. On a Mac OS X with an Intel Core 2 Duo processor (at 2.4 GHz) using
CoCoA (release 4.7) the result is obtained for N = 10 in Cpu time = 0.08, User
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Line 1 N:=4;

Line 2 Use R::=Q[w,h[1..(N-1)]], Elim(w);

Line 3 Eqs:=[h[2]-h[1]*h[1]+1];

Line 4 For I:=3 To N-1 Do

Line 5 Append(Eqs,h[I]-h[1]*h[I-1]+(I-1)*h[I-2]) EndFor;

Line 6 Append(Eqs,h[1]*h[N-1]-(N-1)*h[N-2]);

Line 7 Append(Eqs,N*w*h[N-1]^2-Fact(N-1));

Line 8 J:=Ideal(Eqs); GB_J:=GBasis(J); Last(GB_J);

Line 9 3w + 1/4h[2] - 5/4

Table 2. Computation of the Fourier expansion of the weighing
polynomial using Theorem 3.5

time = 0; for N = 20 in Cpu time = 38.40, User time = 38; for N = 25 in Cpu
time = 141.28, User time = 142 and for N = 30 in Cpu time = 5132.71, User time
= 5186 and gives a weighing polynomial of 22.349 characters. Observe that this
computations can be done once for all and the results stored.

4. Fractional design

In this section we return to the case of general orthogonal polynomials, {πn}n,
and positive measure, dλ. We assume that the nodes are a proper subset F of
Dn = {x : πn(x) = 0} with a number of points m, 0 < m < n. We work within two
different settings, in one the ambient design Dn is considered while in the other one
it is not.

Consider the indicator function of F as subset of Dn, namely 1F(x) = 1 if x ∈ F
and 0 if x ∈ Dn \ F . It can be represented by a polynomial of degree n because it
is a function defined over Dn [2, 8]. Let p be a polynomial of degree at most n− 1
so that the product p(x)1F(x) is a polynomial of degree at most 2n− 1. Then from
Theorem 2.3 we have

E((p1F)(X)) =
∑

z∈F
p(z)λz = En (p(Y )1F(Y )) = En (p(Y )|Y ∈ F) Pn(Y ∈ F)

where X is a random variable with probability law λ and Y is a discrete random
variable taking value z ∈ F with probability Pn(Y = z) = λz. The first equality
follows from the fact that f(x)1F (x) is zero for x ∈ D \ F and the last equality
from the definition of conditional expectation.

Another approach is to consider the polynomial whose zeros are the elements of
F , say ωF(x) =

∏

z∈F
(x− z). Now consider the Lagrange polynomials for F , namely

lFz (x) =
∏

w 6=z
w∈F

x− w

z − w
for z ∈ F .

Lemma 4.1. Let F ⊂ Dn. The Lagrange polynomial for z ∈ F is the remainder
of the Lagrange polynomial for z ∈ Dn with respect to ωF(x), namely

lFz (x) = NF (lz(x), 〈ωF (x)〉)
Proof. There exists unique NF(lz)(x), polynomial of degree small than m, such
that

lz(x) = q(x)ωF (x) + NF(lz)(x)

Furthermore, for a ∈ F we have lz(a) = NF(lz)(a) = δz,a = lFz (a). The two
polynomials lFa (x) and NF(lz)(x) have degree smaller than m and coincide on m
points, by interpolation they must be equal. �
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For a polynomial p of degree N , write p(x) = q(x)ωF (x)+ r(x) with f(z) = r(z)

if z ∈ F and r(x) =
∑

z∈F p(z)l
F
z (x). Let q(x) =

∑N−m
j=0 bjπj(x) and ωF(x) =

∑m
i=0 ciπi(x) as ωF has degree m. Then

E (p(X)) = E





N−m
∑

j=0

bjπj(X)

m
∑

i=0

ciπi(X)



+ E (r(X))

= b0c0||π0||2λ + b1c1||π1||2λ + . . .+ b(N−m)∧mc(N−m)∧m||π(N−m)∧m||2λ +
∑

z∈F
p(z)λFz

where λFz = E (NF(lz(X), 〈ωF(X)〉), z ∈ F .
Note that the error of the Gaussian quadrature rule, b0c0||π0||2λ+b1c1||π1||2λ+. . .+

b(N−m)∧mc(N−m)∧m||π(N−m)∧m||2λ, is linear in the Fourier coefficients bj , and also
in the Fourier coefficients cj relative to the node polynomial. This is generalised
in Section 6.1. If the fraction F coincides with the ambient design Dn and hence
contains n points and if p is a polynomial of degree at most 2n− 1, then we obtain
the well known result of zero error because (N − n) ∧ n ≤ n − 1 and the only
non-zero Fourier coefficient of the node polynomial πn is of order n. In general one
should try to determine pairs of F and sets of polynomials for which the absolute
value of the errors is minimal.

