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Abstract

Lévy copulas are the most natural concept to capture jump dependence in multivariate
Lévy processes. They translate the intuition and many features of the copula concept
into a time series setting. A challenge faced by both, distributional and Lévy copulas,
is to find flexible but still applicable models for higher dimensions. To overcome this
problem, the concept of pair copula constructions has been successfully applied to dis-
tributional copulas. In this paper we develop the pair construction for Lévy copulas
(PLCC). Similar to pair constructions of distributional copulas, the pair construction
of a d-dimensional Lévy copula consists of d(d − 1)/2 bivariate dependence functions.
We show that only d − 1 of these bivariate functions are Lévy copulas, whereas the re-
maining functions are distributional copulas. Since there are no restrictions concerning
the choice of the copulas, the proposed pair construction adds the desired flexibility
to Lévy copula models. We provide detailed estimation and simulation algorithms and
apply the pair construction in a simulation study.
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1 Introduction

In many financial and nonfinancial applications, multivariate models with jumps are

needed, which capture the dependence of jumps adequately. To this end, Lévy processes

have been applied in the literature. However, although the recently introduced concept of

Lévy copulas enables modeling the dependence in Lévy processes in a multivariate setup,

known parametric Lévy copulas are very inflexible in higher dimensions, i.e., they consist

of very few parameters. In this paper, we show that, similar to the pair copula construction

of distributional copulas going back to Joe (1996), Lévy copulas may be constructed from

a constellation of parametric bivariate dependence functions. Because these dependence

functions may be chosen arbitrarily, the resulting Lévy copulas flexibly capture various

dependence structures.

Lévy processes are stochastic processes with independent increments. They consist of a

Brownian motion part and jumps. Due to the jumps, Lévy processes capture stylized facts

observed in financial data as non-normality, excessive skewness and kurtosis (see, e.g., Jo-

hannes (2004)). At the same time, they stay mathematically tractable and allow for deriva-

tive pricing by change of measure theory. For these reasons, intensive research is conducted

on the statistical inference of Lévy processes (see, e.g., Lee and Hannig (2010) and the ref-

erences therein).

The fundamental work for multivariate applications of Lévy processes is the seminal pa-

per of Kallsen and Tankov (2006), where the concept of Lévy copulas is introduced. This

concept transfers the idea of distributional copulas to the context of Lévy processes. Distri-

butional copulas (often just referred to as copulas) are functions which connect the marginal

distribution functions of random variables to their joint distribution function. They contain

the entire dependence information of the random variables (see, e.g., Nelsen (2006) for an

introduction to copulas). In the same sense, the theory of Lévy copulas enables to model
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multivariate Lévy processes by their marginal Lévy processes and to choose a suitable

Lévy copula for the dependence structure seperately. For papers regarding the estimation

of Lévy copulas in multivariate Lévy processes and applications see, e.g., the recent papers

of Esmaeili and Klüppelberg (2010-2011) and references therein.

All papers involving Lévy copulas focus on rather small dimensions since higher-

dimensional flexible Lévy copulas are difficult to construct. A similar effect has been

observed during the first years of literature on distributional copulas, where mainly 2-

dimensional distributional copulas have been analyzed. The solution regarding distribu-

tional copulas has been the development of very flexible pair copula constructions of cop-

ulas going back to Joe (1996) and further developed in a series of papers (see, e.g., Bedford

and Cooke (2001) or Aas, Czado, Frigessi, and Bakken (2009)). In pair copula construc-

tions, a d-dimensional copula is constructed from d(d − 1)/2 bivariate copulas. Here, d − 1

of the bivariate copulas model the dependence of bivariate margins and the remaining bi-

variate copulas model certain conditional distributions, such that the entire d-dimensional

dependence structure is specified. Since permutations of variables lead to different models,

finding the best performing model may turn out to be computationally exhaustive.

Lévy copulas are conceptually different from distributional copulas. While d-dimensional

distributional copulas are distribution functions on a [0, 1]d hypercube, d-dimensional Lévy

copulas are defined on R
d

and relate to radon measures. Therefore, the idea of pair con-

structions of copulas is not directly transferable to Lévy copulas and up to now it has not

been clear whether it is possible at all. In this paper, we show that a pair copula construction

of Lévy copulas (PLCC) is indeed possible. It also consists of d(d − 1)/2 bivariate depen-

dence functions but only d − 1 of them are Lévy copulas, while the remaining ones are

distributional copulas. For statistical inference, we derive sequential maximum likelihood

estimators for an arbitrary pair construction of Lévy copulas as well as a simulation algo-

rithm. In a simulation study we analyze the applicability of the concept and the estimation
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and simulation algorithms in detail.

The rest of the paper is structured as follows. In Section 2.1, we review the theory of

copulas for random variables and pair copula constructions of such copulas. In Section 2.2

we address the theory of Lèvy processes and Lévy copulas. Our pair construction of Lévy

copulas is derived in Section 3. In Section 4, we provide a simulation algorithm to simulate

multivariate Lévy processes with dependence modeled by pair constructions of the Lévy

copula and a maximum likelihood estimation algorithm to estimate parameters of the pair

construction. Section 5 contains simulation studies probing the simulation and estimation

algorithms in finite samples and Section 6 concludes.

2 Preliminaries

In this section, we briefly recall necessary theory on copulas, pair copulas, Lévy processes

and the Lévy copula concept.

2.1 Copulas and Pair Copula Construction

Let X = (X1, . . . , Xd) be a random vector with joint distribution function F and continuous

marginal distribution functions Fi, i = 1, . . . , d. The copula C of X is the uniquely defined

distribution function with domain [0, 1]d and uniformly distributed margins satisfying

F(x1, . . . , xd) = C
[

F1(x1), . . . , Fd(xd)
]

.

By coupling the marginal distribution functions to the joint one, the copula C entirely deter-

mines the dependence of the random variables X1, . . . , Xd. While many 2-dimensional para-

metric families of copulas exist, see, e.g., Nelsen (2006), the families for the d-dimensional

case suffer from lack of flexibility. To overcome this problem, the concept of pair copula

construction has been developed (see, e.g., Joe (1996) for the seminal work or the detailed
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T1 1 2 3

T2 12 23

C12 C23

C13|2

Figure 1: Example of a pair copula construction of a 3 dimensional copula. It consists of 2

trees and 3(3-1)/2=3 bivariate copulas C12, C23 and C13|2.

introductions in Bedford and Cooke (2001) and Berg and Aas (2009)). In a pair copula

construction, a d-dimensional copula C(u1, . . . , ud) is constructed of d(d − 1)/2 bivariate

copulas. Of these bivariate copulas, d − 1 bivariate copulas model d − 1 two-dimensional

margins of the copula C directly, whereas the other bivariate copulas specify the remaining

parts indirectly in terms of conditional distributions. Since the number of possible com-

binations grows rapidly with the dimension, Bedford and Cooke (2001) and Bedford and

Cooke (2002) introduced a graphical model, called regular vines (r-vines), to describe the

structures of pair copula constructions.

