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ABSTRACT 

Spatio-temporal surveillance methods for detecting outbreaks are common with the SCAN statistic setting the bench- 
mark. If the shape and size of the outbreaks are known, then the SCAN statistic can be trained to efficiently detect these, 
however this is seldom the case. Therefore devising a plan that is efficient at detecting a range of outbreaks that vary in 
size and shape is important in practical applications. So this paper introduces a method called EWMA Surveillance 
Trees that uses a binary recursive partitioning approach to locate and detect outbreaks. This approach is explained and 
then its performance is compared to that of the SCAN statistic in a series of simulation studies. While the SCAN statis- 
tic is shown to remain the most effective at detecting outbreaks of a known shape and size, the EWMA Surveillance 
Trees are shown to be more robust. The method is also applied to an example of actual data from motor vehicle crashes 
in an area of Sydney Australia from 2000 to 2004 in order to detect dates and geographic regions with outbreaks of 
crashes above the expected. 
 
Keywords: Average Run Length; Exponential Weighted Moving Averages; Monitoring; Spatial Outbreaks;  

Spatio-Temporal Smoothing; Crash Outbreaks 

1. Introduction 

The SCAN statistic [1] has been successful at prospec- 
tively detecting space-time clusters. Kulldorff [2-4] has 
developed SCAN plans and implemented them in the 
SATSCAN software package for a variety of problems 
including Bernoulli data, Poisson counts and a space- 
time permutation model using only case data, amongst 
others. However there are some important limitations to 
this approach which will be addressed in this paper. 
Firstly, the space-time permutation model compares in- 
cidences to what is expected under the assumption that 
all cases were independent of each other. That is, the 
expected values are determined under the assumption 
that there is no space-time interaction. Secondly, the spa- 
tio-temporal SCAN statistic has been criticised by Woo- 
dall et al. [5] and Han et al. [6] for not being as efficient 
as the CUSUM [7,8] for outbreak detection. Lastly, the 
ability to detect outbreaks most effectively is dependent 
on the choice of shape and size of the scanning window. 

However, the attractiveness of the SCAN technology 
is that it is easy to understand, and therefore people use it. 
For this reason, the SCAN statistic is implemented in this 
paper as a benchmark for comparison. In our implemen- 
tation, we considered the two dimensional scan statistic 
used for detecting spatial clusters as discussed in detail in  

the book by Glaz et al. [9]. To extend the method to the 
detection of three-dimensional spatio-temporal clusters, 
we use the lattice structure as outlined in Glaz et al. [9] 
and then search over this structure for groups of rectan- 
gular blocks of space and time in order to alarm for un- 
usually high counts. The counts within the rectangular 
blocks of space-time are compared to their respective 
expected counts to measure their unusualness. Bounda- 
ries of all significant geographical regions are outlined 
on a map to indicate the geography of the outbreak.  

The EWMA Surveillance Tree plan that is proposed in 
this paper addresses all of the concerns raised above. 
This plan also makes use of the fixed lattice structure 
since this structure is well suited to the application of 
Exponentially Weighted Moving Average (EWMA) tem- 
poral smoothing of the counts. This smoothing improves 
early detection over the moving average approach sug-
gested by Kulldorff and others. Therefore this EWMA 
smoothing avoids the criticisms by Woodall et al. (2008) 
and Han et al. (2008). Also, in this paper, we compare 
incidences to historical expected values where the ex-
pected values can be space-time dependent. Therefore 
clustered outbreaks are signaled in this paper when the 
counts are higher than expected in a random local region. 
Lastly, by doing away with the scanning window all to- 
gether we have removed the need for this parameterisa- 
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tion. 
Therefore the principal goal of this paper is to compare 

our proposed recursive partitioning plan to the single 
window size SCAN statistic. Section 2 of the paper in- 
troduces the single window SCAN statistic. Section 3 
describes both the EWMA smoothing process and the 
recursive partitioning approach that make up the EWMA 
Surveillance Tree plan. Section 4 provides a simulation 
study for comparing plans under a number of different 
outbreak scenarios where Average Run Length (ARL) is 
used to assess and compare the detection properties of 
plans. Section 5 describes an extension of the plan to the 
non-homogeneous situation. Lastly, Section 6 briefly 
covers an example of outbreak detection in motor vehicle 
crash data. 

