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ABSTRACT 

Assessment of seismic safety of the nuclear power plants requires knowledge of plant fragilities. In the paper, prelimi-
nary analysis is made on use of the cumulative absolute velocity in modelling of fatigue-type seismic damage. The de-
pendence of the cumulative absolute velocity on the strong motion parameters is analysed. It is demonstrated that the 
cumulative absolute velocity is an appropriate damage indicator for fatigue failure mode. Failure criteria are defined in 
terms of cumulative absolute velocity using various fatigue failure theories. 
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1. Introduction 

One of the most complex cases for assessing the nuclear 
power plant safety is the evaluation of the response of the 
plant to earthquakes and the risk related with this. It has 
to be demonstrated, whether the reactor can be shut down, 
cooled-down, the residual heat can be removed from the 
core, and the radioactive releases can be limited below 
the acceptable level. Well-defined set of plant systems 
and structures and components (SSCs) are required to be 
functional during and after the earthquake for ensuring 
these basic safety functions. 

For the design base earthquake, the basic safety func-
tions have to be ensured in deterministic sense, via ade-
quate design supported by the proper definition of the 
parameters of the safe shutdown earthquake.  

For quantification of safety, the annual core damage 
frequency with respect to earthquakes is calculated by 
probability safety analysis (PSA) using well-established 
procedures, see [1,2]. Event trees are constructed to 
simulate the plant system response. Fault trees are needed 
for the development of the probability of failure of par- 
ticular components taking into account all failure modes. 
The hazard is expressed by the probability distribution 
for the peak ground acceleration (PGA). The fragility is 
defined as the conditional probability of damage as a func- 
tion of PGA. 

According to the results of the seismic probabilistic 
safety assessment of plenty of nuclear power plants, the 
earthquakes can be the dominating contributors to the 
core damage probability. These results indicate the vul- 
nearbility of the plants against earthquakes. On the other 

hand, experiences show that plants survive much larger 
earthquakes than those considered in the design base, as 
it was the case of Kashiwazaki-Kariwa NPP, where the 
safety classified structures, systems and components sur- 
vived the Niigata-Chuetsu-Oki earthquake in 2007 with- 
out damage and loss of function [3]. In spite of the nu- 
clear catastrophe of the Fukushima Daiichi plant caused 
by the tsunami after Great Tohoku earthquake 11th of 
March 2011, the behaviour of thirteen nuclear units in 
the impacted area demonstrated high earthquake resis- 
tance. 

With respect to the seismic safety of the operating 
plants the practical questions to be answered are: 
 Whether the operation can be continued safely after a 

relative small earthquake. This is the issue of the Ka-
shiwazaki-Kariwa plant which was shutdown for 
long-term after the earthquake in 2007.  

 In case of large earthquake, the damaged condition of 
the plant has to be assessed for the emergency ma- 
nagement reasons. This is the case of the Fukushima 
plants. 

Experience shows that the design basis capacity ex-
pressed in terms of PGA does not provide direct infor-
mation on the occurrence of a failure of a SSC in case of 
a particular earthquake.  

A study performed by EPRI regarding failure indica-
tors demonstrated that the cumulative absolute velocity 
(CAV) could be better correlated to damage rather than 
the PGA [4]. The EPRI study validates the lower bound 
of standardized CAV for damage of non-engineered 
structures. 

Based on the EPRIS study, the U.S. NRC Regulatory 
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Guide 1.166 defines the criteria for exceedance of opera- 
tional base earthquake level. Recently, a coordinated re- 
search programme of the International Atomic Energy 
Agency is addressing the selection/development of ap- 
propriate damage indicators for nuclear power plants. 

In [5] considerations were given on the possibility for 
derivation of conditional probability of failure for cumu- 
lative absolute velocity instead of peak ground accelera- 
tion. A physical interpretation of the cumulative absolute 
velocity and its dependence on strong motion parameters 
and load characteristics relevant for damage indication 
are discussed in [6]. It is also shown in [6], why the cu- 
mulative absolute velocity is an appropriate damage in- 
dicator especially for the fatigue-type damage. 