5. Higher dimension: zero set of orthogonal polynomials as design

support

In this section we return to the higher dimensional set-up of Section 1.1 but
we restrict ourselves to consider the product measure λd = ×d

i=1λ and X1, . . . , Xd

independent random variables each one of which is distributed according to the
probability law λ. As design we take a product grid of zeros of orthogonal poly-
nomials with respect to λ, more precisely our design points or interpolation nodes
are

Dn1,...,nd
=
{

x = (x1, . . . , xd) ∈ R
d : πn1

(x1) = πn2
(x2) = . . . = πnd

(xd) = 0
}

where πnk
is the orthogonal polynomial with respect to λ of degree nk.

The Lagrange polynomial of the point y = (y1, . . . , yd) ∈ Dn1,...,nd
is defined as

ly(x1, . . . , xd) =
∏d

k=1 l
nk
yk
(xk), the apex nk indicates that lnk

yk
(xk) is the univariate

Lagrange polynomial for yk ∈ {xk : πnk
(xk) = 0} = Dnk

⊂ R.
The Span (ly : y ∈ Dn1,...,nd

), is equal to the linear space generated by the mono-
mials whose exponents lie on the integer grid {0, . . . , n1− 1}× . . .×{0, . . . , nd− 1}.
Any polynomial f ∈ R[x] can be written as

f(x1, . . . , xd) =
d
∑

k=1

qk(x1, . . . , xd)πnk
(xk) + r(x1, . . . , xd)

where r is unique, its degree in the variable xk is smaller than nk, for k = 1, . . . , d
and belongs to that Span.

The coefficients of the Fourier expansion of qk with respect to the variable xk
are functions of x1, . . . , xd but not of xk. Let x−k denote the (d − 1)-dimensional
vector obtained from (x1, . . . , xd) removing the k-th component and write

f(x1, . . . , xd) =
d
∑

k=1





+∞
∑

j=0

cj(qk)(x−k)πj(xk)



πnk
(xk) + r(x1, . . . , xd)

Only a finite number of cj(qk)(x−k) are not zero.
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From the independence of X1, . . . , Xn, the expected value of the Lagrange poly-
nomial ly is

Eλd (ly(X1, . . . , Xd)) =
d
∏

k=1

Eλ

(

lnk
yk
(Xk)

)

=
d
∏

k=1

λnk

k

where λnk

k = E
(

lnk
yk
(Xk)

)

is the expected value of a univariate random Lagrange
polynomial as in the previous sections.

Theorem 5.1. It holds

Eλd (f(X1, . . . , Xd)) =

d
∑

k=1

Eλd−1(ck(qk)(X−k))||πk||2λ +
∑

(x1,...,xn)∈Dn1...nd

f(x1, . . . , xd)λ
n1

x1
. . . λnd

xd

Proof. The proof is very similar to that of Theorem 2.3 and we do it for d = 2 only.
In a simpler notation the design is the n×m grid given by Dnm = {(x, y) : πn(x) =
0 = πm(y)} and X and Y are independent random variables distributed according
to λ. The polynomial f is decomposed as

f(x, y) =

q1(x, y)πn(x) + q2(x, y)πn(y) +
∑

(a,b)∈Dn,m

f(a, b) lna (x)l
m
b (y) =

+∞
∑

j=0

cj(q1)(y)πj(x) πn(x)+

+∞
∑

j=0

cj(q2)(x)πj(y) πn(y)+
∑

(a,b)∈Dn,m

f(a, b) lna (x)l
m
b (y)

Taking expectation, using independence of X and Y and orthogonality of the πi,
we have

Eλ2 (f(X,Y )) =

Eλ (cn(q1)(Y )) ||πn||2λ + Eλ (cm(q2)(X)) ||πm||2λ +
∑

(a,b)∈Dn,m

f(a, b)λnaλ
m
b

�

Note in the proof above that a sufficient condition for Eλ (cn(q1)(Y )) being zero
is that f has degree in x smaller then 2n − 1, similarly for Eλ (cm(q2)(X)). We
retrieve the well-known results that if for each i the degree in xi of f is smaller
than 2ni − 1, then

Eλd (f(X1, . . . , Xd)) =
∑

(x1,...,xn)∈Dn1...nd

f(x1, . . . , xd)λ
n1

x1
. . . λnd

xd

In the Gaussian set-up, by Theorem 3.5 applied to each variable, weights and
nodes satisfy the polynomial system







































Hn1
(x1) = 0

λ1(x1)Hn1−1(x1)
2 =

(n1 − 1)!

n1
...