An example for a regular vine for the 3-dimensional case is given in figure 1. The three

dimensions 1,2 and 3 and two layers (trees) T1 and T2 of dependence functions are shown.

The first tree (T1) consists of two bivariate copulas, C12 and C23, modeling the dependence

between dimensions 1 and 2 and dimensions 2 and 3, respectively. Thus, tree T1 completely

determines these two bivariate dependence structures. It also indirectly determines parts

of the dependence between dimensions 1 and 3, but not necessarily the entire dependence.

For instance, if the pairs 1,2 and 2,3 are each correlated with 0.9, then 1 and 3 cannot

be independent but their exact dependence is not specified. In particular, the conditional

dependence of 1 and 3 given 2 is completely unspecified. Therefore, in the second tree

(T2), this bivariate conditional dependence is modeled with another copula C13|2. Together

the three bivariate copulas fully specify the dependence of the three dimensions. Since the

choice of all three bivariate copulas is arbitrary, the vine structure provides a very flexible
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way to construct multidimensional copulas. In the d-dimensional case, d(d − 1)/2 bivariate

copulas are needed and arranged in d − 1 trees which is derived in Joe (1996). There are

special cases of regular vines, e.g., c-vines or d-vines (see, e.g., Aas, Czado, Frigessi, and

Bakken (2009) for an overview).

2.2 Lévy Processes and Lévy Copulas

Detailed information about Lévy processes may be found in Rosinski (2001), Kallenberg

(2002) or Sato (1999). Introductions to Lévy copulas are given in Kallsen and Tankov (2006)

or Cont and Tankov (2004). Here we give a very short overview about both. Let (Ω, F , P)

be a probability space. A Lévy process (Lt)t∈R+ is a stochastic process with stationary,

independent increments starting at zero. Lévy processes can be decomposed into a deter-

ministic drift function, a Brownian motion part and a pure jump process with a possibly

infinite number of small jumps, see, e.g., Kallenberg (2002), Theorem 15.4 (Lévy Itô decom-

position). In this paper, we focus on spectrally positive Lévy processes, which are Lévy

processes with positive jumps only. This facilitates the notation considerably and in many

relevant cases it is sufficient to consider positive jumps only. However, all results of the

paper may be extended to the general case. At time t, the characteristic function of the

distribution of such an R
d-valued spectrally positive Lévy process Lt is given by the Lévy-

Khinchin representation (see Kallenberg (2002)):

ϕLt(z) = exp

{

t

(

i〈γ, z〉 −
1

2
〈z, Σz〉+

∫

Rd
+

(ei〈z,x〉 − 1)ν(dx)

)}

. (1)

Here, γ ∈ R
d corresponds to the drift part of the process and Σ is the covariance matrix

of the Brownian motion part at time t = 1. The Lévy measure ν is a measure on R
d which

is concentrated on the positive domain R
d
+ \ {0} with

∫

Rd xν(dx) < ∞. The Lévy measure

completely characterizes the jump parts of the Lévy process, where ν(A) for A ∈ B(Rd
+) is

the expected number of jumps with jump sizes in A per unit of time. A spectrally positive
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Lévy process with positive entrees of γ and Σ = 0 is called subordinator. It has no negative

increments.

An interesting example for a one-dimensional subordinator is the stable subordinator. It

is heavy tailed and therefore suggested as a loss process for operational risk models. In

Basawa and Brockwell (1978) the Lévy measure of a stable subordinator on R+ is defined

by

ν(B) =
∫

R+

1B(z)
αβ

zα+1
dz,

where α ∈ (0, 1) and β > 0.

Related to the Lévy measure, its tail integral is defined by (see, e.g., Definition 3.1 in Es-

maeili and Klüppelberg (2010)):

U(x1 . . . , xd) =











ν([x1, ∞)× . . . × [xd, ∞)), if (x1 . . . , xd) ∈ [0, ∞)d\{0}

0, if xi = ∞ for at least one i.

∞ if (x1, . . . , xd) = 0

The tail integral U of a spectrally positive Lévy process uniquely determines its Lévy

measure ν. For one dimensional spectrally positive Levy measures ν, the tail integral is

U(x) = ν([x, ∞)), i.e., the expected number of jumps with jump sizes larger or equal to x.

For the one-dimensional stable subordinator, the tail integral can be explicitly calculated

and inverted,

U(x) =
∫

[x,∞)

αβ

zα+1
dz = βx−α with U−1(u) =

(

u

β

)− 1
α

,

where the inverse of the the tail integral is needed for the simulation of the process.

Dependence of jumps of a multivariate Lévy process may be described by a Lévy cop-

ula, which couples the marginal tail integrals to the joint one. A d-dimensional Lévy

copula is a measure defining function C(u1, . . . , ud) : [0, ∞]d → [0, ∞] with margins

Ck(uk) := C(∞, . . . , ∞, uk, ∞, . . . , ∞) = uk for all uk ∈ [0, ∞] and k = 1, . . . , d. In particu-

lar, let U denote the tail integral of a spectrally positive d-dimensional Lévy process, whose
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components have the tail integrals U1, . . . , Ud. Then there exists a Lévy copula C such that

for all (x1, . . . , xd) ∈ R
d
+

U(x1, . . . , xd) = C(U1(x1), . . . , Ud(xd)). (2)

Conversely, if C is a Lévy copula and U1, . . . , Ud are marginal tail integrals of spectrally

positive Lévy processes, then Equation (2) defines the tail integral of a d-dimensional spec-

trally positive Lévy process and U1, . . . , Ud are the tail integrals of its components. Both

statements are often called the Sklar’s theorem for Lévy copulas and are proved, e.g, Cont

and Tankov (2004).

