刘有发,欧阳杰宏,王丽珊,等. 2012. TiO₂改性银铝催化剂选择性丙烯还原 NO_x硫失活机制研究[J]. 环境科学学报,32(10):2524-2532 Liu Y F, Ouyang J H, Wang L S, *et al.* 2012. Deactivation of TiO₂-modified Ag/Al₂O₃ catalyst by SO₂ in the reduction of NO_x by propene[J]. Acta Scientiae Circumstantiae, 32(10):2524-2532

TiO_2 改性银铝催化剂选择性丙烯还原 NO_x 硫失活机制研究

刘有发¹, 欧阳杰宏¹, 王丽珊¹, 苏艳霞¹, 吴军良^{1,2,3}, 付名利^{1,2,3}, 黄碧纯^{1,2,3}, 叶代启^{1,2,3,*}

1. 华南理工大学环境科学与工程学院,广州 510006

2. 工业聚集区污染控制与生态修复教育部重点实验室,广州 510006

3. 广东省大气环境与污染控制重点实验室,广州 510006

收稿日期:2011-12-07 修回日期:2012-03-15 录用日期:2012-03-25

摘要:采用溶胶凝胶法制备 4% Ag/Al₂O₃、4% Ag/10% TiO₂-Al₂O₃ 催化剂.利用 N₂物理吸附、氮氧化物/二氧化硫程序升温脱附(NO_{*}/SO₂-TPD)以及普通/原位漫反射傅里叶变换红外光谱(FT-IR/DRIFTs)对催化剂进行表征,并探讨催化剂在含硫气氛前后选择性还原 NO_{*}活性的变化及中毒机理.结果表明在 4% Ag/Al₂O₃催化剂中掺杂 10% TiO₂能提高催化剂的中低温活性以及在 400 ℃下抗 SO₂中毒的能力. TiO₂引入后可促进甲酸盐物种的形成从而有利于低温反应的进行;SO₂与 NO 在同一活性位上出现的竞争吸附以及活性组分 Ag 的硫酸化是 4% Ag/Al₂O₃催化剂表面的吸附并能减弱其对 SO₂的吸附,同时能有效抑制活性组分 Ag 的硫酸化,从而提高 催化剂的抗硫性.

关键词:选择性催化还原;4% Ag/Al2O3;4% Ag/10% TiO2-Al2O3;SO2中毒;吸附;硫酸银

文章编号:0253-2468(2012)10-2524-09 中图分类号:X51 文献标识码:A

Deactivation of TiO₂-modified Ag/Al₂O₃ catalyst by SO₂ in the reduction of NO_x by propene

LIU Youfa¹, OUYANG Jiehong¹, WANG Lishan¹, SU Yanxia¹, WU Junliang^{1,2,3}, FU Mingli^{1,2,3}, HUANG Bichun^{1,2,3}, YE Daigi^{1,2,3,*}

1. School of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006

2. The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006

3. The Key Laboratory of Atmospheric Environment and Pollution Control of Guangdong Province, Guangzhou 510006

Received 7 December 2011; received in revised form 15 March 2012; accepted 25 March 2012

Abstract: Ag-base catalysts supported on Al₂O₃ and TiO₂-Al₂O₃ (the mass ratio of TiO₂ to Al₂O₃ was 1 : 10) were prepared by sol-get method respectively. The catalysts were characterized by N₂ physisorption, NO_x/SO₂-TPD, FT-IR and DRIFTs measurements. The effect of SO₂ on the selective reduction of NO_x by propene over the catalysts and the poisoning mechanism were investigated. The results showed that the catalytic activities under the low-medium temperature and the resistance of sulfur poisoning at 400 °C were enhanced after addition of 10% TiO₂. The formation of formate resulted from the introduction of TiO₂ was in favor of the reaction at low temperature, and the competitive adsorption of NO and SO₂ and the formation of silver sulfate were proved to be the main reason for deactivation of 4% Ag/Al₂O₃ catalyst. The addition of TiO₂ could not only improve the adsorption of NO and inhibit the adsorption of SO₂ on catalyst surface, but also inhibit the sulfation of Ag during the catalytic process, which could enhance sulfur poisoning performance of the catalysts eventually.

 $\textbf{Keywords: SCR; 4\% Ag/Al_2O_3; 4\% Ag/10\% TiO_2-Al_2O_3; sulfur poisoning; adsorption; silver sulfate}$

Biography: LIU Youfa (1986-), male, E-mail: lauyaofa@163.com; * Corresponding author, E-mail: cedqye@ scut.edu.cn

基金项目:国家自然科学基金(No. 51108187);大气污染控制广东高校工程技术研究中心资助项目(No. GCZX-A0903);广东高校科技成果转 化项目(No. CGZHZD0803);广东省大气环境与污染控制重点实验室资助项目(No. 2011A060901011)

Supported by the National Natural Science Foundation of China (No. 51108187), the Guangdong High Education Engineering Technology Research Center for Air Pollution Control(No. GCZX-A0903), the Fund of Transforming of Scientific Achievements in Guangdong Colleges(No. CGZHZD0803) and the Key Laboratory of Atmospheric Environment and Pollution Control of Guangdong Province(No. 2011A060901011)

作者简介: 刘有发(1986—),男, E-mail: lauyaofa@163.com; * 通讯作者(责任作者), E-mail: cedqye@ scut.edu.cn

1 引言(Introduction)