2. The SCAN Statistic 

The SCAN statistic is a spatio-temporal moving average 
plan that looks at the number of observations in a prism 
of spatio-temporal space, where the height of the prism is 
a time window. In this paper we scan an exhaustive set of 
rectangular blocks (e.g., see Figure 1). This is an exten- 
sion of the lattice approach described in Glaz et al. [9] to 
three dimensions. Kulldorff’s SCAN statistic places no 
restriction on the scanned space other than window size. 
Kulldorff’s spatial SCAN statistic thus offers more flexi- 
bility than Glaz et al. [9] spatial scans by scanning 3 di- 
mensional space-time. This is better in terms of defining 
the boundary of the outbreak. However, this flexibility 
increases the number of tests which may reduce effec- 
tiveness of the plan. 

The depth of the scanned “block” (z-axis) represents 
the time window over which incidents are aggregated 
(see Figure 1). This depth is taken as days in this paper. 
The union of all rectangular blocks in Figure 1 exhausts 
the 3-dimensional target space of interest, and will be 
referred to as the target block from now on. Space-time 
blocks are scanned for detecting outbreaks by comparing 
their block counts to their respective expected counts. 
The scanned blocks are not taken to have a fixed volume, 
but are constructed so that the marginal total across each 
row/column spatial dimension of the target block has 
approximately the same expected number of counts. Ide- 
ally the design is to have all small blocks with roughly 
the same expected values; however this is difficult in 
practice. Blocks are therefore constructed so that the mar- 
ginal row/column totals have the same respective ex- 
pected values. This design should control for variations 
in population sizes. 

Let the daily number of crashes in the cell at the ith 
row, jth column and at day t be recorded as random va-
riable  , ,i j t  for a target block of total size A × B. Let 
their respective expected values be denoted by  

Y

    , , , ,i j t i j tE Y  . The SCAN plan examines departures 

 

Figure 1. The mutually exclusive and exhaustive rectangu-
lar blocks in the target spatio-temporal scanning area 
(depth = time window). The shaded area represents the  
3 × 3 ×  rectangular block with starting cell (i, j, t). 
 
of counts from their expected values. Define total cases 
in a scanned spatio-temporal window of m m    size 
with starting cell (i, j, t) by 
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distributed with mean . This allows Poisson tables 
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Since we are testing many of these blocks simultaneously, 
we need to adjust the level of significance for this multi- 
ple testing. Bonferroni adjustments would be too conser- 
vative since overlapping blocks are examined in the ex- 
haustive search. So instead, the threshold of the SCAN 
plan is based on 
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, , , , , ,
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where  
,
, ,

m
i j tt   is the observed count on day t. A signal is  
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given whenever 

 
,
, ,

m
ci j t

p p   

for at least one . 
The value of c  is a threshold designed to give a fixed 
false alarm rate or in-control ARL. Starting values for 

c  can be found by first aggregating over time and then 
using the method proposed by Chen and Glaz [10]. Si- 
mulation is then used to refine this threshold to deliver 
the appropriate threshold value. 

1, 2, , 1,  1, 2, , 1.i A m j B m      

 

p

p

This SCAN plan is applied in this paper with the fol- 
lowing parameters: 
 A target block with A = 100, B = 100 (using percen- 

tiles to design the lattice).  
  , the depth of window in time is taken as 10. 
 m, the width and height of the window, is taken as 21. 

3. EWMA Surveillance Trees 

The method proposed here for comparison against the 
SCAN plan consists of three major steps: 

1) EWMA based smoothing of observed and expected 
counts, first temporally then spatially; 

2) Growing a surveillance tree of departures from ex-
pected value in the spatio-temporally smoothed counts 
using a binary recursive partitioning approach; 

3) Pruning the surveillance tree to reveal outbreaks. 
Each of these steps will be outlined in subsections 3.1, 

3.2 and 3.3 respectively. 

3.1. EWMA Smoothing 

The SCAN plan examines total block counts in a moving 
time window of  days. This gives counts of each day in 
the window equal weight, independent of how close these 
points are from the current time point t. Define  



A by B matrices  and , then   , ,t k tyY    , ,t k ty 

an alternative plan is to examine an exponentially weighted 
moving average of the counts using 

  11t t t    Y Y Y  

( 0 1Y ) and similarly smooth the expected values of 
these counts using 

 

  11t t t        

where o oY  , and 0 1   is a constant that de- 
termines how much memory to retain in the average. 
Larger values of   retain less temporal memory. 