Hnd
(xd) = 0

λd(xd)Hnd−1(xd)
2 =

(nd − 1)!

nd

For the grid set-up of this section and for the Gaussian case, in analogy to
Example 3.2 some Fourier coefficients of polynomials of low enough degree can be
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determined exactly from the values of the polynomials on the grid points as shown
in Example 5.2 below.

Example 5.2. Consider a square grid of size n, Dnn, and a polynomial f of degrees
in x and in y smaller than n, the Hermite polynomials and the standard normal
distribution. Then we can write

f(x, y) =

n−1
∑

i,j=0

cijHi(x)Hj(y)

As both the degree in x of fHk and the degree in y of fHh are smaller than 2n− 1,
we have

E (f(Z1, Z2)Hk(X1)Hh(X2)) = chk||Hk(X1)||2||Hh(X2)||2

ckh =
1

k!h!

∑

(x,y)∈Dnn

f(x, y)Hk(x)Hh(y)λxλy

Note if f is the indicator function of a fraction F ⊂ Dnn then

ckh =
1

k!h!

∑

(x,y)∈F
Hk(x)Hh(y)λxλy with 0 ≤ h, k < n

Example 5.3 deals with a general design and introduces the more general theory
of Section 6.

Example 5.3. Let F be the zero set of






g1 = x2 − y2 = H2(x)−H2(y) = 0
g2 = y3 − 3y = H3(y) = 0
g3 = xy2 − 3x = H1(x) (H2(y)− 2H0) = 0

namely F is given by the five points (0, 0), (±
√
3,±

√
3). Write a polynomial

f ∈ R[x, y] as f =
∑

qigi + r where r(x, y) = f(x, y) for (x, y) ∈ F and r belongs
to Span (H0, H1(x), H1(y), H1(x)H1(y), H2(y)) = Span

(

1, x, y, xy, y2
)

. If, further-
more, f is such that

q1(x, y) = a0 + a1H1(x) + a2H1(y) + a3H1(x)H1(y)

q2 = θ1(x) + θ2(x)H1(y) + θ3(x)H2(y)

q3 = a4 + a5H1(y)

with ai, θj ∈ R for i = 0, . . . , 5 and j = 1, . . . , 3, then E(gi(Z1, Z2)qi(Z1, Z2)) = 0
for i = 1, 2, 3 and for Z1 and Z2 independent normally distributed random variables.
Write r as a linear combination of the indicator functions of the points in F , i.e.
r(x, y) =

∑

(a,b)∈F f(a, b)1(a,b)∈F(x, y). Each indicator function 1(a,b)∈F belongs to

Span (H0, H1(x), H1(y), H1(x)H1(y), H2(y)) and they are

1(0,0)∈F(x, y) =
2

3
H0 −

1

3
H2(y)

1(
√
3,
√
3)∈F(x, y) =

1

12
H0 +

1

12

√
3H1(x) +

1

12

√
3H1(y) +

1

12
H1(x)H1(y) +

1

12
H2(y)

1(
√
3,−

√
3)∈F(x, y) =

1

12
H0 −

1

12

√
3H1(x) +

1

12

√
3H1(y)−

1

12
H1(x)H1(y) +

1

12
H2(y)

1(−
√
3,
√
3)∈F(x, y) =

1

12
H0 +

1

12

√
3H1(x) −

1

12

√
3H1(y)−

1

12
H1(x)H1(y) +

1

12
H2(y)

1(−
√
3,−

√
3)∈F(x, y) =

1

12
H0 −

1

12

√
3H1(x) −

1

12

√
3H1(y) +

1

12
H1(x)H1(y) +

1

12
H2(y)
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Their expected values are given by the H0-coefficients. Furthermore, by linear-
ity E(f(Z1, Z2)) = E(r(Z1, Z2)) =

∑

(a,b)∈F f(a, b)E(1(a,b)∈F(Z1, Z2)) and we can

conclude

E(f(Z1, Z2)) = E(r(Z1, Z2)) =

2
f(0, 0)

3
+
f(
√
3,
√
3) + f(

√
3,−

√
3) + f(−

√
3,
√
3) + f(−

√
3,−

√
3)

12

The key points in Example 5.3 are

(1) determine the class of polynomial functions for which E(gi(Z1, Z2)qi(Z1, Z2)) =
0 and

(2) determine the H0-coefficients of the indicator functions of the points in F .

In Section 6 we give algorithms to do this for any fraction F .