In this paper, the cumulative absolute velocity—which 
is some kind of measure of the energy of the ground mo- 
tion obtained from the free-field record—is expressed as 
a function of basic characteristics of the ground motion, 
i.e. strong motion duration and power spectra. The CAV 
will be linked to the stress or strain amplitudes and cycles 
affecting the component and causing fatigue type damage. 
With respect to the earthquake damage, different types of 
fatigue mechanisms can be considered, e.g. the fatigue 
racheting, low-cycle fatigue. Relation between cumula- 
tive absolute velocity of failure and failure criteria of 
various failure theories, e.g. fatigue failure condition the 
Bendat narrow-band theory and Dirlik formulation of the 
random amplitude fatigue failure, and the crack-growth 
condition has been established in the paper. 

2. The CAV as Fragility Parameter 

The probability of damage/failure, Pfail depends on a load 
vector  1 2= , ,x x X  rather than on a single parame-
ter: 

   1 2 1 2 1 3, , , , d d ,fail
R

P h x x P x x x x    



   (1) 

where  represents the hazard, i.e. it is the 
probability density function of applied loads and  

 denotes the conditional distribution func-
tion of failure. 

 1 2, ,h x x 

 1 2, ,x P x

This approach might seem theoretically precise, how- 
ever definition of the dependence of fragility on the com- 
ponents of the load vector requires enormous effort. The 
characterization hazard should also correspond to the 
description of fragility.  

As it is shown in [4], it seems to be interesting to es-
tablish a method for fragility modelling based on use of 
CAV as a nonnegative single load parameter x ≥ 0. CAV 
is calculated as simple integral over the time history of 
absolute value of acceleration component: 

 
0

CAV d .
T

a t t                (2) 

The standardized CAV is calculated applying a noise- 
filter for the amplitudes less than ±0.025 g [5]. 

For the sake of simplicity of writing, CAV will be de-
noted below simple by x. Equation (1) can be rewritten as 
follows: 

   
0

dfailP h x P x


  x              (3) 

Assuming that, if a failure occurs for a value of CAV 
equal to x, then it is occurs for all values larger than x. In 
this case the conditional probability distribution function 
P(x) coincides with the cumulative probability distribu- 
tion function of the failure load parameter λ, i.e. of the 
smallest value of the load parameter that the structure is 
unable to withstand [4], 

  P x P x                 (4) 

From the equation above, the average value of the 
failure load parameter can be calculated. The average 
CAV-value of failure: 

 
0

d
d

d

P x
x x

x



               (5) 

With other words, for the effective use of CAV in fragi- 
lity analysis, the value λ has to be evaluated from the em- 
pirical data (damages of earthquakes, fragility tests) for 
all type of SSCs and failure modes. 

3. The Physical Meaning of the CAV 

As it has been shown in [4], the value of CAV is varying 
within a wide range depending on several parameters of 
the ground motion: PGA, duration, T, and frequency 
content of the random motion. However, these depen- 
dences, except for the dependence on T, are not obvious 
and not explicit. It is reasonable to define the dependence 
of the CAV on the strong motion parameters. 

The absolute value of the acceleration (or the compo- 
nent of the acceleration)  a t  is an integrable function 
and its mean value on T is equal to   E a t . Thus, the 
mean value theorem for the integral can be applied for 
the Equation (2) as follows: 

 CAV T E a t                 (6) 

Thus, the CAV can be considered as product of two 
random variables, the duration of strong motion T and 
the mean of absolute value of ground acceleration time 
history. Generally, the variables T and   E a t  might 
not be independent. 