In this paper, we focus on Lévy copulas for which the following assumption holds:

Assumption 1. Let C1,...,d be a Lévy copula such that for every I ∈ {1, . . . , d} nonempty,

lim
(ui)i∈I→∞

C1,...,d(u1, . . . , ud) = C1,...,d(u1, . . . , ud)|(ui)i∈I=∞. (3)

This is a rather weak assumption on the Lévy copula and is assumed in many papers, e.g.,

in Esmaeili and Klüppelberg (2010). It means that the Lévy copula has no new information

at the points ui = ∞ which is not contained in the limit for ui → ∞. We need it since it

ensures a bijection between a Lévy copula on R
d

and a positive measure µ1,...,d on B(Rd
+)

with one-dimensional Lebesgue margins. This measure is given by

µ1,...,d((a, b]) = VC1,...,d
([a, b]), (4)

where a, b ∈ R
d
+ with a ≤ b and VC1...d

refer to the C1...d-volume of the d-box [a, b] which is

defined as

VC1,...,d
([a, b]) = ∑ sgn(c)C1,...,d(c).

The sum is taken over all vertices c of [a, b] and

sgn(c) =

{

1, if ck = ak for an even number of k

−1, if ck = ak for an odd number of k.
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Furthermore, any positive measure µ1,...,d on R
d
+ with Lebesgue margins uniquely defines

a Lévy copula on R
d
+ that satisfies Assumption 1 by

C1,...,d(u1, . . . , ud) := µ1,...,d([0, u1]×, . . . ,×[0, ud])

and

C1,...,d(u1, . . . , ud)|(ui)i∈I=∞ := lim
(ui)i∈I→∞

µ1,...,d([0, u1]×, . . . ,×[0, ud]).

These results are proved, e.g., in Section 4.5 in Kingman and Taylor (1966).

An important example for a Lévy copula is the Clayton Lévy copula. For spectrally positive,

2-dimensional Lévy processes it is given by

C(u, v) =
(

|u|−θ + |v|−θ
)−1/θ

. (5)

Here θ > 0 determines the dependence of the jump sizes, where larger values of θ corre-

spond to stronger dependence.

3 Pair Lévy Copulas

In this section we present the pair construction of d-dimensional Lévy copulas. In particu-

lar, we show that analogously to the pair construction of distributional copulas, d(d − 1)/2

functions of bivariate dependence may be arranged such that they define a d-dimensional

Lévy copula. The central theorem for the construction is Theorem 2. It states that two

(d − 1)-dimensional Lévy copulas with overlapping (d − 2)-dimensional margins may be

coupled to an d-dimensional Lévy copula by a new, two-dimensional distributional copula.

Ensured by vine constructions (see Joe (1996)) and starting at (d − 1) = 2, Theorem 2 there-

fore enables to sequentially construct Lévy copulas out of two dimensional dependence

functions, i.e., two-dimensional distributional copulas and Lévy copulas. In Sections 3.1

and 3.2 we provide illustrating examples how to construct multivariate pair Lévy copula

constructions. Readers not interested in the technical parts may read these examples first.
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Before we state Theorem 2, for convenience, we recall some definitions which can be found,

e.g., in Ambrosio, Fusco, and Pallara (2000):

Definition 1 (Posit. Radon Meas., Push Forw. Meas., Measur. Measure-valued Maps).

A positive measure on (Rd
+,B(Rd

+)) that is finite on compact sets, is called a positive Radon

measure.

Let (X, E) and (Y,F) be measure spaces and let f : X → Y be a measurable function. For any

measure µ on (X, E) we define the Push Forward Measure f#µ in (Y,F) by

f#µ := µ
(

f−1(K)
)

∀K ∈ F .

Let µ be a positive Radon measure on R
d
+, x 7→ ξx a function which assigns to each x ∈ R

d
+ a finite

Radon measure ξx on R
m
+. We say this map is µ-measurable if x 7→ ξx(B) is µ-measurable for

any B ∈ B(Rm
+).

Definition 2 (Generalized Product).

Let µ be a positive Radon measure on R
d
+, x 7→ ξx a µ-measurable function which assigns to each

x ∈ R
d
+ a probability measure ξx on R

m
+. We denote by µ ⊗ ξx the Radon measure on R

d+m
+ defined

by

µ ⊗ ξx(B) :=
∫

R
d
+

(

∫

R
m
+

1B(x, y)dξx(y)

)

dµ(x) ∀B ∈ B(K × R
m),

where K ⊂ R
d
+ is any compact set.

We also need the following theorem which states that a Radon measure may be decom-

posed into a a projection onto some of its dimensions and a probability measure. For a

proof see Theorem 2.28 in Ambrosio, Fusco, and Pallara (2000) and also the sentence after

Corollary 2.29 there.

Theorem 1 (Disintegration).

Let µ1,...,d+m be a Radon measure on R
d+m
+ , π : R

d+m
+ 7→ R

d
+ the projection on the first d vari-

ables and µ1,...,d = π#µ1,...,d+m. Let us assume that µ1,...,d is a positive Radon measure, i.e., that
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µ1,...,d+m(K × R
m
+) < ∞ for any compact set K ⊂ R

d. Then there exists a finite measure ξx in R
m

such that x 7→ ξx is µ1,...,d-measurable, ξx is a probability measure almost everywhere in R
d
+, and

∫

R
d+m
+

1B(x, y)dµ1,...,d+m(x, y) =
∫

Rd
+

(

∫

Rm
+

1B(x, y)ξx(y)

)

dµ1,...,d(x),

this is µ1,...,d+m(B) = µ1,...,d ⊗ ξx(B) for any B ∈ B(K × R
m
+), where K ⊂ R

d is any compact set.

We are now able to state the main theorem.

Theorem 2 (Pair Lévy Copula Composition). Let C1,...,d−1, C2,...,d be two Lévy copulas on

R
(d−1)
+ , where C1,...,d−1 is a Lévy copula on the variables u1, . . . , ud−1 and C2,...,d is a Lévy copula

on the variables u2, . . . , ud. Denote the corresponding measures on R
(d−1)
+ by µ1,...,d−1 and µ2,...,d,

respectively. Suppose that the two measures have an identical (d − 2)-dimensional margin µ2,...,d−1

on the variables u2, . . . , ud−1. Then we can define a Lévy copula on R
d by

C1,...,d(u1, . . . , ud) =
∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1),

where F1|u2,...,ud−1
is the one-dimensional distribution function corresponding to the measure

ξ1|u2 ,...,ud−1
from the decomposition of µ1,...,d−1 into

µ1,...,d−1 = µ2,...,d−1 ⊗ ξ1|u2,...,ud−1
,

Fd|u2,...,ud−1
is the one-dimensional distribution function corresponding to the measure ξd|u2,...,ud−1

from the decomposition of µ2,...,d into

µ2,...,d = µ2,...,d−1 ⊗ ξd|u2,...,ud−1
,

and C is a distributional copula. Since Lévy copulas are functions on R
d

we set for every I ∈

{1, . . . , d} nonempty,

C1,...,d(u1, . . . , ud)|(ui)i∈I :=∞ = lim
(ui)i∈I→∞

C1,...,d(u1, . . . , ud). (6)
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T1 1 2 3

T2 12 23

C12 C23

C13|2

Figure 2: Pair construction of a 3-dimensional Lévy copula out of 3(3 − 1)/2 = 3 bivariate
dependence functions. The functions C12 and C23 in the first tree are Lévy copulas while
C13|2 in the second tree is a distributional copula.