6. Higher dimension: general design support

In the previous sections we considered particular designs whose sample points
were zeros of orthogonal polynomials. In the Gaussian case we exploited the ring
structure of the set of functions defined over the design in order to obtain recur-
rence formula and to write Fourier coefficients of higher order Hermite polynomials
in terms of those of lower order Hermite polynomials (Example 3.2). Also we
deduced a system of polynomial equations whose solution consists the weights of
a quadrature formula. The mathematical tool that allowed this is Equation (6)
and the particular structure it implies for Hermite polynomials on the recurrence
relation for general, orthogonal polynomials

(12) πk+1(x) = (γkx− αk)πk(x)− βkπk−1(x) x ∈ R

with γk, αk 6= 0 and αkγkγk−1 > 0.
In this section we switch focus and consider a generic set of points in R

d as
a design, or nodes for a cubature, and a generic set of orthogonal polynomials.
We gain something and loose something. The essential computations are linear:
such is the computation of a Gröbner basis for a finite set of distinct points [7]; the
Buchberger Möller type of algorithm in Table 3 is based on finding solutions of linear
systems of equations; in Section 6.1 we give a characterisation of polynomials with
the same expected values which is a linear expression of some Fourier coefficients
and a square free polynomial of degree two in a larger set of Fourier coefficients
(see Equation 16)

Given a set of points and a term-ordering the algorithm in Table 3 returns
the reduced Gröbner basis of the design ideal expressed as linear combination of
orthogonal polynomial of low enough order. It does so directly; that is it computes
the Gröbner basis by working only in the space of orthogonal polynomials.

We loose the equivalent of Theorem 3.1 for Hermite polynomials, in particular
we do not know yet how to impose a ring structure on Span(π0, . . . , πn) for generic
orthogonal polynomials π and we miss a general formula to write the product πkπn
as linear combination of πi with i = 0, . . . , n ∧ k, n + k, which is fundamental for
the aliasing structure discussed for Hermite polynomials.

For multivariate cubature formulae we refer e.g. to [10] which, together with [7],
are basic references for this section. We are writing up in another manuscript our
results on the degree of the cubature formula we obtain. For clarity we repeat
some basics and notation. Let λ be a one-dimensional probability measure and
{πn}n∈Z≥0

be its associated orthogonal polynomial system. To a multi-index α =

(α1, . . . , αd) ∈ Z
d
≥0 associate the monomial xα1

1 · · ·xαd

d , in short xα, and the product

πα1
(x1) . . . παd

(xd), in short πα(x). Note that {πα}α are a system of orthogonal
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polynomials for the product measure λd. Theorem 6.1 describes the one-to-one
correspondence between the xαs and the πα(x)s.

Theorem 6.1. (1) For d = 1 and k ∈ Z≥0, in the notation of Equation (12)
we have that

xk =

k
∑

j=0

cj(x
k)πj(x)

where c0(x
0) = 1, c−1(x

0) = c1(x
0) = 0, and, for k = 1, 2, . . . ,

c−1(x
k) = ck+1(x

k) = 0

cj(x
k) =

cj−1(x
k−1)

γj−1
+
cj(x

k−1)αj

γj
+
cj+1(x

k−1)βj+1

γj+1
j = 0, . . . , k − 1

ck(x
k) =

1

γ0 . . . γk−1

(2) For d > 1, the monomial xα is a linear combination of πβ, with β ≤ α
component wise, and vice versa. In formulae

πα =
∑

β≤α

aβx
β and xα =

∑

β≤α

bβπβ(13)

where β ≤ α holds component wise.

Proof. The proof of Item 1 is by induction and that of Item 2 follows by rearranging
the coefficients in the product. See Appendix 7. �

Example 6.2. For πj the j-th Hermite polynomial Hj , Item 1 of Theorem 6.1
gives the well known result

cj(x
k) = 0 if k + j is odd

cj(x
k) =

(

k
j

)

(k − j − 1)!! if k + j is even

Direct application of Theorem 6.1 is cumbersome and we need only to charac-
terise the polynomial functions for which the cubature formula is exact. So we
proceed by another way. The finite set of distinct points D ⊂ R

d is associated to
its vanishing polynomial ideal

I(D) = {f ∈ R[x] : f(z) = 0 for all z ∈ D}
Let LTσ(f) or LT (f) denote the largest term in a polynomial f with respect to
a term-ordering σ. Let [f(z)]z∈D be the evaluation vector of the polynomial f at
D and for a finite set of polynomials G ⊂ R[x] let [g(z)]z∈D,g∈G be the evaluation
matrix whose columns are the evaluation vectors at D of the polynomials in G.