Let t  be the matrix of EWMA temporal smoothed 
counts and  be the matrix of EWMA temporal 
smoothed expected values. In order to smooth the counts 
spatially, define a row and column smoothing matrix A 
with ith r ments 

Y

o

t

and jw th column ele
  1

i j

ij s sA     0 for , 1, 2, ,10i j    where 

0 1  . Let the row totals of matrix A be Bw  A1

w

 
where B  a column vector of B ones. Let 1 D  be a 
diagonal matrix with diagonal elements equal to , then 
the spatially smoothed counts are given by 

w

1 1t
t w t w

 Y D AY A D  

and the spatially smoothed expect values are given by 
1 1t

t w t w
  D A A D   

The smoothing above is carried out for the rows and 
then the columns. This is different to smoothing using a 
kernel smoother that exploits distances between cells. If 
all cells were of equal dimensions this smoothing would 
be similar to the kernel smoothing with the double expo- 
nential distribution as the smoothing function. The EWMA 
spatial smoothing as applied in this paper has the advan- 
tages of computational simplicity and efficiency, and 
therefore reduces the effort needed in the simulation 
studies. 

3.2. Growing the Surveillance Trees 

Surveillance trees generate offspring by recursively par-
titioning either longitudinal cells or latitudinal cells into 
rectangular regions. The process begins with the whole 
target area and the focus for each partition is to find a 
region with unusually high smoothed counts. The term 
unusually high is used here to mean that the counts are 
significantly higher than the smoothed expected values in 
a statistical sense. Each partition of a parent region thus 
results in two offspring, one of which has the unusually 
high smoothed count and the other which is simply the 
remainder of the parent region. Each generation of off- 
spring is grown in the same way until the smoothed 
counts in a parent region are not large enough to support 
new offspring with unusually high smoothed counts (a 
region with no offspring is called a terminal region). This 
subdivision gives rise to a representation of the target 
area by means of a tree data structure referred to as a 
Surveillance Tree. 

Once partitioning has stopped for all terminal regions, 
then recursive pruning of the terminal nodes commences. 
This pruning process is outlined in the following section. 
Here, however, we define the steps for growing a Sur- 
veillance Tree in more detail. 

In order to begin the partitioning procedure, we first 
need a measure of how far the smoothed count departs 
from the expected. Let 

  , , , , , ,1
j

i j k t ti
y       

  



 

where  is  , ,t y  th row and  the column the  

element of matrix t , then a simple measure of depar- 
ture from expected is 

Y
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    ( , , , , ) ( , , , , ), , , , 2 i j k t i j k ti j k tw E     

which is based on a transformation of Poisson counts to 
the normal distribution. This transformation does not 
adjust for changing variance due to the spatio-temporal  

smoothing of counts. In other words,   , , , 0i j kE w  , 

but the variance of  is not one. However,   , , , ,i j k tw  
overlooking the changing variance means that this meas- 
ure is simple to compute. 

Let the x- and y-coordinates of the lattice grid lines be 
given by 0 1, , , A    and 0 1, , , B   , respectively. 
The recursive partitioning process for finding outbreaks 
involves the following steps: 

1) Sum smoothed counts  over all cells with x-   , ,k ty  
coordinates less than or equal to i  for , 
i.e., find  

1, 2, ,i   A

  1, ,1, , , ,1 1
i B

i B t k tk
y     


. 

Calculate expected values  

    1, ,1, , , ,1 1
i B

i B t k tk
E      


 . 

2) Sum smoothed counts kt  over all cell with y- 
coordinates less than or equal to 

y
j  for  ,  1, 2, ,j   B



i.e., find 

  1, ,1, , , ,1 1
A j

A j t ty         . 

Find expected values  

    1, ,1, , , ,1 1
A j

A j t k tk
E      

  . 

3) Calculate which has a constant variance   , , , ,i j k l tw

for all cells means and fixed smoothing constants. Then 
the first offspring are established using the following 
steps:  

a) Find the i which maximizes 

    1, ,1, , 1, ,1, ,, , 1, 2, ,i B t i A B tw w i A   1

1




mum, then partition the geography by splitting the space 

ow repeat the process for the next generation of 
of

 new generation un- 
til

ill be dis- 
cu

 

This is the best row partition. 
b) Find the j which maximizes  

    1, ,1, , 1, , 1, ,, , 1, 2, ,A j t A j B tw w j B    

This is the best column partition. 
c) Find the offspring pair which corresponds to the 

maximum of  

       1, ,1, , 1, ,1, , 1, ,1, , 1, , 1, ,, , ,i B t i A B t A j t A j B tw w w w  . 