氮氧化物能引起酸雨和光化学烟雾等一系列 环境污染问题,是大气的主要污染物(Taylor, 1993). 1990 年 Iwanmoto (1991) 首次报道了 Cu-ZSM5 能利用碳氢化合物选择性催化还原富氧条件 中的 NO, 此后烃类选择性催化还原技术 (HC-SCR)为富氧条件下 NO_x的有效去除提供了可能性. 迄今,许多研究者发现多种催化剂能在富氧条件下 促进氮氧化物的还原,其中Ag/Al₂O₃催化剂因其活 性适中而备受关注(Bethke et al., 1997; He et al., 2004; Meunier et al., 1999). 但该催化剂体系的 HC-SCR 研究存在两个主要问题:低温反应活性低和抗 SO,性能差,由此导致该催化剂体系不能够很好地 适应贫燃发动机尾气的特点(Li et al., 2008). 对于 SO,对银铝催化剂体系在 HC-SCR 的影响,国内外也 有相关文献报道:F.C. Meunier(2000a)等研究了在 100×10⁻⁶SO,下对1.2%(wt)Ag/Al,O,催化剂丙烯 选择性催化还原 NO 的影响,结果表明在 486 ℃下 SO₂其毒害作用非常明显,FT-IR 结果表明催化剂表 面上形成的银和铝的硫酸盐是导致活性降低的原 因:Jen(1998)等对丙烯和丙烷混合体系选择性催化 还原 NO 进行研究,发现在 18×10-6SO,存在下,NO 的转化效率由 62% 降低到 18%; Wu(2006)等以银 铝催化剂,原位漫反射红外光谱法研究了 SO,对 C₃H₆选择性还原 NO 的影响,结果表明高浓度的硫 酸盐的存在是催化剂活性降低的主要原因:朱天乐 (2000)等利用程序升温脱附技术考察银铝催化剂 硫失活的原因,结果表明催化剂失活可能是由于存 在 SO, 时, 银铝催化剂吸附 NO 能力的降低.

从以上研究发现,银铝催化剂银活性位上和铝 活性位上形成硫酸盐是催化剂失活的重要原因,但 鉴于反应的复杂性,亟需对特定条件下银或铝活性 上的硫酸盐的单独作用机制进一步研究.TiO₂作为 载体的商业催化剂(V₂O₅/TiO₂)广泛应用于固定源 中 NO_x的催化净化,具有活性高、抗硫性强等特点, 但其比表面积较小.在加氢脱硫反应中广泛应用的 Al₂O₃与 TiO₂的复合氧化物 TiO₂-Al₂O₃ 催化剂,具 有良好的抗硫性能(Dhar *et al.*,2003).因此以 TiO₂ 掺杂的银铝催化剂体系具有广阔的研究前景.为提 高银铝催化剂的低温活性及抗硫性能,本文利用抗 硫活性较好的 TiO₂与比表面积较大的 Al₂O₃,采用 溶胶凝胶法制备并筛选出一定化学计量比的 Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃催化剂(TiO₂与 Al₂O₃的质量比为1:10;银的负载量4%(质量分数)),在固定床连续流动反应器上考察丙烯在硫气氛下对NO的催化还原性能,并利用 N₂吸附、氮氧化物/二氧化硫程序升温脱附(NO_x/SO₂-TPD)、普通以及原位漫反射傅里叶变换红外光谱(FT-IR/DRIFTS)等表征手段探讨钛改性银铝催化剂选择性催化丙烯还原氮氧化物硫失活机制,为 HC-SCR 脱硝催化剂抗中毒性能的改善提供初步的理论依据.

2 实验部分(Experimental section)

2.1 催化剂的制备与活性评价

采用溶胶凝胶法制备银铝催化剂以及二氧化 钛改性的银铝催化剂(Li *et al.*,2008;Takagi *et al.*, 1998):将8.01g的异丙醇铝加入至85℃、80 mL的 水中并剧烈搅拌60 min 使之充分水解后,慢慢滴加 1 mL的浓硝酸(68%)使其形成透明溶胶,然后按照 一定的化学计量比加入0.2 mol·L⁻¹的硝酸银水溶 液并剧烈搅拌6h.经陈化12h形成凝胶、100℃下 干燥24h、600℃下焙烧3h后得到质量分数为4% 的Ag/Al₂O₃.若要制备二氧化钛改性的银铝催化剂, 在前面形成透明溶胶的同时加入一定的化学计量 比100g·L⁻¹钛酸丁酯的乙醇溶液并搅拌30 min,此 后制备方法不变,此催化剂可表示为4% Ag/10% TiO₂-Al₂O₃,其中4%为银质量分数,10%为TiO₂与 Al₂O₃的质量比.

催化剂活性评价在内径 12 mm 的石英玻璃固 定床反应器中进行,催化剂填充高度 6 mm,用量为 500 mg,反应空速约为 40000 h⁻¹.混合气中各组分 流量通过质量流量控制器 MFC(北京七星华创)调 节.混合气中 NO、C₃H₆、O₂、SO₂的体积分数分别为 500×10⁻⁶、1000×10⁻⁶、5%、O 或 80×10⁻⁶,Ar 为平 衡气.反应前后气体组成中 NO、NO₂经过 42i-HL 型 化学发光 NO-NO₂-NO_x分析仪(美国 Thermo 公司) 在线分析. NO_x的转化率(δ (NO_x))按下式计算:

$$\delta(\mathrm{NO}_{x}) = \frac{\psi(\mathrm{NO}_{x})_{\mathrm{in}} - \psi(\mathrm{NO}_{x})_{\mathrm{out}}}{\psi(\mathrm{NO}_{x})_{\mathrm{in}}} \times 100\% \quad (1)$$

式中, $\psi(NO_x)_{in}$ 为进口 NO_x体积分数; $\psi(NO_x)_{out}$ 为 出口 NO_x体积分数.