The theorem is proved in the appendix. To illustrate how the theorem serves to construct

pair copula constructions of Lévy copulas, we give two detailed examples. The first exam-

ple refers to the most simple case, a 3-dimensional Lévy copula. The second, 4-dimensional

example then illustrates, how to sequentially add dimensions to the pair copula construc-

tion.

3.1 Example: 3-dimensional Pair Lévy Copula Construction

A 3-dimensional example can be constructed applying Theorem 2 to combine two 2-

dimensional Lévy copulas by a distributional copula. As in the usual pair copula con-

struction for distributional copulas, in Figure 2 we use the vine concept to visualize the

resulting dependence structure. The bivariate dependence structures in the first tree are

Lévy copulas, whereas the copula in the second tree is a distributional copula. Then from

Theorem 2 follows that

C123(u1, u2, u3) =
∫

[0,u2]

C13|2(F1|z2
(u1), F3|z2

(u3))dµ2(z2)

is a Lévy copula, where F1|u2
(u1) is the one-dimensional distribution function correspond-

ing to the measure ξ1|u2
from the decomposition of µ1,2 into

µ1,2 = µ2 ⊗ ξ1|u2
(7)
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and F3|u2
is the one-dimensional distribution function corresponding to the measure ξ3|u2

from the decomposition of µ2,3 into

µ2,3 = µ2 ⊗ ξ3|u2
. (8)

Remember that µ1,2 is the Radon measure corresponding to C12. With Theorem 1 and As-

sumption 1 we see that µ2 in Equation (7) is the Lebesgue measure. Analogously µ2,3 is the

Radon measure corresponding to C23 and therefore µ2 in Equation (8) is also the Lebesgue

measure.

To check whether C1,2,3(u1, u2, u3) has the correct margins, we calculate

lim
u3→∞

C123(u1, u2, u3) = C123(u1, u2, ∞)

=
∫

[0,u2]

C13|2(F1|z2
(u1), F3|z2

(∞))dz2

=
∫

[0,u2]

C13|2(F1|z2
(u1), 1)dz2

=
∫

[0,u2]

F1|z2
(u1)dz2

=
∫

[0,u2]







∫

[0,u1]

dξ1|z2
(z1)






dz2

=
∫

[0,u1]×[0,u2]

dµ1,2(z1, z2)

= C12(u1, u2)

and a similar procedure shows that

lim
u1→∞

C123(u1, u2, u3) = C23(u2, u3).

12



T1 2 3 4

T2 23 34

C23 C34

C24|3

Figure 3: Pair construction of the second three dimensions of a 4-dimensional Lévy copula
out of 3(3− 1)/2 = 3 bivariate dependence functions. The functions C23 and C34 in the first
tree are Lévy copulas while C24|3 in the second tree is a distributional copula. The Lévy
copula C23 is the same Lévy copula as in figure 2 which refers to a the pair construction of
the first three dimensions.

As expected, we do not get such a direct representation of the third bivariate margin

lim
u2→∞

C123(u1, u2, u3) =
∫

[0,∞]

C13|2(F1|z2
(u1), F3|z2

(u3))dz2,

because this margin is not only influenced by C12 and C23 but also by the distributional

copula C13|2. However, we can adjust the bivariate margin of the first and third dimension

by changing C13|2 without any influence on the other two bivariate margins.

3.2 Example: 4-dimensional Pair Lévy Copula Construction

Considering 4-dimensions, we need two 3-dimensional Lévy copulas with an identical 2-

dimensional margin. Here we reuse the Lévy copula from Example 3.1 for the first three

dimensions. The second 3-dimensional Lévy copula is constructed in the same way and

has the vine representation shown in Figure 3.

Notice that the Lévy copula C23 is used in both 3-dimensional pair Lévy copulas. Therefore,

the marginal Lévy copulas

C123(∞, u2, u3) = C23(u2, u3) = C234(u2, u3, ∞)

are the same and we can apply Theorem 2 to construct a 4-dimensional Lévy copula with
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T1 1 2 3 4

T2 12 23 34

T3 132 243

C12 C23 C34

C13|2 C24|3

C14|23

Figure 4: Combination of the first three dimensions and the second three dimensions to
a pair construction of a 4-dimensional Lévy copula. It consists of 4(4 − 1)/2 = 6 bivari-
ate dependence functions. Only the functions in the first tree are Lévy copulas while the
functions in the second and third trees are distributional copulas.

the vine representation shown in Figure 4 and

C1234(u1, u2, u3, u4) =
∫

[0,u2]×[0,u3]

C14|23(F1|z2,z3
(u1), F4|z2 ,z3

(u4))dµ23(z2, z3)

where F1|u2,u3
is the one-dimensional distribution function corresponding to the measure

ξ1|u2 ,u3
from the decomposition of µ1,2,3 from the first pair Lévy copula C123 into

µ123 = µ2,3 ⊗ ξ1|u2 ,u3
,

F4|u2,u3
is the one-dimensional distribution function corresponding to the measure ξ4|u2,u3

from the decomposition of µ2,3,4 from the second pair Lévy copula C234 into

µ234 = µ2,3 ⊗ ξ4|u2 ,u3
.

4 Simulation and Estimation

This section presents a simulation algorithm for multivariate Lévy processes and maximum

likelihood estimation of a pair Lévy copula construction. We first present a simulation

algorithm for multivariate Lévy processes. We need the following assumption, which is

fulfilled by the common parametric families of the bivariate (Lévy) copulas.
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Assumption 2. In the following we assume that all bivariate distributional and Lévy Copulas are

continuously differentiable.

4.1 Simulation

The simulation of multivariate Lévy processes build upon Lévy copulas bases on a series

representation for Lévy processes and the following theorem.