That is, if either or is the maxi-   1, ,1, ,i B tw  1, ,1, ,i A B tw 

into two offspring defined by rows 1 to i and i + 1 to A in 
the lattice, or partition by splitting the space into two 
offspring by partitioning the columns into regions in- 
volving the column cells 1 to j and j + 1 to B, respec- 
tively. 

4) N
fspring. That is, repeat steps 1 - 3 while considering 

each of the two offspring generated by the first partition 
as parent regions in their own right. 

5) The process is repeated for each
 either a) the counts are too low for producing any “fu- 

ture” generation that could be significantly higher than 
expected or b) that no other partitions are possible be- 
cause the parent is a single cell in the lattice.  

Stopping rules for recursive partitioning w
ssed later after we have dealt with the pruning process. 

As an example of an application with A = B = 100, Fig- 
ure 2 presents the location of crashes under expected 
situations in the left-hand plot, and the location of 
crashes for an outbreak scenario in the right-hand plot. 
Two separate geographical clustered outbreaks were gen- 
erated in the right-hand plot of Figure 2—the first in 
cells given by rows 1 to 11 and columns 1 to 11 and the 
second in cells given by rows 65 to 75 and columns 25 to 
35. These are visually fairly obvious outbreaks. In Fig- 
ure 3, each generation of the partitioning process for this 
example is presented, going up to a maximum of 4 gen- 
erations. Generated outbreaks are assumed hidden when 
applying the recursive partitioning. For each generation, 
the total number of offspring doubles if there is no stop- 
ping early; each partition tries to find the best split to 
identify the hidden outbreaks. Note that it would take 
five generations to completely define all outbreaks in 
Figure 3. By this stage most offspring have too few ob- 
servations in them to warrant further partitioning, how- 
ever some generations may progress to the 6th generation 
 

 

Figure 2. Plots of incident location—left plot indicating ual 
incidents and right plot unusual behaviour. 

us
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1st generation          2nd generation

3rd generation          4th generation

 

Figure 3. Partitioning process for each new generation or 
the example in Figure 2. 

re stopping. Although the recur- 

e to Deliver a 

r- 

 f

 
and possibly a 7th befo
sive partitioning in Figure 3 is demonstrated without a 
lattice structure and with no spatio-temporal smoothing, 
the process is very similar with these. 

3.3. Pruning the Surveillance Tre
Particular False Alarm Rate 

The aim of pruning is to trim away all insignificant te
minal nodes. If all nodes in the tree are pruned away then 
no outbreak is signalled, however if terminal nodes re- 
main after pruning is completed, then an alarm is given. 
The geographical outbreak is diagnosed by the set of 
partitioning rules that define the terminal node. The 
pruning steps are now defined in more detail. 

The process of pruning is very simple. We prune ter- 
minal nodes recursively starting with the last offspring in 
the tree. We prune the terminal node if 

 , , , , wi j k tw h  

where these h-values are positive co stants whose values n
are designed to deliver a specified false alarm rate. A 
sensible stopping rule for partitioning is to stop whenever 

 
2

, , , , 4wi j k t h   

This avoids tree growing offspring that will not sur- 
vive

= 21 is used. This scans just 

 the pruning process. The pruning process leaves 
only generations with smoothed counts significantly 
higher than expected, e.g., if we started pruning from 
generation 4 in Figure 3 then only two offspring con- 
taining the outbreak regions plus their parents, grand- 
parents, etc would survive the pruning process. If prun- 
ing was applied to a tree for the left-hand plot in Figure 
2 with no outbreaks, then each generation in turn would 
be pruned away until no offspring remain. Even the tar- 

get region (the original parent) would be pruned indicat- 
ing no significant outbreak. 

4. Simulation Studies 

The SCAN statistic with m 
over 1 25  of the rectangular cells in the target area, i.e., 

CAN
the plan is designed for fairly large clustered outbreaks. 
The S  plan searches all possible 21 by 21 cells. This 
allowed 79 79 6241   unique regions to be scanned in 
the 100 by 100 cell region. If any one of these 21 by 21 
regions h ficantly higher than expected (i.e.,  

 
,
, ,

m
ci j t

p p
as counts signi

 ) then the SCAN statistic signals. The simu-  

lation proc
means with

ess was designed to examine homogeneous 
 each cells assumed to have mean 0.01, and 

the EWMA surveillance tree is designed with 0.1   
and 0.2s  . All plans are designed to have an in-con- 
trol ARL equal to 100. 