2.2 N2吸附分析

样品的比表面、孔容及孔径分析通过美国 Micromeritics 公司的 ASAP 2020M 全自动比表面积 及孔隙分析仪测定,比表面通过 Brunauer-EmmerttTeller(BET)方法计算,平均孔径与孔容通过对 N₂ 吸附等温线使用 BJH 方法计算得出.

2.3 程序升温脱附分析(TPD)

程序升温脱附(SO_2/NO_x -TPD):采用美国 Micromeritics AutoChem II 2920 全自动程序升温化学 吸附仪.载气组成为He,载气流速为30 mL·min⁻¹, 催化剂用量为70 mg.

NO-TPD:先用 5% O₂/He 在 600 ℃下吸附 60 min 后降至 60 ℃,然后用 10% NO/He 吸附 30 min, 再用 He 气吹扫 60 min;最后待基线稳定后从 60 ℃ 升至 600 ℃进行脱附,升温速率为 10 ℃·min⁻¹.

SO₂-TPD:先用 5% O₂/He 在 600 ℃下吸附 60 min 后降至 400 ℃,然后用 2% SO₂/He 吸附 60 min, 再降温至 60 ℃;最后待基线稳定后从 60 ℃升至 600 ℃进行脱附,升温速率为 10 ℃·min⁻¹.

2.4 普通漫反射傅里叶红外(FT-IR)

普通红外分析采用德国 bruker 公司 vector 33 傅利叶红外光谱仪进行分析. 样品首先在环境空气 下与 KBr 充分研磨混合(质量比1:100)后压片,并 将所制片置于普通红外测试架上进行实验.

测试分析条件:扫描范围为 4000~400 cm⁻¹, 分辨率为 4 cm⁻¹,扫描次数为 32 次.

2.5 原位漫反射傅里叶红外(in situ DRIFTs)

In situ DRIFTS 通过附带漫反射原位池和高灵 敏度 MCT 检测器的 Nicolet6700 傅利叶红外光谱仪 进行分析. 红外光谱仪采样范围为 4000 ~ 600 cm⁻¹,分辨率为4 cm⁻¹,扫描次数为 64 次,进气流 量为 100 mL·min⁻¹. 催化剂粉末试样直接置于原位 池的样品台内并压实,反应前在 450 ℃下经过 Ar 吹 扫 1h 除去表面杂质后,先降至 400 ℃摄取单通道光 谱为背景,再通入反应气体. 以 Ar 为平衡气,反应气 体直接进入红外光谱仪的原位池与催化剂作用,反 应气体的组成及各组分体积分数与活性测试相同.

3 结果与讨论(Results and discussion)

3.1 催化剂活性评价结果

图 1 显示了掺杂 10% TiO₂对催化剂活性的影 响,结果表明掺杂前后催化剂的活性最高都能达到 90% 以上,但掺杂后催化剂的活性窗口范围变宽,这 与 Li(2008)的结论相一致:TiO₂的加入使催化剂在 中低温区的活性(<400 \C)有了一定提高,例如在 350 \C 下 NO_x的转化率由 21.5% 提升到 60% 左右, 但在高温区(\ge 400 \C)下,掺杂前后两者的活性相

差无几.

图 2 显示了在反应温度为 400 ℃时 SO₂ 对 Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃ 催化剂活性的影响, 结果表明 80×10⁻⁶SO₂的存在对这两种催化剂都具 有毒化作用,其中 SO₂对Ag/Al₂O₃的毒化作用更为 明显:在反应了 550 min 后催化活性由 90% 下降到 22% 左右;而 Ag/TiO₂-Al₂O₃ 催化剂在相同的反应 条件下能保持 68% 左右的催化活性,说明 TiO₂的掺 杂能提高催化剂在 400 ℃下的抗硫性能. 当切断 SO₂气体 60 min 后Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃ 催 化剂活性基本保持不变,但均不能恢复到原始水平.

图 1 Ag/Al₂O₃与 Ag/TiO₂-Al₂O₃催化剂活性评价

图 2 400 ℃下 SO₂对催化剂活性的影响

Fig. 2 The effect of SO_2 on Ag/Al_2O_3 and Ag/TiO_2-Al_2O_3 catalysts at 400 $^\circ\!C$

3.2 BET 比表面及孔容分析

表1列出了图2毒化反应前后催化剂物化性质的变化, Jagtap(2009)和 Chen(2009)等认为低比表

面积 TiO₂的加入会阻塞 Al₂O₃ 孔道,导致复合氧化物 TiO₂-Al₂O₃ 比表面比单一氧化物 Al₂O₃ 小,但从表1中可看出 TiO₂的引入能使银铝催化剂的比表面积、孔径以及孔容均有一定程度的提高,说明 TiO₂的加入可以减少催化剂在煅烧过程中的比表面积和孔容损失,使催化剂颗粒度减少,这将有利于反应气体和催化剂表面活性点位的充分接触,提高反应速率.

然而毒化反应后Ag/Al₂O₃催化剂的比表面与孔 容都迅速下降:分别由 162.18 m²·g⁻¹和 0.208 cm³·g⁻¹下降到 100.52 m²·g⁻¹和 0.084 cm³·g⁻¹.当 引入了 TiO₂后Ag/Al₂O₃催化剂比表面与孔容虽有 一定程度下降,但下降幅度低于Ag/Al₂O₃催化剂,说 明 TiO₂的加入能有效抑制毒化反应后催化剂比表 面与孔容的损失.