As mentioned at the end of Section 1.1, the space L(D) of real valued functions
defined over D is a linear space and particularly important vector space bases can be
constructed as follows. Let LT (I(D)) = 〈LTσ(f) : f ∈ I(D)〉. If G is the σ-reduced
Gröbner basis of I(D), then LT (I(D)) = 〈LTσ(f) : f ∈ G〉. Now we can define two
interesting vector space bases of L(D). Let L = {α ∈ Z

d
≥0 : xα 6∈ LT (I(D))}, then

we define
B = {xα : α ∈ L} and OB = {πα : α ∈ L}

The sets L, B and OB depend on σ. It is well known that if t ∈ B and r divides t,
then r ∈ B; it follows that if α ∈ L and β ≤ α component wise then also β belongs
to L and πβ to OB. For example for d = 2, let L = {(0, 0), (1, 0), (0, 1), (2, 0)}, then
B = {1, x, y, x2} and OB = {π0(x)π0(y), π1(x)π0(y), π0(x)π1(y), π2(x)π0(y)} =
{1, π1(x), π1(y), π2(x)}. Note that σ induces a total ordering also on the orthog-
onal polynomials: πα <σ πβ if and only if xα <σ xβ ; analogously, with abuse of
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notation, α <σ β if and only if xα <σ x
β for each α, β ∈ Z

d
≥0. Further, given α ≤ β

componentwise, since xα divides xβ and since xβ−α ≥σ 1, we have xα ≤σ x
β , that

is α ≤σ β.
Given a term-ordering σ, any g ∈ G can be uniquely written as its leading term,

xα = LT (g), and tail which is a linear combination of terms in B preceding LT (g)
in σ, that is g = xα +

∑

β∈L,β<αα
aβx

β with aβ ∈ R.
Theorem 6.3 provides an alternative to the classical method of rewriting a poly-

nomial f in terms of orthogonal polynomials by substituting each monomial in f
by applying Theorem 6.1. It gives linear rules to rewrite the elements of G and
the remainder of a polynomial divided by G as linear combinations of orthogonal
polynomials of low enough order. The proof is in Appendix 7.

Theorem 6.3.

(1) Span(B) = Span(OB);
(2) Let G be the reduced σ-Gröbner basis of I(D). The polynomial g ∈ G with

LT (g) = xα is uniquely written as

g = πα −
∑

β∈L,β<σα

bβπβ

where b = [bβ]β∈L,β<σα solves the linear system [πβ(z)]z∈D,β∈L,β<σα
b =

[πα(z)]z∈D; in words the coefficient matrix is the evaluation matrix over

D of the orthogonal polynomials πβ with xβ in tail of g and the vector of
constant terms is the evaluation vector of πα.

(3) Let p ∈ R[x] be a polynomial and [p(z)]z∈D its evaluation vector. The
polynomial p∗ defined as

p∗ =
∑

β∈L

aβπβ(14)

where a = [aβ ]β∈L solves the linear system [πβ(z)]z∈D,β∈L a = [p(z)]z∈D,

is the unique polynomial such that p∗(z) = p(z) for all d ∈ D and p∗ ∈
Span(OB).

Theorem 6.3 provides a pseudo-algorithm to compute a Gröbner basis for I(D)
and interpolating polynomials at D in terms of orthogonal polynomials of low order
directly from D and OB. In Table 3 we give a variation of the Buchberger-Möller
algorithm [7] which starting from a finite set of distinct points D and a term-
ordering σ returns L and the expressions g = πα −∑β∈L,β<σα

bβπβ for g in the

reduced σ-Gröbner basis of I(D). It does so by performing linear operations. If
the real vector [p(z)]z∈D is assigned, then the expression p∗ =

∑

β∈L aβπβ can now
be found using Item 3 in Theorem 6.3. This permits to rewrite every polynomial
p ∈ R[x] as a linear combination of orthogonal polynomials.

Summarising: given a function f , a finite set of distinct points D ⊂ R
d and a

term-ordering σ, a probability product measure λd over Rd, its system of product
orthogonal polynomials, and a random vector with probability distribution λd, then
the expected value of f with respect to λd can be approximated by

(1) computing L with the algorithm in Table 3 and
(2) determining the unique polynomial p∗ such that p∗(z) = f(z) for all z ∈ D,

by solving the linear system [πβ(z)]z∈D,β∈L a = [f(z)]d∈D. The polynomial

p∗ is expressed as linear combination of orthogonal polynomials.
(3) The coefficient a0 of π0 is the wanted approximation.

Recall that p∗(x) =
∑

z∈D f(z)ld(x) is a linear combination of the indicator func-
tions of the points inD (Lagrange polynomials) and hence a0 =

∑

z∈D f(z)E (ld(X)).
In particular, Eλd (lz(X)) = λz , z ∈ D, can be computed by applying the above
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Input: a set D of distinct points in R
d, a term-ordering σ and any vector norm || · ||.

Output: the reduced σ-Gröbner basis G of I(D) as linear combination of orthogonal
polynomials and the set L.

Step 1: Let L = {0 ∈ Zd
≥0}, OB = [1], G = [ ] and M = [x1, . . . , xd].