The strong motion acceleration time history can be 
written in form: a(t)=I(t)x(t), where I(t) is a window- 
function on 0, T interval, i.e., I(t)  0 if t = 0 and t = T 
and outside of interval and I(t)  0 within the interval. It 
is assumed that x(t) is a stationary normal random 
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process. However, the a(t) is a non-stationary normal 
process. For the sake of simplicity let’s assume that a(t) 
is a stationary normal random process with zero mean 
and probability density function fa(a) and autocorrelation 
function R(). In this case, the random process z(t) = 
|a(t)| has the density function, fz(z) = 2fa(z)·U(z), and its 
mean value is as follows [7]: 

      2
d 0 ,

πaE a t a f a a R




        (7) 

where R(0) is the autocorrelation function of a(t) at  = 0. 
The R(0) can be rewritten as follows:  

   1
0

2π aaR S d 




              (8) 

where Saa(ω) is the power spectral density (PSD) func- 
tion of a(t). 

The power spectral density function Saa(ω) of the 
earthquake ground motion acceleration is showing band- 
limited or even narrow-band character. Since we intend 
to explain the qualitative features of the CAV we may 
assume that a(t) is an ideal band-limited process with 
power spectral density (PSD): 

  0 1   if 

0    elswhere   aa

S
S 2  


 

 


          (9) 

This assumption is based on NUREG-0800, where the 
one-sided PSD of the horizontal ground motion accelera-
tion time history is linked to the Regulatory Guide 1.60 
standard response spectrum. 

Assuming that the excitation energy is concentrated 
within a narrow frequency range, the R(0) can be written 
as follows: 

  0
1

0
2π

R S ,                (10) 

where 2 1      is the bandwidth. The Equation (6) 
we can rewrite as follows: 

02

1
CAV .

π
T S              (11) 

Introducing the median frequency ωc: 

1 2

2c



 

                (12) 

and the number of load cycles, N  

,
2π

cT
N 


                 (13) 

the CAV can also be expressed as follows: 

0

2
CAV .

c

N S 


 

If the a(t) is band-limited we can represent it with sum 

of

           (14) 

 sine functions: 

   
1

sin ,
n

i i i
i

a t A t 


            (15) 

and the energy of a(t) should be distributed as follows: 

  
2n

2 .
2
i

1i

A
E a t                (16) 

intervals at ω  the follow-



For the amplitudes Ai in  
ing

i

 equation is valid: 

 
2

.
2
i

aa i

A
S                (17) 

For the sake of simplicity the excitation can be repre-
sented by a single sine with median frequency ωc and 

2
02 cS A  , thus for the CAV the following simple 

be obtained: equation can 

1 1
CAV 2

π c c
c

TA NA


  .         (18) 

The following conclusion can be drawn: 
 of strong mo-

equate damage indicator 

e excitation is, 

4. CAV as Fatigue Failure Indicator 

ce due to 

ightforward calculation of the fatigue damage to 
a 

tory response of 
th

 to an equivalent 
se

e damage of the equivalent cy-
cl

ge estimation involves the cycle counting 
of

The CAV is proportional to the product 
tion duration and average energy (RMS) of the strong 
motion acceleration a(t), as it shown by Equation (6). 
This result is rather trivial. 

 The CAV should be an ad
since it is correlated to the main parameters of da- 
mage phenomena, i.e. to the number of load cycles, N, 
and median frequency, c and amplitude of the alter-
nating load, which is proportional to the ground mo-
tion acceleration amplitude, i.e. Ac.  

 The higher the mean frequency of th
the less will be the possibility of a damage at fixed 
value of N, which corresponds to the observations for 
large class of structures with low frequencies.  

Several damage mechanisms might be in pla
cyclic earthquake loads, e.g. fatigue racheting, low-cycle 
fatigue. 