表1 反应前后Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃催化剂比表面与孔 变化

Table 1 Changes of BET surface area and pore volume over the fresh and used catalysts

Samula	Ag/Al_2O_3		Ag/TiO ₂ -Al ₂ O ₃	
Sample	Fresh	Used	Fresh	Used
BET surface area/($m^2 \cdot g^{-1}$)	162.18	100.52	178.76	158.26
Average pore diameter/nm	4.46	3.52	4.58	4.34
Pore volume/($\rm cm^3 {\ \cdot} g^{-1}$)	0.208	0.084	0.233	0.198

3.3 TPD 分析

3.3.1 NO-TPD 分析 NO 在催化剂表面的吸附与 转化是进行 SCR 反应的关键步骤,催化剂对 NO 吸 附能力的强弱影响着催化剂脱硝活性.为此,对 Ag/Al,O₃以及 Ag/TiO₂-Al₂O₃催化剂吸附 NO 的能 力进行比较,结果如图 3a 所示. 对于Ag/Al,O,催化 剂,其 NO-TPD 谱图主要存在两个脱附峰(110 ℃与 410 ℃).110 ℃的脱附峰可表示为弱吸附态物种 (亚硝酸盐、气态 NO 等)的分解;而410 ℃的脱附峰 可表示为 NO 氧化形成硝酸盐后高温下分解所产生 的(Li et al., 2004; Li et al., 2005). 对于 Ag/TiO2-Al₂O₃催化剂,其两个脱附峰出现了向左偏移的现 象(96 ℃与329 ℃),并且峰强有了很大的提高,这 可能是由于 TiO,引入有利于催化剂活性组分在载 体表面高度分散从而提高在低温下银铝催化剂对 NO_的吸附能力(Li et al., 2008),促进了低温下的 NO,催化活性,这与图1活性评价结果相一致.表2 分别计算了在 200 ℃到 550 ℃下两种催化剂吸附 NO₂的量.

图 3 Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃催化剂的 TPD 谱图(a. NO-TPD, b. SO₂-TPD)

3.3.2 SO₂-TPD 分析 为了比较 Ag/Al₂O₃ 以及 Ag/TiO₂-Al₂O₃ 催化剂吸附 SO₂能力的强弱,对二者 分别进行了 SO₂-TPD 测试,其结果如图 3b 所示, Ag/Al₂O₃催化剂 SO₂-TPD 谱图主要有两个脱附峰, 第一个是低温下的脱附峰,表现为亚硫酸盐的分解 所产生的 SO₂,另一个高温段的脱附峰则(500 ℃) 归属于催化剂表面 Ag 活性位上硫酸盐的分解(Abe *et al.*,1998;Xie *et al.*,2007).

Ag/TiO₂-Al₂O₃催化剂的 SO₂-TPD 谱图与 Ag/Al₂O₃的类似,与银铝催化剂的谱图相比较,TiO₂ 掺杂后高温段(475 ℃)峰强明显减弱,说明TiO₂的 引入能抑制银活性位的硫酸化.表2分别计算了 400~600℃下催化剂的SO₂脱附量.另一点需要注 意的是,在400℃下催化剂表面的硫酸银几乎不分 解,这使得在该温度下催化剂表面的硫酸盐不断累 积,最终导致催化剂慢慢地失去活性,而TiO₂的加 入减弱了催化剂表面硫酸盐累积效应,使催化剂在 SO₂作用下仍然保持良好的活性(图 2). Wu(2006) 等提出 SO₂对银铝催化剂活性的影响与温度密切相 关,温度越低,催化活性受到的影响就越大. 该论断 只局限于不同温度下活性的对比,并未提及 SO₂存 在下反应温度对催化剂物化性质的影响. 本文的银 铝催化剂 SO₂-TPD 谱图对这个结论做了很好的解 释:硫酸银物种大约在400 ℃下开始脱附,如果在高 温反应条件下, SO₂在催化剂表面吸附和转化所形 成硫酸银物种就会分解,催化剂表面硫酸盐物种浓 度大大减少,导致高温下 SO₂的抑制作用明显弱于 低温. 这也从另一个角度上说明活性组分 Ag 的硫 酸化是催化剂失活的重要原因.

表 2 各种催化剂的 NO_{x/}SO₂脱附量

Table 2 Desorption amount of NO and SO₂ on Ag/Al₂O₃ and Ag/TiO₂-Al₂O₃ catalysts

Samples	Desorption capacity of NO ∕(µmol⋅g ⁻¹)	Desorption capacity of SO ₂ $/(\mu mol \cdot g^{-1})$
Ag/Al ₂ O ₃	475	941
$\rm Ag/TiO_2\text{-}Al_2O_3$	817	607

3.4 普通红外分析(FT-IR)

为了研究含硫气氛下催化剂表面形成可能导 致催化剂中毒的中间物种,本文利用普通漫反射红 外对毒化反应后催化剂进行表征,结果如图4所示, 1610 cm⁻¹处的吸收峰为样品中吸收的分子态水的 弯曲振动吸收峰,可能是样品的制备过程中吸收了 环境空气中的水分所致.另外Ag/Al₂O₃催化剂的红 外谱图中出现了 1316 与 1116 cm⁻¹吸收峰,分别归 属于 Ag₂SO₄特征吸收峰(Meunier *et al.*,2000)以及

图 4 毒化反应后Ag/Al₂O₃与 Ag/TiO₂-Al₂O₃催化剂普通红 外谱图

Fig. 4 $$\rm FT-IR$ spectra of Ag/Al_2O_3$ and Ag/TiO_2-Al_2O_3$ catalysts after use in the SCR of NO in the presence of <math display="inline">80\times10^{-6}$ SO_2$$