Theorem 3. Let ν be a Lévy measure on R
d
+, satisfying

∫

Rd(‖x‖ ∧ 1)dν(x) < ∞, with marginal

tail integrals Ui, i = 1, . . . , d, Lévy copula C1,...,d with corresponding measure µ1,...,d. Let (Vi)i∈N be

a sequence of independent and uniformly [0, 1] distributed random variables and (Γ1
i , . . . , Γd−1

i )i∈N

be a Poisson point process on R
d−1
+ with intensity measure µ1,...,d−1 from the decomposition of

µ1,...,d = µ1,...,d−1 ⊗ ξd|u1,...,ud−1

with ξd|u1 ,...,ud−1
being a probability measure. For any value of Γ1

i . . . , Γd−1
i we suppose that Γd

i , is

a random variable with probability measure ξd|Γ1,...,Γd−1
. Then the process (L1

t , . . . , Ld
t )t∈[0,1] defined

by

L
j
t =

∞

∑
i=1

U−1
i (Γ

j
i)1[0,t](Vi), j = 1, . . . , d

is a d-dimensional Lévy process (Lt)t∈[0,1] without a Brownian component and drift. The Lévy

measure of (Lt) is ν.

proof: The proof is similar to the proof of Tankov (2005, Theorem 4.3).

In practical simulations the sum cannot be evaluated up to infinity and one omits very

small jumps. The sequence (Γ1
i )i∈N is therefore only simulated up to a sufficient large N,

resulting in a large value of Γ1
N which corresponds to a small value of the jump U−1

1 (Γ1
N),

since the tail integral is decreasing (see Rosinski (2001) for this approximation).
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Based on the pair copula construction of the Lévy copula, the Γ2
i . . . , Γd

i can be drawn con-

ditionally on Γ1
i in a sequential way. For convenience assume that the pair Lévy copula has

a d-vine structure and that the dimensions are ordered from left to right. The dependence

between Γ1
i and Γ2

i is then determined in the first tree of the pair construction by the bi-

variate Lévy copula C1,2, and the distribution function F2|Γ1
i

of Γ2
i given Γ1

i is derived in the

following Proposition.

Proposition 1. Let C1,2 be a two-dimensional Lévy copula with corresponding measure µ1,2. Then

we can decompose

µ1,2 = µ1 ⊗ ξu1

where ξu1
is a probability measure and the distribution function for almost all u1 ∈ [0, ∞) is given

by

F2|u1
(u2) =

∂C1,2(u1, u2)

∂u1
.

in every u2 ∈ [0, ∞] where F2|u1
(u2) is continuous.

proof: This is a special case of Tankov (2005, Lemma 4.2).

Inversion of this distribution function allows the simulation of Γ2
i . Now suppose that we

have already simulated the variables Γ1, . . . , Γd−1, d ≥ 3 correctly and we want to simulate

the last variable Γd. We already know from Theorem 1 that the distribution of the last

variable given the first d − 1 is a specific probability distribution and therefore we are

interested in the corresponding distribution function Fd|u1,...,ud−1
. Having found Fd|u1,...,ud−1

,

we can again invert it and easily simulate a realization of a random variable with this

distribution function. The next proposition, proved in the appendix, provides Fd|u1,...,ud−1

within the pair construction of the Lèvy copula.

Proposition 2. Let d ≥ 3 and C1,...,d be a pair Lévy copula, µ1,...,d the corresponding measure, π

the projection on the first d − 1 variables, and µ1,...,d−1 = π#µ1,...,d the push forward measure. Then
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we can decompose

µ1,...,d = µ1,...,d−1 ⊗ ξd|u1,...,ud−1

where ξd|u1,...,ud−1
is a probability measure on R+ with distribution function

Fd|u1,...,ud−1
(ud) =

∂C1,d|2,...,d−1(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

∂F1|u2 ,...,ud−1
(u1)

µ1,...,d−1-almost everywhere. Moreover Fd|u1,...,ud−1
is continuously differentiable.

4.2 Maximum Likelihood Estimation

It is usually not possible to track Lévy processes in continuous time. Therefore, we have

to choose a more realistic observation scheme. In the context of inference for pure jump

Lévy processes it is common to assume that it is possible to observe all jumps of the

processes larger then a given ε (see, e.g., Basawa and Brockwell (1978, 1980) or Esmaeili

and Klüppelberg (2010)).

Following Esmaeili and Klüppelberg (2011b) we estimate the marginal Lévy processes sep-

arately from the dependence structure. That is we use all observations with jumps larger

than ε in a certain dimension and estimate the parameters of the one dimensional Lévy

process.

For the estimation of the dependence structure, i.e., the Lévy copula, we can use that the

process consisting of all jumps larger than ε in all dimensions is a compound Poisson

process with likelihood function

Lε(γ1, . . . , γd, δ) =

e−λ
(ε)
1,...,dt

N
(ε)
1,...,d

∏
i=1

[ f1(xi1, γ1) · · · fd(xin, γd)c1,...,d(U1(xi1, γ1), . . . , Ud(xin, γd), δ)] ,

where λ
(ε)
1,...,d = C1,...,d(U1(ε, γ1), . . . , Ud(ε, γd), δ) and c1,...,d is the density of C1,...,d. This result

also holds for m-dimensional marginal Lévy processes, with m < d and is stated in Esmaeili
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and Klüppelberg (2011a) for two dimensions.

A straight forward estimation approach would be maximizing the full likelihood function

to estimate the dependence structure. This, however, is disadvantageously because of two

reasons. The first reason is a numerical one. The likelihood function is not easy to evaluate,

if more than one parameter is unknown. The second reason is more conceptual. Since

we can use only jumps larger than ε in all d dimensions, we waste a tremendous part of

the information about the dependence structure, especially if the dependence structure is

weak. For weak dependence structure, the probability that two jumps are both larger than

a threshold (conditioned that at least one jump exceeds the threshold) is lower than for

strong dependence.

For both reasons, we estimate the parameters of the bivariate Lévy and distributional cop-

ulas of the vine structure sequentially. This is also common for pair copula constructions of

distributional copulas (see, e.g., Hobæk Haff (2012)). That is we make use of the estimated

marginal parameters and start in the first tree, where we use all observations larger than ε

in the first and second component to estimate the parameters of C1,2. We continue this pro-

cedure for all other Lévy copulas in the first tree. To estimate the parameter of C13|2 we use

all observations larger than ε in dimension one, two, and three, as well as the previously

estimated marginal parameters of the first three dimensions and the parameters of C1,2 and

C2,3. That is we proceed tree by tree and within one tree, copula by copula, respectively

Lévy copula by Lévy copula. In each step, we make use of the estimated parameters from

the preceding steps.