A stra
structure consists of three basic steps: 
1) Calculate the (nonlinear) time-his
e structure to an earthquake loading. 
2) Convert the time history response
ries of loading cycles. 
3) Calculate the fatigu

ic responses. 
Fatigue dama
 equivalent stress ranges and accumulation of fatigue 

damage from each cycle. The seismic loads are not made 
up of complete, consistent cycles. Typical seismic re-
sponse time histories exhibit varying amplitudes, mostly 
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partial cycles, and no complete symmetric cycles. In this 
case, after estimating an equivalent stress range distribu- 
tion either in the time domain or in the frequency domain, 
the linear Palmgren-Miner rule is used to predict the 
damage per cycle as 

1
,i

fi

D
N

                 (19) 

where Di is the damage for cycles of magnitude i, and Nfi 
is the number of cycles to failure at level i. The total 
damage over the complete cycling history is then esti-
mated as 

1

FDI ,
n

i

i fi

N

N

                 (20) 

where FDI is the fatigue damage index, or total damage 

d seismic response to cal-
cu

d mounted one-degree-of- 
fr

to the element due to the cyclic load, n is the number of 
different cycle amplitudes in the loading history, and Ni 
is the number of cycles at amplitude i. Values of FDI 
greater than or equal to 1.0 indicate a low-cycle fatigue 
fracture of the structure. 

In order to use the measure
late fatigue damage, it is necessary to convert the load 

time history to a series of varying amplitude cycles. The 
rain-flow method is most commonly used for converting 
random stressors to cycles. 

Let’s consider a free-fiel
eedom (ODF) structure, with m, mass, k, stiffness, c, 

damping, ω0, resonance frequency, 2c km , and 
transfer function  0, ,H    . Assum stress 
strain relationship, th vel s(t) is directly propor-
tional to the relative displacement level z(t), i.e. s(t) = 
k·z(t), where k is a constant. Calculating the relative dis-
placement response of the ODF system to the sinusoidal 
excitation with sin( )c c

ing linear 
e stress le

A t , the stress level can be de-
fined. Standard f del might be applied for the 
definition of the number of cycles to failure for the cal-
culated stress amplitude. For the ODF system, the CAV 
to fail can be calculated using Equation (18).  

In the case of generic base acceleration excitation 

atigue mo

a(t), 
the response of the ODF in terms of stress level will be 

     22 , ,S k H S0aa aa           (21) 

Equation (21) can be generalised intro
tra

ducing the 
nsfer function ( )ayH   between ground motion ac-

celeration a(t) and sponse quantity of interest, y 
(e.g. stress, strain, displacement):  

   

 any re

 2
S H .yy ay aaS            (22) 

For the definition of the fatigue failure, t
mi

he moments 
 of the power spectral density of the stress history Sss(ω) 

have to be calculated: 

 
0

d ,n
i ssm G  



             (23) 

where Gss(ω) is the one-sided PSD corresponding to 
Sss(ω). Thus, the following equations can be written: 

for the root-mean-square value 0RMS m , 
for the zero-crossing, E[0]: 

  2

0

0
m

E
m

             (24) 

for the peak-rate, E[P]: 

  4

2

m
E P

m
                (25) 

Utilising Equation (22) and assuming narrow-band 
feature for ground motion acceleration, as it is expressed 
by the Equation (9), Equation (23) can be rewritten as 
follows: 

   2

0

dn
i ay aam H S  



   

 

          (26) 

2

1

2

0 d .n
i asm S H 





              (27) 

For the RMS the following Equation can be derived: 

 
2

2
d .m S H



1

0 0 as


              (28) 

It means that except for the RM ed values, S all interest
i.e. the E[0] and E[P] are independent from the excitation, 
S0.  

For the calculation of fatigue failure condition, the 
Bendat narrow-band theory can be used [8]. It is assumed, 
that the probability density function of the peaks for the 
narrow band signal can be approximated by Rayleigh 
distribution. Thus, the FDI can be calculated as follows: 

   

 
1 0

2

0 00

FDI d

FDI exp d ,
4 8

n
bi tN S

S p S S


 
i i

b

N S

E P T S S
S S

m m







   
   

   




   (29) 

ber of cycles of stress range S oc-where N(Si) is the num
curring in T seconds, Ni is the actual counted number of 
cycle, St = N, the total number of cycles equals to 

  E P T , E[P] is the number of peaks per second. Pa-
 and b are the materials constant defining the 

fatigue curve. In the Equation (29), the m0 is depending 
on the input excitation power spectral density function, 
which is assumed to be equal to S0. 