在铝活性位上双齿配体硫酸盐 O —S —O 对称伸缩 振动吸收峰(Haneda et al.,2001),这些特征峰的出 现证明了毒化反应后催化剂表面形成了硫酸银与 硫酸铝物种.相反 Ag/TiO₂-Al₂O₃催化剂特征吸收 峰强度有所减弱,一方面说明 TiO₂的掺杂抑制了该 催化剂表面的硫酸银生成,具体原因在 3.5 节论述; 另一方面据文献报道在 Al₂O₃上形成的硫酸盐热稳 定性优于 TiO₂(Saur et al.,1986),这表明 Ag/TiO₂-Al₂O₃催化剂表面上形成的硫酸盐易于分解从而保 护了 Ag 与 Al 活性位,减弱其硫化作用,从而提高催 化剂抗硫中毒能力.

3.5 原位红外分析(In situ DRIFTs)

图 2 活性评价结果证明 400 ℃下 SO₂对催化剂 存在一定的毒害作用,导致催化剂失活.为了探讨 催化剂失活的原因及其中毒机理,本文利用原位漫 反射红外技术对反应过程中催化剂表面生成的吸 附物种进行检测,实验共分两步进行:SCR 反应气 体(500×10⁻⁶NO+1000×10⁻⁶C₃H₆+5% O₂)在 400℃下吸附 60 min;吸附 SCR 反应气 60 min 后在 相同温度下通入 80×10⁻⁶二氧化硫 120 min,其间 观察催化剂表面吸附物种的变化.

图 5a、图 5b 分别给出了 Ag/Al₂O₃ 以及 Ag/ TiO₂-Al₂O₃ 催化剂在 80×10⁻⁶SO₂作用下的漫反射 红外谱图. 基于文献报道(Meunier *et al.*, 1999; Jagtap *et al.*,2009; Meunier *et al.*,2000a; Hadjiivanov *et al.*,2000; He *et al.*,2003; Meunier *et al*,2000b), 单齿硝酸盐(Monodentate nitrate)、桥式与螯合式双 齿硝酸盐(Chelating bidentate nitrate and Bridging bidentate nitrate)、羧酸盐(Carboxylate)、甲酸盐 (Formate)、烯醇类物种(Enolic species)以及异氰酸 酯物种(Isocyanate)的结构及特征吸收峰汇总在表 3 中.

对银铝催化剂 $C_3 H_6$ 选择性催化还原 NO 的反 应机理的研究,各学者们都形成了比较一致的观点 (Meunier *et al.*,2000b; Roy *et al.*,2009; Liu *et al.*, 2006):在富氧条件下,首先 NO 与 $C_3 H_6$ 经历部分氧 化,形成 NO₃⁻ 与 COO⁻ 以及 CH₃COO⁻ 等表面吸附 态物种,然后硝酸盐与羧酸盐物种反应生成硝基物 种(R—NO₂或 R—ONO),硝基物种迅速水解形成 R—CN 或 R—NCO,最后 R—CN 或 R—NCO 与 NO + O₂或 NO₂反应生成 N₂与 CO₂.

通入混合气 NO + C₃H₆ + O₂后, Ag/Al₂O₃以及 Ag/TiO₂-Al₂O₃催化剂的表面均可以观察到部分红

图 5 400 ℃下Ag/Al₂O₃(a)和 Ag/TiO₂-Al₂O₃(b)催化剂在含硫气氛中的原位红外光谱图((1)NO + C₃H₆ + O₂反应 60 min,(2)在反应 气氛中通入 SO₂ 10 min,(3)20 min,(4)30 min,(5)40 min,(6)50 min,(7)60 min,(8)90 min,(9)120 min)

Fig. 5 DRIFTs spectra over (a) Ag/Al_2O_3 and (b) $Ag/TiO_2-Al_2O_3$ in the presence of SO_2 at 400 °C ((1) NO + $C_3H_6 + O_2$ -60 min, (2) NO + $C_3H_6 + O_2$ -60 min, (2) NO + $C_3H_6 + O_2 + SO_2 - 10$ min, (3)20 min, (4)30 min, (5)40 min, (6)50 min, (7)60 min, (8)90 min and (9)120 min)

外特征吸收峰的出现(图 5a(1)与图 5b(1)):以 Ag/ TiO₂-Al₂O₃ 的红外谱图为例,1304 cm⁻¹与 1564c m⁻¹ 处的吸收峰分别归属为桥式双齿硝酸盐-ONO 的不 对称伸缩振动及单齿硝酸盐 N == O 的伸缩振动 (Hadjiivanov *et al.*, 2000; Meunier *et al.*, 2000b). 1458 cm⁻¹与 1577 cm⁻¹处分别为羧酸盐 OCO 的对称 及不对称伸缩振动(Jagtap *et al.*, 2009). 其他检测到 的物种还有丙烯部分氧化产物甲酸盐(1394 cm⁻¹) (Meunier *et al.*, 1999)及烯醇类物种(1638 cm⁻¹) (He *et al.*, 2003). 但整个反应过程中没有检测到异 氰酸酯物种(Al—NCO 与 Ag—NCO),这可能是由于 异氰酸酯物种在反应气氛中下具有很高的反应性所 致(Nguyen et al.,2010).对比图 5a(1)与图 5b(1)可 知,在 1350 cm⁻¹至 1700 cm⁻¹区域里 Ag/TiO₂-Al₂O₃ 催化剂对应的吸收峰强于Ag/Al₂O₃,说明 TiO₂ oh加 入有利于催化剂表面形成更多的活性物种,促进了 反应的进行.特别值得注意的是,在 400 ℃下反应过 程中 Ag/TiO₂-Al₂O₃ 催化剂能够检测到少量甲酸盐 物种,在 C₃H₆-SCR 反应中,丙烯在低温下部分氧化 产物主要为甲酸盐,高温下主要为乙酸盐(Li et al., 2008),甲酸在低温下更容易与硝酸盐反应生成 CN、 NCO 等活性中间体. 因此我们推测在低温下 TiO, 的 引入促进了反应过程甲酸盐形成,提高了银铝催化 剂低温下的活性,这与图1的评价结果相一致.