To use the above likelihood for pair Lévy copula constructions, we have to know how to

calculate the density c1,...,d of a pair Lévy copula.

Proposition 3. Let C1,...,d be a pair Lévy copula of the following form

C1,...,d(u1, . . . , ud) =
∫

[0,u2]×,...,×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . zd−1)
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and µ1,...,d the corresponding measure and suppose that the density f2,...,d of µ2,...,d−1 exists. Then

the density of µ1,...,d exists as well and has the form

f1,...,d(u1, . . . , ud) = c(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud)) (9)

·
∂F1|u2 ,...,ud−1

(u1)

∂u1

∂Fd|u2,...,ud−1
(ud)

∂ud
(10)

· f2,...,d(u2, . . . , ud−1). (11)

This proposition is proved in the appendix and states that we can iteratively decompose the

pair Lévy copula into bivariate building blocks and therefore evaluate the density function

in an efficient manner.

In contrast to the computation of the Lévy density of the pair Lévy copula, it is not easy

to evaluate a higher dimensional pair Lévy copula itself. This is not really a drawback

since in most cases the value of C1,...,d is not needed. For the normalizing constant λ
(ε)
1,...,d

of the likelihood, however, C1,...,d has to be evaluated. For this step we apply Monte Carlo

methods. The code may be obtained from the authors on request, so that for convenience

we omit the details here.

5 Simulation Study

In order to evaluate the estimators we conduct a simulation study with a 5-dimensional

PLCC. To make the results comparable, all marginal Lévy processes are chosen to be α-

stable processes with parameters (α = 0.5, β = 1) and all bivariate Lévy copulas in the

first tree are Clayton Lévy copulas (see Equation (5)) with parameter θ. The distributional

copulas in the higher trees are all Gaussian copulas, i.e.,

CGauss
ρ (u, v) = Φρ

(

Φ−1(u), Φ−1(v)
)

,

where Φρ is the distribution function of the bivariate normal distribution with correlation

parameter ρ and Φ−1 the quantile function of the standard normal distribution.
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We analyze three different scenarios of dependence structures. High dependence (H),

medium dependence (M) and low dependence (L). In scenarios H and M we choose a

d-vine structure of the PLCC, in scenario L a c-vine structure because the c-vine structure

is numerically more appropriate for low dependencies. The d-vine structure refers to a

structure where all dimensions in the lowest tree form a line and are each connected to the

nearest neighbors, whereas the dimensions in a c-vine structure are connected to only one

central dimension (see, e.g., Aas, Czado, Frigessi, and Bakken (2009)). Within a scenario, all

Clayton Lévy copulas have the same parameter θ and all Gaussian copulas have the same

parameter ρ. The parameter values are summarized in Table 1.

Scenario Clayton Parameters θ Gaussian Parameters ρ

High dependence (H) 5 0.8
Medium dependence (M) 2 0.3

Low dependence (L) 1 -0.2

Table 1: Parameters of the PLCC for scenarios H, M and L

For each scenario, we simulate a realization of the 5-dimensional Lévy process over a time

horizon [0, T]. We then estimate the parameters of the process from the simulated data

using our estimation approach. We choose two different thresholds ε = 10−4 and ε = 10−6

for jump sizes we can observe, i.e., we neglect jumps smaller than ε = 10−4 or ε = 10−6,

respectively. Each simulation/estimation step is repeated 1000 times. The estimation results

are reported in tables 2 and 3. Shown are the true values of the parameters, the mean of the

estimates of the 1000 repetitions and resulting estimates for bias and root mean square error

(RMSE). Since the parameters in the different trees rely on different numbers of observation

(the higher the tree the more dimensions have to exceed the threshold at the same time) we

also report the mean numbers of available jumps per tree.

Comparing the two tables we see that the lower threshold leads to a higher number of

jumps. We find also that weaker dependence leads to less co-jumps available for the esti-
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Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 870.61 5 5.0038 3.78 · 10−3 2.33 · 10−1

2 833.51 0.8 0.7987 −1.28 · 10−3 1.33 · 10−2

3 814.39 0.8 0.7980 −1.97 · 10−3 1.34 · 10−2

4 798.46 0.8 0.7890 −1.10 · 10−2 2.19 · 10−2

Med. Dep. 1 707.18 2 2.0010 1.02 · 10−3 9.65 · 10−2

2 573.56 0.3 0.2983 −1.67 · 10−3 4.58 · 10−2

3 498.45 0.3 0.2983 −1.72 · 10−3 4.97 · 10−2

4 451.69 0.3 0.3001 1.31 · 10−4 5.11 · 10−2

Low Dep. 1 500.10 1 1.0016 1.63 · 10−3 4.46 · 10−2

2 267.36 -0.2 -0.1987 1.31 · 10−3 4.98 · 10−2

3 163.22 -0.2 -0.1992 7.96 · 10−4 7.12 · 10−2

4 113.91 -0.2 -0.2004 −3.76 · 10−4 9.50 · 10−2

Table 2: Results for a time horizon T=1 and a threshold ε = 10−6 for three scenarios from
low dependence to high dependence. The columns refer to the number of jumps used in the
estimation of parameters within a certain tree, the true value of the parameters, the mean
of the estimated parameters, estimated bias and RMSE from 1000 Monte Carlo repetitions.
If there is more than one dependence function in a tree, we report the mean values of the
estimators in this tree.

mation of higher trees than a stronger dependence. In all cases, the bias is very small. We

find, however, that the RMSE is affected by the number of jumps available in certain trees

as it increases with decreasing numbers of jumps. The effect is illustrated in Figure 5 in

terms of histograms of the estimates.