In the Equation (29), the m0 can be expressed using 
Eq

rameters κ

uation (11). Thus, the relation between CAV and fa-
ue failure condition is established.  tig
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Similarly, the Dirlik solution [9] for the p(S) proba- 
bility density function can be linked to the CAV of 
ground motion exciting the structure. The number of 
stress cycles of range N(S) can be calculated via: 

   ( )N S E P Tp S            (30) 

Dirlik solution for the probability d
as follows: 

ensity function is 

 

2 2Z Z Z  
21 2 2 2

32

0

.
2

Q R
D D Z

e e D Ze
Q R

p S
m

 
      (31) 

where D1, D2, D3, R are parameters depending
m  and m , but not depending on the input excitation 

Th

n via CAV. As-
su

 on m0, m1, 
2 4

power spectral density, if the excitation is narrow-band.  
The Z is depending on the RMS of the input excitation 

only, which can be expressed by CAV via Equation (11). 
us, the final results of the calculation of the fatigue 

failure can be correlated to the cumulative absolute ve-
locity of the ground motion excitation.  

There are other fatigue failure theories, which can be 
correlated to the ground motion excitatio

ming that the failure mode is the low-cycle fatigue, the 
well-known Coffin-Manson relation for low-cycle fa-
tigue can be written 

 2 ,
2

cp
f N


            (32) 

where 2p  is the plastic strain amplitude, f is the 
fatigue ductility coefficient, 2N is the number ver-

 simple

ency ωc, and  

 of re
sals, or  the N cycles, and c is an empirical con-
stant ranging from –0.5 to –0.7.  

For the sake of simplicity the excitation can be written 
as a single sine with median frequ

2
0 cS A  . The stress amplitude will be as follows: 2

2
,

2
p

cH A





            (33) 

where 
2

H  is the absolute value o
stress transfer function. 

f the acceleration- 

The CAV to fail can be written using Equation (18) as 
follows: 

 1

2

2 f c
.fail

c

CAV N
H




         (34) 

Thus, the CAV to fail is connected to 
ria due to the low-cycle fatigue.  

e is the crack initiation. 
Th

the failure crite-

Failure of a material due to fatigue may be viewed on 
a microscopic level. The first phas

e second phase is the crack propagation. The final 
phase is the failure. For example, the Newman’s stress 
intensity solution can be used to calculate the RMS stress 
intensity factor range ΔKRMS  

 RMS max,RMS ,
b

min,RMS eK M
       (35) 
Q

where b is the crack depth and Q is the elastic sha
tor for an elliptical crack, and Me is the elastic magnifica- 

justification of the safety are needed 
 earthquake hits the plants. Develop- 

pe fac- 

tion factor (see e.g. [10]). The maximum and minimum 
stress RMS values can be calculated utilising the mo- 
ments of the power spectral density function of the stress 
response, see Equation (23). The latter can be linked to 
the power spectral density of the excitation via Equation 
(22). 

There are several important aspects and theories of the 
fatigue not considered in the paper. Development of a 
failure mechanism is time dependent. Consequently, the 
description of deterioration should also be time-dependent. 
The process of progressing damage can be modelled as 
first-passage problem, i.e. failure occurs when the margin 
to the limit state, which is also time dependent, will be 
first time zero (see e.g. [11,12]). 

Obviously, a comprehensive analysis of the use of 
CAV and establishing the exact relationship between 
CAV and typical fatigue mechanisms and corresponding 
theories need further research effort. 

5. Conclusions 

Reliable methods for 
for the cases, when
ment of the fragility of SSCs for different failure modes 
is one of the basic issues of the evaluation of the seismic 
safety of nuclear power plants. Sparse statistical infor- 
mation exists on behaviour of complex structures/ma- 
chines under earthquake loads. Fragility test of compo- 
nents might be very expensive. Epistemic uncertainty in 
the failure modelling might be substantial. 

In the seismic PSA practice, the component fragility 
development is based on the design information anchored 
into PGA. Use of the cumulative absolute velocity as 
load parameter may improve the calculation of probabi- 
lity failure. 