通过原位红外也分析了 SO,对反应过程所形成 的中间物种的影响,以Ag/Al₂O₃为例,图5a(1)~(9) 分别记录了400 ℃下,反应气体为 NO + C₃H₆ + O₂ + SO,吸附不同时间的红外谱图.从图中可以看出通入 SO, 10 min 后, 在 1306 cm⁻¹处出现了微弱的硫酸银 吸收峰,这是由于硝酸盐特征峰(1296 cm⁻¹)在10 min 后出现宽化并消失,转变为 1306 cm⁻¹与 1293 cm⁻¹吸收峰. 该现象说明了催化剂表面存在的硫酸 银导致了催化剂的失活,这与 Meunier 和 Ross (2000a)的结论相一致:他们研究了在银负载量为 1.2(质量分数)的银铝催化剂中,SO2对C3H6-SCR反 应体系的影响,结果表面在100×10-6SO。下催化剂 很快并永久地失活,催化剂表面上的硫酸银物种是 导致失活的主要原因. 另外据文献报道(Roy et al., 2009;Liu et al., 2006;Kim et al., 2011),在银铝催化 剂作用下的选择性催化还原 NO 体系中, NO 在催化 剂表面氧化后所形成的硝酸盐物种是反应过程中关 键中间物种,是活性中间体 CN 与 NCO 的前驱体之 一.从 DRIFTs 图中可以看出,当引入 SO,后,催化剂 表面的乙酸盐、硝酸盐、烯醇类物种对应的峰强也不 断减少,特别是硝酸盐的生成受到严重抑制,这可能 是由于 SO,与 NO 在催化剂表面碱性位上出现竞争 吸附所致,硫酸盐在催化剂表面持续生成后占据了 Ag/Al₂O₃活性位,导致 NO₃⁻ 在其表面难以生成(Wu et al., 2006; 金瑞奔, 2010; 伍斌等, 2008). 这些现象 均证明了 Ag₂SO₄的存在阻碍了反应过程中中间物种 的形成而导致催化剂中毒.

相对于 SO₂对Ag/Al₂O₃催化剂的影响,我们更加 关注 SO,对 Ag/TiO,-Al,O, 催化剂的影响. 从图 5b 可 以看出,SO,引入后60 min 才出现硫酸银微弱的特征 吸收峰,比Ag/Al₂O₃推迟了 50 min. 值得注意的是通 入80×10⁻⁶ SO,120 min 后,甲酸盐、乙酸盐、硝酸盐 以及烯醇类物种峰强减弱程度较Ag/Al,O,小,说明 TiO,的加入能有效抑制活性组分 Ag 的硫酸化. 从谱 图中没有检测到 Al₂(SO₄),特征吸收峰,可能是 SO₂ 浓度太低(80×10⁻⁶)而且作用时间较短(120 min) (Jagtap *et al.*, 2009).

Table 3 Assignments of IR bands formed on Ag/Al2O3 and Ag/TiO2-Al2O3 during in situ studies							
Wavenumber /cm ⁻¹	Surface species	Structure	Vibration	Observed wavenumber/cm ⁻¹	References		
1550	Monodentate nitrate	M—0—N 0	N=0	1545 (Fig. 5a) 1564 (Fig. 5b)	Hadjiivanov ,2000 ; Meunier <i>et al.</i> , 2000b		
1580	Chelating bidentate nitrate	M_N—0	N—O	Not detect	Meunier et al. ,1999		
1305	Bridging bidentate nitrate	N—O—M OM	a _{ONO}	1296(Fig. 5a) 1304(Fig. 5b)	Hadjiivanov,2000; Meunier <i>et al.</i> , 2000b		
1575 1456	Carboxylate	C00 ⁻	a _{0C0} s _{0C0}	1571 (Fig. 5a) 1577 (Fig. 5b) 1457 (Fig. 5a) 1458 (Fig. 5b)	Jagtap et al. ,2009		
1390	Formate	HCOO -	δ_{CH}	1394	Meunier et al. ,1999		
1313	silver sulfate	Ag_2SO_4		1306 (Fig. 5a) 1309 (Fig. 5b)	Meunier et al. ,2000a		
1384	Sucralfate	$\operatorname{Al}_2(\operatorname{SO}_4)_3$		Not detect	Haneda et al. ,2001		
1637	Enolic species	$H_2C = CH - 0 - M$		1640(Fig. 5a) 1638(Fig. 5b)	He et al. ,2003		
2235 ~ 2230 2262 ~ 2258	Isocyanate	Ag—NCO Al—NCO		Not detect	Hadjiivanov, 2000		