6 Conclusion

Lévy copulas determine the dependence of jumps of Lévy processes in a multivariate set-

ting with arbitrary numbers of dimensions. In dimensions larger than two, however, known

parametric Lévy copulas are inflexible. In this paper we develop a multidimensional con-

struction of Lévy copulas (PLCC) from 2-dimensional dependence functions which are

also Lévy copulas or just distributional copulas. The resulting Lévy copula is parametric

21



Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 87.26 5 5.0403 4.03 · 10−2 7.06 · 10−1

2 83.63 0.8 0.7933 −6.76 · 10−3 4.61 · 10−2

3 81.69 0.8 0.7810 −1.90 · 10−2 5.67 · 10−2

4 80.10 0.8 0.7086 −9.14 · 10−2 1.46 · 10−1

Med. Dep. 1 70.82 2 2.0312 3.12 · 10−2 3.19 · 10−1

2 57.47 0.3 0.2970 −3.00 · 10−3 1.50 · 10−1

3 50.00 0.3 0.2844 −1.56 · 10−2 1.59 · 10−1

4 45.37 0.3 0.2797 −2.03 · 10−2 1.63 · 10−1

Low Dep. 1 50.21 1 1.0246 2.46 · 10−2 1.55 · 10−1

2 26.88 -0.2 -0.2019 −1.87 · 10−3 1.67 · 10−1

3 16.42 -0.2 -0.1859 1.41 · 10−2 2.57 · 10−1

4 11.47 -0.2 -0.1378 6.22 · 10−2 3.44 · 10−1

Table 3: Results for a time horizon T=1 and a threshold ε = 10−4 for three scenarios from
low dependence to high dependence. The columns refer to the number of jumps used in the
estimation of parameters within a certain tree, the true value of the parameters, the mean
of the estimated parameters, estimated bias and RMSE from 1000 Monte Carlo repetitions.
If there is more than one dependence function in a tree, we report the mean values of the
estimators in this tree. Compared to Table 2 the higher threshold ε results in less observed
jumps and in higher RMSE of the estimates.
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Figure 5: Histograms of the estimation results for a time horizon T=1 and a threshold
ε = 10−6. Each column refers to one scenarios, the rows refer to the estimated parameters
in the first to fourth tree.

and has the desired flexibility. Applications of the concept may be found in operational

risk modeling or risk management of insurance companies. In both fields, Lévy copula

models have been proposed but their applicability was limited to low dimensional cases.

Our PLCC solves these limitations and opens the way to high dimensional applications.

In the paper, we propose simulation and estimation algorithms which are evaluated in a

simulation study.
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A Proof of Theorem 2

For the prove of Theorem 2 we need a lemma which we state first.

Lemma 1. Let µ be a positive Radon measure on R
d
+, f1 : x 7→ ξ1

x and f2 : x 7→ ξ2
x µ-measurable

measure-valued maps, where ξ1
x and ξ2

x are probability measures on R+ with corresponding dis-

tribution functions F1
x and F2

x . Let C be a 2-dimensional distributional copula and let ξC
x be the

probability measure defined by the distribution function C(F1
x , F2

x ) on R
2
+. Then the map x 7→ ξC

x is

µ-measurable.

proof: By definition the maps x 7→ ξ1
x(B1) and x 7→ ξ2

x(B2) are µ-measurable for any

B1, B2 ∈ B(R+). This holds in particular for the intervals [0, b] ∈ B(R+). Therefore the

maps x 7→ F1
x (b1) and x 7→ F2

x (b2) are µ-measurable for any b1, b2 ∈ R+. By definition of ξC
x

we have

ξC
x (B) = C(F1

x (b1), F2
x (b2))

for any rectangle B ∈ {[0, b1]× [0, b2]|b1, b2 ∈ R+}. Since C is a copula it is continuous and

therefore measurable, we get that x 7→ ξC
x (B) is a composition of µ-measurable functions

and therefore µ-measurable for any rectangle B ∈ {[0, b]|b ∈ R
2
+}. Now that we have

shown that x 7→ ξC
x (B) is µ-measurable for any B ∈ {[0, b]|b ∈ R

2
+} we use the same

argumentation as in the proof of Ambrosio, Fusco, and Pallara (2000, Proposition 2.6) to

show that x 7→ ξC
x (B) is µ-measurable for any B ∈ B(R2). Note that the set of intervals B ∈

{[0, b]|b ∈ R
2
+} is closed under finite intersection, it is a generator of the σ-algebra B(R2

+)

and there exists a sequence (Bh) of these intervals such that R
2
+ = ∪hBh. Denote the family

of Borel sets such that x 7→ ξC
x (B) is µ-measurable by M. Obviously M ⊃ {[0, b]|b ∈ R

2
+}.

In order to use Ambrosio, Fusco, and Pallara (2000, Remark 1.9) we have to show that the

following conditions hold

(i) (Eh) ∈ M, Eh ↑ E ⇒ E ∈ M,
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(ii) E,F, E ∪ F ∈ M ⇒ E ∩ F ∈ M,

(iii) E ∈ M ⇒ R
2\E ∈ M.

This is already shown in the first part in the proof of Ambrosio, Fusco, and Pallara (2000,

Proposition 2.26). �

Now we are able to prove Theorem 2.

In the first step we show that the integral is well-defined. From Theorem 1 follows that

(u2, . . . , ud−1) 7→ ξ1|u2 ,...,ud−1
is µ2,...,d−1-measurable. By the definition of measure-valued

maps (u2, . . . , ud−1) 7→ ξ1|u2,...,ud−1
(B) is µ2,...,d−1-measurable for any B ∈ B(R+) and espe-

cially for any B ∈ {[0, b]|b ∈ R+}. Therefore

ξ1|u2,...,ud−1
([0, b]) = F1|u2,...,ud−1

(b)

is µ2,...,d−1-measurable. With the same arguments we see immediately that Fd|u2,...,ud−1
(b) is

µ2,...,d−1-measurable for any b ∈ R+. Since every copula is continuous we can use the same

arguments as in the proof of Lemma 1 to show that

(u2, . . . , ud−1) 7→ C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

is µ2,...,d−1-measurable and the integral is well-defined. To show that C1,...,d is indeed a Lévy

copula we have to check the properties of Tankov (2005, Definition 3.3). We start by showing

that C1,...,d is d-increasing. In a first step we show this property for any d-box B, where all

vertices lie in R
d
+. For every (u2, . . . , ud−1) ∈ R

d−2
+ let ξC

1,d|u2,...,ud−1
be the probability measure

on R
2
+ defined by the distribution function C(F1|u2,...,ud−1

(u1), Fd|u2,...,ud−1
(ud)). With Lemma
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1 we know that (u2, . . . , ud−1) 7→ ξC
1,d|u2,...,ud−1

is µ2,...,d−1-measurable. By definition of C1,...,d

C1,...,d(u1, . . . , ud) =
∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

=
∫

[0,u2]×...×[0,ud−1]







∫

[0,u1]×[0,ud]

dξC
u






dµ2,...,d−1(z2, . . . , zd−1)

and therefore

C1,...,d(u1, . . . , ud) = µ2,...,d−1 ⊗ ξC
1,d|u2,...,ud−1

([0, u1]× . . . × [0, ud])

= µ1,...,d([0, u1]× . . . × [0, ud]).

Since µ2,...,d−1 ⊗ ξC
1,d|u2,...,ud−1

is a positive and well-defined measure

VC1,...,d
(B) = µ2,...,d−1 ⊗ ξC

u (B) ≥ 0.