Th ation process generated in-control counts 
and then adds to these 

e simul
additional counts for a fixed rec- 

ta

 
bo

n lengths for each plan. Although, the plans are 
co

ngular outbreak region. The location of the outbreak 
region is then hidden and we examined how early the 
plans alarm this outbreak. Rectangular outbreak regions 
were generated involving 21 by 11 cells, 11 by 11 cells, 
50 by 20 cells, and 100 by 10 cells. So this provided out- 
breaks regions with areas ranging from 121 cells to 1000 
cells, e.g., a range of sizes, shapes and positions. The 
detailed simulation results in terms of ARLs are reported 
in Appendix A (Tables A1 and A2). But the performance 
comparison between the two methods is outlined below. 

The results show that the EWMA Surveillance Tree 
method does well when the outbreak is located on the

undary of the target region. This is where counts are 
smoothed less (e.g., where variances are higher). In the 
middle of the target region, the cell counts are smoothed 
the most, thus having the smallest variance for the 
smoothed counts. In addition, the performance of the 
EWMA Surveillance Tree method is quite satisfactory 
and it is more likely to flag large scale outbreaks earlier 
than SCAN plans with m = 21. This plan is also robust to 
changes in spatial non-homogeneity in means whereas 
other plans are not. This will be discussed in more detail 
later. 

The ARLs in Appendix A result from 10,000 simu- 
lated ru

mpared within each Table A1 and 2, we are more in- 
terested in the robust performance of plans, i.e., when 
nothing is known about the shape and size of the out- 
break. If the outbreaks dimensions match the SCAN plan 
using 21 by 21 cell scans, then it is known to be close to 
optimal. On the other hand, the recursive partitioning 
plan’s properties are unknown and its flexibility appears 
to indicate its strength is in its robust performance across 
a range of outbreak dimensions, without being optimal 
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for any specific outbreak size or shape. In other words, if 
the outbreak dimensions are known, then the SCAN plan 
can always be trained to be more efficient than the EWMA 
Surveillance Tree plan, and therefore is preferred in these 
circumstances. 

In Table A1, the EWMA Surveillance Trees are better 
at finding the 11 by 21 outbreaks on the boundary, th
th

re

quite favourably to the SCAN plan with m = 
21

Non-Homogeneous Spatio-Temporal 

W es for 
the ) lattice structure for 

This model delivers thresholds  that give ARLs 
within 5% of 100, provided 

ion of Cra es in 
Sydney, Australia 

rveil- 
lan ual data from motor vehicle 

ad to be towed away; 
 influ- 

ent of a vehicle on the road.  

is ap- 
pl

n) totals of the 
re

occurring 
ac

outh and west of the target region. The geo- 
gr

 July 2003. It begins by indicating nearly the 
en

an  At least $500 worth of damage to property was attrib- 
uted to the moveme SCAN plan, but as the outbreak moves to the middle 

of the target region, the SCAN plans signals on average 
earlier. The message is the same for 11 by 11 outbreaks.  

In Table A2, the EWMA Surveillance Tree method is 
better at finding the 50 by 20 and 100 by 10; with both 

cursive partition plans having earlier signals on average 
than the SCAN plan for all positive increases in mean. 
Tables A2 suggest if the outbreak is significantly wider 
spread than 21 by 21 cell region, then the EWMA Sur- 
veillance Tree approach has significant early signal ad- 
vantages. 

On average, the EWMA Surveillance Tree method 
compares 

 in terms of early signalling with much less computa- 
tional effort, and therefore is a viable alternative. The 
real advantage is that these plans can easily be scaled up 
to higher dimensions while the SCAN plan cannot. 

5. Recursive Partitioning Plans for 

Poisson Counts 

e can also examine the EWMA Surveillance Tre
 m by m (where 25 100m 

od is that it i
non-homogeneous spatio-temporal Poisson counts. An 
advantage of the meth s invariant to changes 
in mean within the range of 0.0025 to 0.2 per cell. That is, 
the same threshold is appropriate for a fixed lattice of m 
by m, independent of the changes in cell means of be-
tween 0.0025 to 0.2. However, the threshold is dependent 
on m, the dimension of the scanning window. A model 
for finding the threshold wh  for given values of m is 

 exp 1.241 0.1196 logwh m  
 

2       0.005093 0.00002467  m m 

wh
100 25 m . 

