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Abstract 
 
Semi-Markovian model of control of restorable system with latent failures has been built with regard to con-
trol errors. Stationary reliability and efficiency characteristics of its operation have been found. The problem 
of control execution periodicity optimization has been solved. 
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1. Introduction 
 
An important factor providing reliability, high quality, 
and efficiency of technological complexes is the presence 
of control systems in them. The reviews of the results 
concerning control model building are contained in [1,2]. 

In the present article the model of control execution 
and restoration of a single-unit system with latent fail-
ures has been investigated under the condition of control 
errors occurrence. The latent failure is the one that does 
not show up till the control is executed. While control is 
executed errors of first and second kinds are possible [3]. 
It reduces technological complex operation efficiency. 

In the work [4] the model of control of the system with 
possible failures was studied, but there reliability charac-
teristics were defined under the assumption of exponential 
distributions of random values characterizing the system. 

The problems of technological complexes’ control are 
closely connected with their maintenance. In the work [5] 
maintenance models were built by means of semi- 
Markovian processes with a common phase field of 
states [6]. In the present article this apparatus is used to 
build the model of control under the condition of latent 
failures occurrence. And herewith, random values char-
acterizing the system are supposed to have distributions 
of general kind. 
 
2. The Problem Definition and Mathematical 

Model Building 
 
Let us investigate the system operating in the following 

way. At the time zero the system begins operating, and 
the control is on. System failure-free operation time is a 
random value (RV)   with distribution function (DF) 
   F t P t   and distribution density (DD)  f t . 

The control is executed in random time   with DF 
   R t P t   and DD  r t . The failure is detected 

only when control is carried out. Control duration is RV 
  with DF    tV t P    and DD  v t . When the 
control is on, the system does not operate. After failure 
detection system restoration begins immediately and the 
control is deactivated. System restoration time is RV   
with DF    G t P t   and DD  g t . After the 
system restoration all its properties are completely re-
stored. All the RV are supposed to be independent, have 
finite assembly averages and variances. 

While control execution errors of first and second 
kinds can take place. Control system error of first kind 
lies in regarding system in up state as a failed one (false 
failure). The probability of such an errror is equal to р1. 
The error of second kind is taking system’s good state 
for bad one (failure omission). The probability of such an 
error is equal to р0. 

The purpose of the present article is to find stationary 
reliability and economical characteristics of the sin-
gle-unit restorable system under the condition of latent 
failures occurrence, with regard to control errors. 

To describe the system operation let us use semi- 
Markovian process  t  with the following field of 
states: 

 111, 212 , 211 , 101 , 202, 201, 200, 210Е х х х , 
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

;

;

where 
111 means the system has been restored, the control is 

activated; 
212х - control has begun, the system is in up state, it 

does not operate during control execution, time х is left 
till the latent failure (regardless of deactivation time); 

211х - control has ended, the system in up state has 
been treated correctly and continues to operate, time х is 
left till the latent failure; 

101 х - latent failure has occurred, time х is left till 
control execution; 

202 - control has begun, the system is in a state of la-
tent failure, it does not operate; 

201 - control has ended, failed system is regarded as 
the one in up state (error of second kind), its operation 
has begun; 

200 - control has ended, failed system is regarded as a 
failed one, system restoration has begun, control is deac-
tivated; 

210 - control has ended, system in up state is taken for 
failed one (error of first kind), system restoration has 
begun, control is deactivated; 

Time diagram of the system operation is repre-
sented in the Figure 1. And in the Figure 2 the system 

transition graph is given, where a set of up states is, 

 is a set of down states. 

E

E
Time diagram of the system operation and the system 

transition graph are shown in Figure 1 and Figure 2 
respectively. 

Let us define the probabilities of the embedded Mark-
ovian chain (EMC)  transitions:  , 0n n 
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Let us indicate ,  111  202 , ,  201  210


, 
 the values of EMC   stationary 

distribution for the states 111, 202, 201, 210, 200 respec-
tively and assume the existence of stationary densities  
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Figure 1. Time diagram of the system operation. 
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Figure 2. System transition graph. 
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The last equation of the system (2) is a normalization 
requirement. 

To solve the system (2) let us exclude the function 
 211x  from the second and third equations: 

         0 1
0

212 212
x

х f x t r t dt p y r y x dy  
 

    
(3) 

х  for the states 212х , 
211х , 101х  respectively. Now we can make the system 
of integral equations for them: 

Copyright © 2011 SciRes.                                                                                  IIM 



Y. E. OBZHERIN  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  IIM 

51

Let us indicate   1212х х  , then the Equation 
(3) will take the form: 

Let us introduce the function    1r x p r x   and 

the integral operator       r
x

A x r y x y d 


   y . 
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       (4) Then the Equation (4) can be rewritten in the following 

way: 

0
1 1

1
r rA A f

p


   

. 