表 3 原位红外漫反射中出现的中间物种及其出峰位置

3.6 催化剂失活作用机制研究

综上结果可发现, SO, 主要通过两方面引起 Ag/Al,O,催化剂的失活:首先,SO,与NO都是酸性 气体,它们很容易吸附在同一活性位上,存在着较 强的竞争吸附,从图 5a 中可以看出,当反应气氛中 含有80×10-6SO,时,硝酸盐特征峰强度迅速下降 到很低水平,这意味着在 C₃H₆ - SCR 反应中,当反 应气氛存在 SO,时,NO 在催化剂表面的吸附和氧化 会在很大程度上会受到抑制,导致没有足够的硝酸 盐物种与丙烯的部分氧化产物(甲酸盐、乙酸盐及 烯醇类物种)起反应,从而使催化剂活性大大降低, 这是Ag/Al,O,催化剂快速失活的重要原因之一;此 外,在原位红外实验中得知通入 SO,10 min 后催化 剂表面开始形成 Ag₂SO₄(图 5a(2)), SO₂-TPD 表明 该硫酸盐在400℃下不会分解,不断沉积的硫酸银 物种会堵塞催化剂表面的孔道,大大减少催化剂的 有效比表面积和孔容从而引起催化剂活性的降低.

值得注意的是,在 Ag/TiO2-Al2O3 催化剂上,一 方面由于 TiO,的加入提高了活性组分 Ag 的分散程 度,使得 NO 在 Ag/TiO2-Al2O3 催化剂表面的吸附能 力大大增强,另外 SO,-TPD 表征显示该催化剂表面 上生成的硫酸盐量较少,说明 TiO,的引入能弱化 SO,的吸附,导致 NO 与 SO,的竞争吸附中 NO 处于 优势;另一方面在原位红外实验中得知引入 SO, 60 min后 Ag₂SO₄才开始形成(图 5b(7)),说明 TiO₂ 的加入能使活性组分 Ag 的硫酸化程度减弱. 据 Saur(1986)等的报道,TiO,的存在会对催化剂其他 组分起到保护的作用.由于 TiO,上的硫酸盐热稳定 性低于 Al,O, 上的硫酸盐,这意味着即使 TiO,被硫 酸化,这些沉积在载体上的硫酸盐很容易以二氧化 硫的形式脱附.从而降低活性组分 Ag 的硫酸化.综 上所述,TiO,的加入能有效地提高银铝催化剂的抗 SO,毒化作用. 但是由于在富氧条件(5% O,)、温度 为400 ℃下 SO,与 Ag 的反应生成的硫酸银物种在 催化剂表面的沉积仍然无法避免,因此在毒化过程 中 Ag/TiO,-Al,O,催化剂去除 NO,的活性仍缓慢下 降(图2).

4 结论(Conclusions)

1)反应气氛中没有 SO₂情况下 TiO₂的引入能提 高催化剂中低温下的活性,350 ℃时的催化活性由 21.5%提高到 60% 左右,TiO₂引入后促进了甲酸盐 的形成,有利于低温反应的进行. 2)在400 ℃反应环境下 SO₂的存在对Ag/Al₂O₃ 催化剂具有明显的毒化作用:反应了 550 min 后催 化活性由 90%下降到 22% 左右;而在银铝催化剂中 添加 10% TiO₂能有效的提高催化剂的抗 SO₂性能: 在相同的反应条件下能保持 68% 左右的催化活性.

3) N₂物理吸附、TPD、FT-IR 以及 DRIFTs 表征 结果表明,SO₂与 NO 在同一活性位上出现的竞争吸 附以及活性组分 Ag 的硫酸化是Ag/Al₂O₃催化剂失 活的重要原因;而掺杂 TiO₂后能促进 NO 在银铝催 化剂表面的吸附并能减弱其对 SO₂的吸附;另一方 面 TiO₂的加入能在一定程度上抑制催化剂活性组 分 Ag 硫酸化,从而提高催化剂抗硫性.

责任作者简介:叶代启,男,博士,教授(博士生导师),现任 华南理工大学环境科学与工程学院环境工程系主任.主要研 究方向为大气环境科学与污染控制、环境空气净化处理技 术,在国内外刊物上发表论文 100 余篇,近3 年来主持科研 项目 20 余项.

参考文献(References):

- Abe A, Aoyama N, Sumiya S, et al. 1998. Effect of SO₂ on NO_x reduction by ethanol over Ag/Al₂O₃ catalyst[J]. Catalysis Letters, 51(1): 5-9
- Bethke K, Kung H. 1997. Supported Ag catalysts for the lean reduction of NO with $C_3 H_6$ [J]. Journal of Catalysis, 172(1): 93-102
- Chen J, Guo Y, Uesawa N, et al. 2009. Promotional effect of titanium on the catalytic performance of anodic alumina supported silver catalyst for the selective reduction of no with propene[J]. Journal of Chemical Engineering of Japan, 42(3): 172-183
- Dhar G M, Srinivas B, Rana M, et al. 2003. Mixed oxide supported hydrodesulfurization catalysts — a review [J]. Catalysis Today, 86 (1/4): 45-60
- Hadjiivanov K. 2000. Identification of neutral and charged $N_x O_y$ surface species by IR spectroscopy [J]. Catalysis Reviews-Science and Engineering, 42(1/2): 71-144
- Haneda M, Kintaichi Y, Mizushima T, et al. 2001. Structure of Ga₂O₃-Al₂O₃ prepared by sol-gel method and its catalytic performance for NO reduction by propene in the presence of oxygen [J]. Applied Catalysis (B: Environmental), 31(2): 81-92
- He H, Wang J, Feng Q, et al. 2003. Novel pd promoted Ag/Al₂O₃ catalyst for the selective reduction of NO_x [J]. Applied Catalysis (B: Environmental), 46(2): 365-370
- He H, Zhang C, Yu Y. 2004. A comparative study of Ag/Al_2O_3 and Cu/Al_2O_3 catalysts for the selective catalytic reduction of NO by C_3 $H_6[J]$. Catalysis Today, 90(3/4): 191-197
- Iwamoto M, Hamada H. 1991. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes [J]. Catalysis Today, 10(1): 57-71