Step 2: If M = [ ] stop; else set xα = minσ(M) and deleted xα from M .
Step 3: Solve in b the overdetermined linear system [πβ(z)]z∈D,β∈L b =

[πα(z)]z∈D and compute the residual

ρ = [πα(z)]z∈D − [πβ(z)]z∈D,β∈L b

Step 4:

(1) If ‖ρ‖ > 0, then include α in L, and include in M those elements of
{x1xα, . . . , xdxα} which are not multiples of an element in M or of
LT (g), g ∈ G. Return to Step 2.

(2) If ‖ρ‖ = 0, then include in Gthe polynomial

g = πα −
∑

β∈L

bβπβ

where the values bβ, β ∈ L, are the components of the solutions b of
the linear system in Step 3. Delete from M all multiples of xα.

Table 3. Buchberger-Möller algorithm using Orthogonal Polynomials

to f = lz . Notice however that as λd is a product measure, the λz can be ob-
tained from the one-dimensional ones as noticed before Theorem 5.1. It would be
interesting to generalise this section to non-product measures.

6.1. Characterisation of polynomial functions with zero expectation. In
this section we characterise the set of polynomials with the same expected value.

As mentioned in Section 1.1 given D, its vanishing ideal I(D), a term-ordering
σ and a Gröbner basis G of I(D) with respect to σ, then any polynomial p ∈ R[x]
can be written as

p(x) =
∑

g∈G

qg(x)g(x) + r(x)

where r(x) is unique in Span(B) such that r(z) = p(z) for all z ∈ D and can be
written as r(x) =

∑

z∈D p(z)ld(x), where lz, z ∈ D, are the product Lagrange
polynomials in Section 5. Theorem 6.3 says how to write r over OB.

If p ∈ R[x] is such that E (p(X)) = E (r(X)) then E (p(X)− r(X)) = 0. Fur-
thermore we have p− r ∈ I(D). Hence instead of studying directly the set

{p ∈ R[x] : E (p(X)) = E (r(X))}

we characterize the set

E0 = {g ∈ I(D) : E (g(X)) = 0}

in Theorem 6.4 whose proof can be found in Appendix 7. Hence if p ∈ R[x] is
such that p = g + r with g ∈ E0 and r ∈ Span(B) then by linearity E(p) =
∑

(z1,...,zn)∈D p(z1, . . . , zn)λ
n1

z1 · · ·λnd
zd .

Theorem 6.4. Let λd be a product probability measure with product orthogonal
polynomials πα(x), α ∈ Z

d
≥0 and let X be a random vector following λd. Let

D ⊂ R
d be a set of distinct points, σ a term-ordering, G be the σ-reduced Gröbner

basis of I(D) written as linear combination of orthogonal polynomials, that is for
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g ∈ G and xαg = LT (g) write

g = παg
−

∑

αg>σβ∈L

cβ(g)πβ

Let p =
∑

g∈G qgg ∈ I(D) for suitable qg ∈ R[x], and consider the Fourier
expansion of each qg , g ∈ G,

qg =
∑

β>σαg ,αg>σβ/∈L

cβ(qg)πβ + c0(qg)παg
+

∑

αg>σβ∈L

cβ(qg)πβ(15)

Then E (p(X)) = 0 if and only if
∑

g∈G

‖παg
‖2λc0(qg)−

∑

g∈G

∑

αg>σβ∈L

‖πβ‖2λcβ(qg)cβ(g) = 0(16)

Note that any polynomial can be written according to Equation (15) where the
first sum includes terms higher in σ than LT (g) and terms that do not appear in
g, the last sum includes terms lower than LT (g) in σ. Hence, the key observation
in the proof is that E (πm πn) = 0 is n 6= m and then linearity of E is used.
Importantly, only terms of low enough Fourier order (the second and third terms
in Equation (15)) matter for the computation of the expectation.

Example 6.5. Consider Z1 and Z2 two independent standard normal random
variables and hence the Hermite polynomials. Consider also the five point design

D = {(−6,−1), (−5, 0), (−2, 1), (3, 2), (10, 3)}
and the σ =DegLex term-ordering over the monomials in R[x, y]. The algorithm
in Table 3 gives OB = {1, H1(y), H1(x), H1(x)H1(y), H2(x)} and G = {g1, g2, g3}
where

g1 = H2(y)−H1(x) + 2H1(y)− 4

g2 = H2(x)H1(y)− 9H2(x) + 47H1(x)H1(y)− 123H1(x) + 271H1(y)− 399

g3 = H3(x) − 47H2(x) + 300H1(x)H1(y)− 845H1(x) + 2040H1(y)− 2987

By Theorem 6.4 for the purpose of computing its expectation a polynomial p =
q1g1 + q2g2 + q3g3 ∈ I(D) can be simplified to have the form