The solution of this equation will be defined with the 
help of method of successive approximations. The solution of this equation is defined by the formula  
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where  is the density of renewal function  rh t  rH t  
generated by the RV with improper DF    1p R tR t  ; 
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tion of the function     . 
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Using Formula (5), one can define the rest of station-

ary densities 
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The values of stationary distribution for the states 210, 
202, 201, 200 are defined from the system (2): density of direct residual time of renewal process gener- 
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Here      *

0

n
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H t R
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
 

 t , where    * nR t  is n-fold tionary operation time T , mean stationary restoration 
time T , stationary availability function Kг. convolution of the function . The constant  R t 0  is 

found with the help of normalization requirement. The sets of up states  and down states E E  are 
the following ones:  

   111, 211 , 212 ,  101 , 202, 201, 200, 210 .E x E x x    3. Definition of System Stationary 
Characteristics Mean stationary operation time T  and mean sta-

tionary restoration tim  T
 

e   can be found with the help 
of Formula [6

 
Let us define system stationary characteristics: mean sta- ]:
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Here  is the EMC  de  , 0n n   stationary dis-

tribution;  are mean values of system dwelling 
times; 

 m e
 ,P e E  are the probabilities of EMC  , 0n n    

transitions from up into down states. 
Mean values of system dwelling times in the states 

are: 
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With regard to Formulas (5-7) and (9) one can define the functionals contained in (8):  
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Thus, mean stationary operation time  is defined by the ratio T
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and mean stationary restoration time  is determined by the formula: T
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Stationary availability function is found from the ratio 
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Important characteristics for system operation quality 

testing are economical criteria, such as mean income S 
per unit of calendar time and mean expenses C per time 
unit of system’s up state. To define them let us use the 
Formula [7]: 
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where    ,s cf е f e  are the functions defining income 
and expenses in each state respectively.  

Let c1 be the income received per time unit of sys-
tem’s up state; c2 - expenses per time unit of restoration; 

c3 – expenses per time unit of control; c4 are wastes 
caused by defective goods per time unit of latent failure. 
For the given system the functions    ,s cf е f e  are the 
following:   
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With regard to (13) and (14) mean income is defined by the ratio 
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and mean expenses are determined by the ratio 
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Let us consider the case of non-random control execu-

tion periodicity 0  . Taking into account that in this 
case    1R t t   , where const  , stationary avail-
ability function is defined by the formula  
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mean income can be defined in the following way 
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mean expenses are found with the help of the ratio 
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Let us investigate some special cases of the system op-

eration. If errors of one kind only occur, two cases are 
possible. 
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In case of reliable control  0 1 0p p   system sta- tionary characteristics are defined by the ratios 
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which coincide with ones found for a single-component 

stem with reliable control. 

rol Execution 

ontrol execution periodicity optimiza-
on is reduced to analysis of extremums of the system 

us suppose RV  ,   and   
of 

to have Erlangian distri-
bution. For the calculation optimal value s

optsy  pro-


nd 
viding maximal mean income S  per calendar 
time unit a of optimal value opt

s
opt

c  providing minimal 
mean expenses  optC   per time unit of system’s good 
state, the following initial data have been take 1 = 2 
c.u./h; с2 = 2 c.u./h; с3 = 1 c.u./  c.u./h. The results 
of these calculations are represented in the Table 1. The 
graphs of s 

c

n: с
h

 
4. Optimization of Cont

Periodicity 
 

e problem of c ;

funct

 с4 = 1

ion  гK  ,   ,S    C   for the case 
of Erlangian distribution of the 2nd order and 1 0,3,p   

0 0, 25p   are shown in Figures 3, 4 and 5. 
 
5. Conclusions 
 

pparatus of semi-Markovian proce

Th
ti
characteristics Кг, S, C as functions of a single variable 
 . 

Using Formulas (15-17), one can define an optimal 
ripe od of control of the system investigated for different 

distribution laws of random values. The initial data for 
calculations of optimal values of control periodicity are: 
mean time of failure-free operation M , mean restora-
tion time M  , control duration M . For example, let 

U
co

sing an a
mm

s
ne  

ses with a 
reliability on phase field it is possible to defi
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Table 1. Optimal control ex

Initial data 

 
ecution period definition. 

Results 

, h
 s

optS 
, 

c.u./h 

c

opt
, h  c

optC Distribution laws of ran-
dom values 

β, h Mγ, h p1 P0 , h  k

г optK  s

optMα, h M
k

opt
, c.u./h

Exponential 60 0,5 0,2 0 0 4,833 0,916 4.833 1,739 4,833 0,101 

Exponential 60 0,5 0,2 0,3 0,25 5,094 0,867 5,522 48 1,292 

Erlangian of the 2nd order 60 0,5 0,2 0 0 7,744 0,876 7,744 1,621 7,744 0,15 

Erlangian of the 2nd order 60 0,5 0,2 0,3 0,25 5,911 0,904 6,302 1,684 45,535 0,978 

Erlangian of the 2nd order 60 0,5 0,2 0,2 0,25 5,007 0,903 5,259 1,688 36,112 0,817 

1,568 
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Figure 3. Graph of stationary availability function  гК   
against control periodicity  . 
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Figure 5. Graph of mean expenses  C   against contro
periodicity 
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proble  co exe  pe y op tion 
andeconomical stationary performance indexes of re-

ematical 
m

d M. Parlar, “A Survey of Maintenance 
ti-Unit Systems,” European Journal of 

ms of ntrol cution riodicit timiza

storable system with latent failures under the assumption 
of possibility of control errors. It allows solving the for 
gaining best system economical characteristics. 

Later on it is planned to use the method suggested in 
the present article to build and investigate math

odels of multicomponent systems and of different 
kinds of control. 
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