- Jagtap N, Umbarkar S B, Miquel P, et al. 2009. Support modification to improve the sulphur tolerance of Ag/Al₂O₃ for SCR of NO_x with propene under lean-burn conditions [J]. Applied Catalysis (B: Environmental), 90(3/4): 416-425
- Jen H. 1998. Study of nitric oxide reduction over silver/alumina catalysts under lean conditions: Effects of reaction conditions and support [J]. Catalysis Today, 42(1/2): 37-44
- 金瑞奔. 2010. 负载型 Mn-Ce 系列低温 SCR 脱硝催化剂制备、反应 机理及抗硫性能研究[D]. 杭州:浙江大学. 54-72
- Jin R B. 2010. Study on the supported Mn-Ce low temperature SCR DeNO_x catalysts:preparation, reaction mechanism and SO₂ tolerance [D]. Hangzhou: Zhejiang University. 54-72(in Chinese)
- Kim M K, Kim P S, Baik J H, et al. 2011. DeNO_x performance of Ag/Al₂O₃ catalyst using simulated diesel fuel-ethanol mixture as reductant[J]. Applied Catalysis (B: Environmental), 105(1/2): 1-14
- Li J, Hao J, Cui X, et al. 2005. Influence of preparation methods of In₂O₃/Al₂O₃ catalyst on selective catalytic reduction of no by propene in the presence of oxygen[J]. Catalysis letters, 103(1): 75-82
- Li J, Hao J, Fu L, et al. 2004. Cooperation of Pt/Al₂O₃ and In/Al₂O₃ catalysts for NO reduction by propene in lean burn condition [J]. Applied Catalysis (A: General), 265(1): 43-52
- Li J H, Zhu Y Q, Ke R, et al. 2008. Improvement of catalytic activity and sulfur-resistance of Ag/TiO₂-Al₂O₃ for NO reduction with propene under lean burn conditions [J]. Applied Catalysis (B: Environmental), 80(3/4): 202-213
- Liu Z, Woo S I. 2006. Recent advances in catalytic DeNO_x science and technology[J]. Catalysis Reviews, 48(1): 43-89
- Meunier F, Breen J, Zuzaniuk V, et al. 1999. Mechanistic aspects of the selective reduction of NO by propene over alumina and silveralumina catalysts[J]. Journal of Catalysis, 187(2): 493-505
- Meunier F, Ross J. 2000a. Effect of ex situ treatments with SO₂ on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and NO₂ by propene[J]. Applied Catalysis (B:

Environmental), 24(1): 23-32

- Meunier F, Zuzaniuk V, Breen J, et al. 2000b. Mechanistic differences in the selective reduction of NO by propene over cobalt-and silverpromoted alumina catalysts: kinetic and in situ DRIFTS study[J]. Catalysis Today, 59(3/4): 287-304
- Nguyen L Q, Salim C, Hinode H. 2010. Roles of nano-sized Au in the reduction of NO_x by propene over Au/TiO₂: An in situ DRIFTS study[J]. Applied Catalysis (B: Environmental), 96 (3/4): 299-306
- Roy S, Hegde M, Madras G. 2009. Catalysis for NO_x abatement [J]. Applied Energy, 86(11): 2283-2297
- Saur O, Bensitel M, Saad A, et al. 1986. The structure and stability of sulfated alumina and titania[J]. Journal of Catalysis, 99(1): 104-110
- Takagi K, Kobayashi T, Ohkita H, et al. 1998. Selective reduction of NO on Ag/Al₂O₃ catalysts prepared from boehmite needles [J]. Catalysis Today, 45(1/4): 123-127
- Taylor K C. 1993. Nitric oxide catalysis in automotive exhaust systems [J]. Catalysis Reviews-Science and Engineering, 35(4): 457-481
- 伍斌,黄妍,郑毅,等. 2008. SO₂对 Mn-Cu-Ce/TiO₂低温选择催化还 原 NO 的影响[J]. 环境科学学报, 28 (5): 960-964
- Wu B, Huang Y, Zheng Y, et al. 2008. Effect of SO₂ on selective catalytic reduction of NO over Mn-Cu-Ce/TiO₂ at low temperature [J]. Acta Scientiae Circumstantiae, 28(5):960-964(in Chinese)
- Wu Q, Gao H, He H. 2006. Study on effect of SO₂ on the selective catalytic reduction of NO_x with propene over Ag/Al₂O₃ by in Situ DRIFTS[J]. Chinese Journal of Catalysis, 27(5): 403-407
- Xie S X, Wang J, He H. 2007. Poisoning effect of sulphate on the selective catalytic reduction of NO_x by C₃H₆ over Ag-Pd/Al₂O₃[J]. Journal of Molecular Catalysis a-Chemical, 266(1/2): 166-172
- 朱天乐,郝吉明,周中平.等.2000. Ag/Al₂O₃催化剂用于碳氢化合物 选择性还原 NO[J].中国环境科学,20(5):473-476
- Zhu T L, Hao J M, Zhou Z. P, et al. 2000. Application of the Ag/Al₂O₃ catalyst in the selectively catalytic reduction of NO by hydrocarbons [J]. China Environmental Science, 20(5): 473-476 (in Chinese)