It is also shown in the paper, that the CAV is reflecting 
both the main parameters of the fatigue process and 
characteristics of the earthquake excitation. The CAV 
can be correlated to the failure criteria defined via dif-
ferent methodologies for random amplitude, frequency- 
domain fatigue analysis, as well as to the low-cycle fatigue 
failure criteria. It is shown, that a correlation between 
CAV and stress intensity factor range can also been es-
tablished. 

Having these correlations established in advance, the 
condition of the equipment can be assessed if an earth- 
quake happen, which may contribute to the quick assess- 
ment of the plant safety after an earthquake. 

Obvious advantage of the use of the CAV for damage 
indicator is that it can be calculated nearly real-time from 
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the easy to measure free-field acceleration signal. 
At the present stage of the research, the paper demons- 

trates more an attempt for improving the seismic safety 
assessment of nuclear power plants rather than a com-

ehensive study. Considering the importance of the 
seismic safety of the nuclear power plants, it is believed 
that the problem addressed in this paper is highly chal-
lenging and the issues presented are worth for more re- 
search work in the future. 

REFERENCES 

ower Plant Risk Studie
esign, Vol. 79, No. 1, 19

 
 

doi:10.1016/0029-5493(84)90188-2 

[2] ANSI/ANS-58.21-2003: External Events PRA Metho- 
dology, 2003. 

[3] IAEA, “Preliminary Findings and Lessons Learned from 

 Report, 2007.  

1988. 

the 16 July 2007 Earthquake at Kashiwazaki-Kariwa 
NPP,” Mission

[4] Electrical Power Research Institute, “A Criterion for de- 
termining Exceedance of the Operating Basis Earth- 
quake,” EPRI Report NP-5930, 

[5] T. Katona, “Options for the Treatment of Uncertainty in 

Seismic Probabilistic Safety Assessment of Nuclear Power 
Plants,” Pollack Periodica, Vol. 5, No. 1, 2010, pp. 121- 
136. doi:10.1556/Pollack.5.2010.1.9 

[6] T. J. Katona, “Interpretation of the Physical Meaning of 

om Variables, and Sto-

 Re-

im, D. Tadjiev and H. T. Yang, “Fatigue Life Pre-

dom Fatigue Crack Growth—A First- 

88-3

the Cumulative Absolute Velocity,” Pollack Periodica, 
Vol. 6, No. 1, 2011, pp. 99-106. 

[7] A. Papoulis, “Probability, Rand
chastic Processes,” McGraw-Hill, New York, 1965. 

[8] J. S. Bendat, “Probability Functions for Random
sponses,” NASA Report on Contract NAS-5-4590, 1964. 

[9] T. Dirlik, “Application of Computers in Fatigue Analy-
sis,” Ph.D. Thesis, University of Warwick, Coventry, 
1985. 

[10] S. T. K
diction under Random Loading Conditions in 7475- 
T7351 Aluminum Alloy using the RMS Model,” Interna-
tional Journal of Damage Mechanics, Vol. 15, No. 1, 
2006, pp. 89-102. 

[11] O. Ditlevsen, “Ran
Passage Problem,” Engineering Fracture Mechanics, 1986, 
Vol. 23, No. 2, pp. 467-477.  
doi:10.1016/0013-7944(86)900  

 K.-T. Ma, “Fatigue [12] P. H. Wirsching, H. P. Nguyen and
Reliability as a First Passage Problem,” 8th ASCE Spe-
cialty Conference on Probabilistic Mechanics and Struc-
tural Reliability, Notre Dame, 24-26 July 2000. 

 

http://dx.doi.org/10.1016/0029-5493(84)90188-2
http://dx.doi.org/10.1556/Pollack.5.2010.1.9
http://dx.doi.org/10.1556/Pollack.5.2010.1.9
http://dx.doi.org/10.1016/0013-7944(86)90088-3
http://dx.doi.org/10.1016/0013-7944(86)90088-3