p = (c
(1)
0 H2(y) + c

(1)
(1,0)H1(x) + c

(1)
(0,1)H1(y) + c

(1)
(0,0))g1

+ (c
(2)
0 H2(x)H1(y) + c

(2)
(2,0)H2(x) + c

(2)
(1,1)H1(x)H1(y) + c

(2)
(1,0)H1(x) + c

(2)
(0,1)H1(y) + c

(2)
(0,0))g2

+ (c
(3)
0 H3(x) + c

(3)
(2,0)H2(x) + c

(3)
(1,1)H1(x)H1(y) + c

(3)
(1,0)H1(x) + c

(3)
(0,1)H1(y) + c

(3)
(0,0))g3

and furthermore by Equation (16)

c
(1)
0 2!− c

(1)
(1,0) + 2c

(1)
(0,1) − 4c

(1)
(0,0)

+ c
(2)
0 2!− 9c

(2)
(2,0)2! + 47c

(2)
(1,1) − 123c

(2)
(1,0) + 271c

(2)
(0,1) − 399c

(2)
(0,0)

+ c
(3)
0 3!− 47c

(3)
(2,0)2! + 300c

(3)
(1,1) − 845c

(3)
(1,0) + 2040c

(3)
(0,1) − 2987c

(3)
(0,0) = 0

In practice, for i = 1, 2, 3, put coefficients of gi and qi in two vectors, multiply them
component wise and sum the result. For example the above equation is satisfied by

c
(1)
0 = −34 c

(1)
(1,0) = 0 c

(1)
(0,1) = −2 c

(1)
(0,0) = −8

c
(2)
0 = 0 c

(2)
(2,0) = 0 c

(2)
(1,1) = 1 c

(2)
(1,0) = −2 c

(2)
(0,1) = 1 c

(2)
(0,0) = 2

c
(3)
0 = 10 c

(3)
(2,0) = 2 c

(3)
(1,1) = 0 c

(3)
(1,0) = −5 c

(3)
(0,1) = 1 c

(3)
(0,0) = 5863/2987
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by adding H4(x) to q1 and H4(y) to q2 which are not influent in the computation
of the expectation we get the following zero mean polynomial

p(Z1, Z2) =

Z2
1Z

5
2 + 10Z6

1 + Z4
1Z

2
2 − 9Z2

1Z
4
2 + 47Z1Z

5
2 − 469Z5

1 + 3002Z4
1Z2 + Z3

1Z
2
2 − 6Z2

1Z
3
2

− 123Z1Z
4
2 + 270Z5

2 − 8614Z4
1 + 20990Z3

1Z2 + 96Z2
1Z

2
2 − 282Z1Z

3
2 − 424Z4

2

− 87898560/2987Z3
1 − 6700Z2

1Z2 + 1389Z1Z
2
2 − 1690Z3

2 +
71785814

2987
Z2
1

− 218275468

2987
Z1Z2 + 4845Z2

2 +
307862660

2987
Z1 −

5937584

2987
Z2 −

5931425

2987

7. Appendix: proof

Theorem 6.1:

Proof. 1. The proof is by induction on the monomial degree k. From the three
terms recurrence formula πj+1 = (γjx− αj)πj − βjπj−1 we have

xπj =
πj+1

γj
+
αj

γj
πj +

βj
γj
πj−1

For k = 0 we have x0 = π0(x) = c0(x
0)π0. For k = 1 from the three terms

recurrence formula we have

x = xπ0 =
π1
γ0

+
α0

γ0
π0 = c1(x)π1 + c0(x)π0

In the inductive step the thesis holds for k and we prove it for k + 1. From the
three recurrence formula we have

xk+1 = xxk =

k
∑

j=0

cj(x
k)xπj =

k
∑

j=0

cj(x
k)

(

πj+1

γj
+
αj

γj
πj +

βj
γj
πj−1

)

=

k+1
∑

j=1

cj−1(x
k)

γj−1
πj +

k
∑

j=0

cj(x
k)
αj

γj
πj +

k−1
∑

j=0

cj+1(x
k)
βj+1

γj+1
πj

=

k−1
∑

j=1

(

cj−1(x
k)

γj−1
+ cj(x

k)
αj

γj
+ cj+1(x

k)
βj+1

γj+1

)

πj +
ck−1(x

k)

γk−1
πk +

ck(x
k)

γk
πk+1

+
c0(x

k)α0

γ0
π0 +

ck(x
k)αk

γk
πk +

c
(k)
1 β1
γ1

π0

=
k−1
∑

j=1

c
(k+1)
j πj + c

(k+1)
k+1 πk+1 +

(

c
(k)
k−1

γk−1
+
c
(k)
k αk

γk

)

πk +

(

c
(k)
0 α0

γ0
+
c
(k)
1 β1
γ1

)

π0

This concludes the proof of the first part of the theorem. To prove the second part
we apply what we just proved and unfold the multiplication.