6. Example of Applicat sh

This section of the paper applies the EWMA Su
ce Tree method to act

crashes in parts of Sydney, Australia from 2000 to 2004 
(inclusive). Data are drawn from the Traffic Accident 
Database System (TADS) collated by the New South 
Wales Roads and Traffic Authority. Data are collected 

from police reports for all accidents where at least one of 
the following occurred: 
 The accident resulted in either death or injury; 
 At least one vehicle h
 At least one driver was reported as under the

ence of alcohol; 

These accidents are referred to as “crashes”. The data 
include the date, time and location of the crash. Th

ication makes use of the date of the crash but ignores 
the time. The target region can be viewed in Figure 4. 
The suburb names are recorded at the location where the 
average accident occurs for that suburb. 

The x and y-coordinates were divided into rectangular 
areas such that the marginal row (colum

gion included on average 2% of crashes. This gave a 
spatial region that was a 50 by 50 rectangular grid and a 
mean rate of 0.1 crashes per day per cell. The expected 
values for each cell could not be efficiently modelled 
because of the low counts and the number of cells too 
high. Therefore, a two stage approach was carried out— 
the total crashes per day across the whole target region 
were modelled using a Poisson regression approach 
similar to Sparks et al. [11] and this model was taken to 
establish the day-ahead forecast for total crashes. The 
history of crashes was then used to establish the propor- 
tion of total crashes expected to fall into each cell. The 
day-ahead forecast total counts multiplied by the respec- 
tive proportions provide expected values for the daily 
counts of each cell in the grid. Data in 2000 where used 
to train the forecast models and outbreaks were explored 
for 2001 to 2004. The models were updated as in Sparks 
et al. [11] using a moving window of one year. 

The EWMA Surveillance Tree plan was then applied 
to detect outbreaks in the number of crashes 

ross the region. Tables 1-3 summarises 3 periods with 
outbreak signals for 2001, 2003 and 2004, respectively. 
Most of the outbreaks flagged lasted for less than three 
days, but this paper highlights outbreaks that persisted 
for longer and thus provided opportunities for feedback 
control. 

The outbreak in December 2001 (Table 1) spanned the 
full north-s

aphical location of the daily signals was stable except 
towards the end when the crash region signalled starts to 
diminish in area before the signal disappears completely. 
The outbreak zone is fairly large and therefore is likely to 
be driven by persistent states that influence a broad range 
of drivers during that period, perhaps the busy Christmas 
season. 

The outbreak outlined in Table 2 summarises an out- 
break in

tire target region as an outbreak, but then focuses on  
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Figure 4. The centre of the outbreak region flagged in March 2004. 
 

Ta 1. ble 1. Summary of a signalled outbreak in crashes for December 200

 , , , ,i j k tw   Date X-coordinates quantiles Y-coordinates quantiles 

18 December 2 Tuesday 0.86 001— all 20 to 92 

19 December 2001—Wednesday 

y 

y 

y 

all 24 to 100 1.09 

20 December 2001—Thursday all 26 to 92 0.79 

21 December 2001—Friday all 22 to 92 0.90 

22 December 2001—Saturda all 22 to 100 1.12 

23 December 2001—Sunday all 22 to 100 0.69 

24 December 2001—Monday all 22 to 100 0.95 

25 December 2001—Tuesday all 24 to 100 0.97 

26 December 2001—Wednesda all 24 to 100 1.01 

27 December 2001—Thursday all 26 to 70 0.95 

28 December 2001—Friday all 24 to 70 1.02 

29 December 2001—Saturda all 26 to 70 0.81 
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Table 2. Summary of a signalled outbreak in crashes for July 2003. 