In the next step we denote uI := {ui|i ∈ I} and show that the limes in Equation (6) exists

for any I ∈ {1, . . . , d} nonempty, I 6= {1, . . . , d}. First suppose that {1, d} ∈ I. Since I 6=

{1, . . . , d} we say w.l.o.g. that {2} /∈ I. Since C1,...,d is non-decreasing in every component it

suffices to show that

lim
uI→∞

C1,...,d(u1, . . . , ud)

= lim
uI→∞

∫

[0,u2]×...×[0,ud−1]
C(F1|z2,...,zd−1

(u1), Fd|z2,...,zd−1
(ud))dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}→∞

∫

[0,u2]×...×[0,ud−1]
dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}

∫

[0,u2]×...×[0,ud−1]

∫

[0,∞)
dξ1|z2 ,...,zd−1

dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}

∫

[0×∞)×[0,u2]×...×[0,ud−1]
dµ1,...,d−1(z1, . . . , zd−1)

= lim
uI\{1,d}

C1,...,d−1(∞, u2, . . . , ud−1)

≤ C1,...,d−1(∞, u2, ∞, . . . , ∞) = u2
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to prove that the limes exists. We use the dominated convergence theorem (e.g. Ambrosio,

Fusco, and Pallara (2000, Theorem 1.21)) and the fact that for every distributional copula

C(u1, u2) ≤ 1 holds. For inequality we use that Assumption 1 holds for the Lévy copula

C1,...,d−1. Now suppose that at least one element of {1, d} is not in I. w.l.o.g. {1} /∈ I then

we have

lim
uI→∞

C1,...,d(u1, . . . , ud)

= lim
uI→∞

∫

[0,u2]×...×[0,ud−1]
C(F1|z2,...,zd−1

(u1), Fd|z2,...,zd−1
(ud))dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{d}→∞

∫

[0,u2]×...×[0,ud−1]
F1|z2,...,zd−1

(u1)dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{d}→∞

∫

[0,u2]×...×[0,ud−1]

∫

[0,u1]
dξ1|z2 ,...,zd−1

dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{d}→∞

∫

[0,u1]×[0,u2]×...×[0,ud−1]
dµ1,...,d−1(z2, . . . , zd−1)

≤ C1,...,d−1(u1, ∞, . . . , ∞) = u1.

Now that we have shown that the limes exists it follows immediately that C1,...,d is d-

increasing on R
d
+. To show that the Lévy copula C1,...,d has Lebesgue margins, we can

again use the same Equations as before and replace "≤" by "=" in the last equation, since in

this case |I| = d − 1 and therefore we can directly use Assumption 1. �

B Proof of Proposition 2

Suppose that F1|u2,...,ud−1
and Fd|u2,...,ud−1

are continuously differentiable. For any rectangle

B = ([0, u1]×, . . . ,×[0, ud]) we get by Theorem 1

∫

Rd
+

1B(z1, . . . , zd)dµ1,...,d(z1, . . . , zd) =
∫

[0,u1]×...×[0,ud−1]
Fd|u1,...,ud−1

(ud)dµ1,...,d−1(z1, . . . , zd−1).
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By the definition of the pair Lévy copula we see that

∫

Rd
+

1B(z1, . . . , zd)dµ1,...,d(z1, . . . , zd)

=
∫

R
d−2
+

(

∫

R2
+

1B(z1, . . . , zd)dξC
1,d|u2 ,...,ud−1

)

dµ2,...,d−1(z2, . . . , zd−1)

=
∫

[0,u2]×...×[0,ud−1]

(

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))
)

dµ2,...,d−1(z2, . . . , zd−1)

=
∫

[0,u2]×...×[0,ud−1]
(

∫

[0,u1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2,...,zd−1
(z1)

∂F1|z2 ,...,zd−1
(z1)

∂z1
dz1

)

dµ2,...,d−1(z2, . . . , zd−1)

=
∫

[0,u2]×...×[0,ud−1]
(

∫

[0,u1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2,...,zd−1
(z1)

dξ1|z2 ,...,zd−1
(z1)

)

dµ2,...,d−1(z2, . . . , zd−1)

=
∫

[0,u1]×...×[0,ud−1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2 ,...,zd−1
(z1)

dµ1,...,d−1(z1, . . . , zd−1),

and therefore

Fd|u1,...,ud−1
(ud) =

∂C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

∂F1|u2 ,...,ud−1
(u1)

holds µ1,...,d−1-almost everywhere. The fact that this result does not only hold for fixed

values of ud but for all ud ∈ R+ is already shown in the proof of Tankov (2005, Lemma 4.2).

Since F1|u2,...,ud−1
, Fd|u2,...,ud−1

are continuously differentiable and C is by Assumption 2 also

continuously differentiable we get immediately that Fd|u1,...,ud−1
is differentiable and

∂Fd|u1,...,ud−1
(ud)

∂ud
=

∂2C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

∂F1|u2 ,...,ud−1
(u1)∂Fd|u2,...,ud−1

(ud)

∂Fd|u2,...,ud−1
(ud)

∂ud

is a composition of continuous functions and therefore continuous. Finally, all bivariate

Lévy copulas are by Assumption 2 continuously differentiable ans therefore the proposition

follows by complete induction. �
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C Proof of Proposition 3

This statement follows from the definition of the pair Lévy copula construction, since

C1...d(u1, . . . , ud) =
∫

[0,u2]×,...,×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2...d−1(z2, . . . zd−1)

=
∫

[0,u2]×,...,×[0,ud−1]

(

∫

[0,u1]×[0,ud]
c(F1|z2 ,...,zd−1

(z1), Fd|z2,...,zd−1
(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2 ,...,zd−1
(zd)

∂zd
d(z1, zd)

)

dµ2,...,d−1(z2, . . . zd−1)

=
∫

[0,u2]×,...,×[0,ud−1]

(

∫

[0,u1]×[0,ud]
c(F1|z2 ,...,zd−1

(z1), Fd|z2,...,zd−1
(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2 ,...,zd−1
(zd)

∂zd
d(z1, zd)

)

f2,...,d−1(z2, . . . , zd−1)d(z2, . . . zd−1)

=
∫

[0,u1]×,...,×[0,ud]
c(F1|z2 ,...,zd−1

(z1), Fd|z2,...,zd−1
(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2 ,...,zd−1
(zd)

∂zd
f2,...,d−1(z2, . . . , zd−1)d(z1, . . . , zd)

as stated. �
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