Given xα = xα1

1 · · ·xαd

d , the polynomial πα = πα1
(x1) · · ·παd

(xd) is the product
of d univariate polynomials παj

each of degree αj in xj , j = 1, . . . , d. Clearly if
αj = 0 then παj

= 1 and xj does not divide xα. Furthermore we have

πα =

d
∏

j=1

αj
∑

k=0

d
(j)
k xkj

We deduce that πα is a linear combination of xα and of the power products which
divide xα, that is of power products xβ with β ≤ α component wise. Vice versa,
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applying the first part of the theorem we have

xα =

d
∏

k=1

xαk

k =

d
∏

k=1





αk
∑

jk=0

cjk(x
αk

k )πjk(xk)





and commuting product with sum shows that xα is a linear combination of products
of πβi

(xi) where β = (β1, . . . , βd) is such that β ≤ α component wise, that is xβ

divides xα. �

Theorem 6.3:

Proof. Recall that B andOB are defined in terms of a common set L of d-dimensional
vectors with non-negative integer entries satisfying the property of ‘factor-closeness’
, that is if (α1, . . . , αd) ∈ L then (β1, . . . , βd) ∈ L if and only if βi ≤ αi for all
i = 1, . . . , d.

(1) If xα ∈ B for some α, then by Theorem 6.1 xα =
∑

β≤α bβπβ Since β ≤ α

then β ∈ L and so each πβ ∈ OB: we have that xα belongs to Span(OB).
The vice-versa is proved analogously.

(2) The matrix [πβ(z)]z∈D,β∈L is a square matrix since L has as many elements
as D and has full rank. The linear independence of the columns of such
a matrix follows from the fact that each linear combination of its columns
corresponds to a polynomial in Span(OB) which coincides with Span(B)
whose elements do not vanish at D.

Any polynomial g ∈ G in the Göbner basis can be written as

g = xα −
∑

αg>σβ∈L

cβx
β

where xα = LT (g) is a multiple of an element of B. By Theorem 6.1 we
have

g =
∑

β≤α

a
(g)
β πβ −

∑

αg>σβ∈L

cβ
∑

γ≤β

d(g)γ πγ

The polynomial πα appears only in the first sum, for the other terms in the
first sum observe that as β < α then β ∈ L and also β <σ α. Analogously,
for the second sum we consider γ ≤ β < α; since β ∈ L then γ ∈ L and
since γ < α then γ <σ α. And so, with obvious notation,

g = πα −
∑

αg>σβ∈L

bβπβ

Since g(z) = 0 for z ∈ D, then the vector b = [bβ ]β of the coeffi-
cients in the identity above solves the linear system [πβ(z)]z∈D,αg>σβ∈Lb =
[πα(z)]z∈D. Furthermore, since [πβ(z)]z∈D,αg>σβ∈L is a full rank matrix,
then b is the unique solution of such a system.

(3) Let p∗ =
∑

β∈L aβπβ be a polynomial whose coefficients are the elements

of the solution of the linear system [πβ(z)]z∈D,β∈La = [p(z)]z∈D. Such a
polynomial obviously interpolates the values p(z), z ∈ D, and, since the
columns of [πβ(z)]z∈D,β∈L are the evaluation vectors of the elements of OB
atD, it belongs to Span(OB). We conclude that p∗ is the unique polynomial
interpolating the values p(d), d ∈ D, w.r.t. (D, Span(OB)).

�

Theorem 6.4:
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Proof. As G is a Gröbner basis of I(D), then for every p ∈ I(D) and g ∈ G there
exist qg ∈ R[x] such that p =

∑

g∈G qgg. Since by linearity

E





∑

g∈G

qgg



 =
∑

g∈G

E (qgg)

the thesis follows once we show that, for each g ∈ G and xαg = LT (g)

E (qgg) = ‖παg
‖2λc0(qg)−

∑

αg>σβ∈L

cβ(qg)cβ(g)‖πβ‖2λ

holds.
From Equation (15) we have

qgg =
∑

β>σαg ,αg>σβ/∈L

cβ(qg)πβg + c0(qg)παg
g +

∑

αg>σβ∈L

cβ(qg)πβg

and substitute the Fourier expansion of g given in Theorem 6.3

g = παg
−

∑

αg>σβ∈L

cβ(g)πβ

In computing the expectation we use the fact that E (πhπk) = 0 for different mono-
mials h and k. Then the expectation of the first sum vanishes, the expectation of the
middle term gives ‖παg

‖2λc0(qg) and the last sum gives−∑αg>σβ∈L cβ(qg)cβ(g)‖πβ‖2λ.
�
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