D  , , , ,i j k tw   ate X-coordinates quantiles Y-coordinates quantiles 

3 July 2003— ay 0.87 Thursd 4 to 88 all 

4 July 2003—Friday 1 to 96 all 1.17 

5 July 2003—Saturday 

1 to 70 

 

 

10 to 100 

 

 1 to 84 

 1 to 80 

1 to 92 all 1.09 

6 July 2003—Sunday 1 to 90 all 1.02 

7 July 2003—Monday 4 to 88 1.00 

8 July 2003—Tuesday 1 to 90 1 to 68 0.90 

9 July 2003—Wednesday 1 to 78 1 to 78 0.87 

10 July 2003—Thursday 8 to 92 1 to 80 0.76 

11 July 2003—Friday 8 to 92 1 to 80 0.82 

12 July 2003—Saturday 8 to 92 1 to 80 0.89 

13 July 2003—Sunday 1 to 82 0.95 

14 July 2003—Monday 6 to 100 all 1.02 

15 July 2003—Tuesday 6 to 100 all 1.52 

16 July 2003—Wednesday 6 to 100 all 1.56 

17 July 2003—Thursday all all 1.50 

18 July 2003—Friday all all 1.44 

19 July 2003—Saturday all 1.26 

20 July 2003—Sunday all 1 to 82 1.06 

21 July 2003—Monday all all 0.93 

22 July 2003—Tuesday all all 0.96 

23 July 2003—Wednesday all 0.90 

24 July 2003—Thursday all 1 to 78 0.73 

 
ummary of a signal utbreak in crashes rch 2004. Table 3. S led o  for Ma

Date X-coordinates quantiles Y-coordinates quantiles  , , , ,i j k tw   

7 March 2004—Sunday  0.82 1 to 78 all 

8 March 2004 Monday 1 to 92 1 to 92 0.88 

  

 

36 to 96 

48 to 96 

 40 to 100 

 

  

38 to 84 

9 March 2004—Tuesday all 1 to 82 0.83 

10 March 2004—Wednesday all 1 to 82 0.80 

11 March 2004—Thursday  all 1 to 82 0.94 

12 March 2004—Friday 

13 March 2004—Saturday  

1 to 74 

1 to 80 

0.98 

0.76 

14 March 2004—Sunday  48 to 96 1 to 82 0.73 

15 March 2004—Monday 50 to 96 1 to 82 0.79 

16 March 2004—Tuesday 1 to 80 1.00 

17 March 2004—Wednesday

18 March 2004—Thursday

36 to 100 

34 to 94 

1 to 82 

1 to 82 

1.03 

1.11 

19 March 2004—Friday 

  

36 to 100 1 to 82 0.99 

20 March 2004—Saturday 38 to 100 1 to 82 0.99 

21 March 2004—Sunday  

22 March 2004—Monday 

38 to 100 

38 to 100 

1 to 82 1.04 

0.9 
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the centre and arget region b
moving back t et region. Agai

EWMA Surveillance Trees offers a flexible and useful
expected geographical crash

graphical 

Disease Su e Using a SCAN Statistic,” Journal of 
the Royal l Society Series A—Statistics in Soci- 
ety, Vol. 1  2001, pp. 61

 southern parts of the t efore 
o nearly the entire targ n the 

outbreak zone is fairly large and therefore is likely to be 
driven by persistent states that influence a broad range of 
drivers during July 2003. 

The outbreak outlined in Table 3 summarises an out- 
break in March 2004. It begins by flagging a broad out- 
break region that then changes more than the outbreaks 
given in Tables 1 and 2. Figure 4 indicates the region 
that is common to all of the outbreak signals (besides the 
last where the outbreak is diminishing to no signal). The 
outbreak region is centred around a region just south and 
south-east of the city, although it seems to shift. 

7. Conclusions 

 
way of identifying un  out- 
breaks. This is helpful in terms of managing driver risk 
by identifying the hot spots in the road network. This 
informs decision makers of the dynamic changes to driver 
risk which may then be managed through effective feed- 
back controls (e.g., target policing). The fact that geo- 
graphical risk persist at the same location over a few 
days means that harm from crashes could be reduced by 
such controls.  

If the shape and size of future crash outbreaks are 
known, then the SCAN plan can be designed to detect 
these earlier than the recursive partitioning plan. How- 
ever, in those cases where nothing is known about future 
crash outbreaks, the EWMA Surveillance Tree method 
offers an effective, robust and computationally efficient 
outbreak detection methodology. Another advantage is 
that it can be easily scaled up to include higher dimen- 
sions than two or three [12] whereas the SCAN plan be- 
comes unworkable for any more than three dimensions. 
For example, other dimensions could include type of 
vehicle, nature of road movements during the crash, or 
the type of road/surface. 

Lastly, due to its robustness at detecting clustered out- 
breaks, the EWMA Surveillance Tree methodology is 
applicable to a broader range of applications, such as, 
diseases, crime, and environmental applications. 
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Appendix A: Simulation Study Results 

able A1. ARL performance of the plans when the in-control ARL = 100 and the outbreak spans a region of 11 by 21 and 11 
y 11 cells. 

Outbreak spans a region of 11 by 21 cells  Outbreak spans a region of 11 by 11 cells 

T
b

Plan EWMA Surveillance 
Trees with 0.1    

and  0.6529 
m = 21 

pc = 0.9999857 

 Trees with 0.1

wh

SCAN Plan  EWMA Surveillance 
    

and  0.6529 
m = 21 

pc = 0.9999857 

SCAN Plan 

wh

Rows 
Columns 

1:11 
1:

25:35 1:11 25:35 
75 

1:11 
1:1

25:35 1:11 25:35 
75 21 55:75 1:21 55:

 
1 65:75 1:11 65:

δ  100.1 100.1 99. 2 99. .2 2 99. δ  100.1 100.1 2 99

0.5 5 6 1 5

3 

2 3.8 6.5 6.4 5.4 4 3.4 6.2 6.3 4.9 

2.5 3.2 5.2 5.3 4.4 5 2.8 4.9 5.1 3.9 

3 2.8 4.4 4.5 3.9 6 2.3 4.1 4.4 3.4 

4 2.1 3.3 3.5 3.0 8 1.8 3.0 3.5 2.7 

5 1.8 2.7 2.9 2.6 10 1.6 2.6 2.9 2.2 

6 1.5 2.3 2.6 2.2 12 1.4 2.2 2.5 1.9 

7 1.4 2.1 2.2 2.0 14 1.2 1.9 2.2 1.8 

8 1.3 1.8 2.1 1.8 16 1.1 1.8 2.0 1.6 

21.3 40.5 3.5 34. 17.1 34.7 7.5 25.3 

1 8.2 16.0 17.2 11.4 2 6.7 14.0 16.2 9.3 

1.5 5.4 9.3 8.5 6.8 4.4 8.4 8.6 6.1 

 
Table A2. ARL performance of the plans wh e in-con  ARL 00 an  outbre ans a re  of 50 b 0 
by 10 cells

eak a region  by 20 ce utbreak s a region b  by 10 ce

en th trol  = 1 d the ak sp gion y 20 and 10
. 

 Outbr spans by 50 lls  O pans y 100 lls 

Plan Trees with 0.1
EWMA Surveillance 

    
and  0.6529 

m = 21 
pc = 0.9999857 

 Trees with 0.1
SCAN Plan EWMA Surveillance 

wh

    
and  0.6529 

m = 21 
pc = 0.9999857 

SCAN Plan 

wh

Rows 
Colu ns 

1:50 
1:2

26:75 1:50 26:75 
75 

1:100 
1:

1:100 1:100 1:100 
5 m 0 56:75 1:20 56:

 
10 66:75 1:10 66:7

δ  100.1 100.1 99. .2 99. .2 2 99 δ  100.1 100.1 2 99

0.1 7 0.1 8

0.  

0.3 0.3 

1.6 1.9 2.6 3.4 3.1 1.6 2.2 2.9 5.1 4.2 

39.4 51.4 4.1 60.1 42.9 55.4 5.9 67.1 

0.2 17.6 25.9 44.4 31.1 2 21.7 35.6 65.4 41.4 

10.7 16.1 24.5 18.0 12.1 19.0 44.4 26.7 

0.4 7.2 11.1 15.9 11.4 0.4 9.0 13.1 32.6 17.5 

0.5 5.7 8.2 10.9 8.6 0.5 6.9 10.1 20.6 13.5 

0.6 4.7 6.8 8.3 7.1 0.6 5.6 8.0 15.5 9.9 

0.8 3.4 5.1 6.2 5.5 0.8 4.1 5.7 10.0 7.3 

1.0 2.8 4.0 5.2 4.4 1.0 3.3 4.5 7.6 6.0 

1.2 2.4 3.4 4.4 3.9 1.2 2.7 3.8 6.5 5.3 

1.4 2.0 3.0 3.9 3.5 1.4 2.4 3.2 5.7 4.6 

 

Copyright © 2012 SciRes.                                                                                OJSST 


