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Abstract 
 
This article is an addendum to the 2001 paper [1] which investigated an approach to hierarchical clustering 
based on the level sets of a density function induced on data points in a d-dimensional feature space. We re-
fer to this as the “level-sets approach” to hierarchical clustering. The density functions considered in [1] were 
those formed as the sum of identical radial basis functions centered at the data points, each radial basis func-
tion assumed to be continuous, monotone decreasing, convex on every ray, and rising to positive infinity at 
its center point. Such a framework can be investigated with respect to both the Euclidean (L2) and Manhattan 
(L1) metrics. The addendum here puts forth some observations and questions about the level-sets approach 
that go beyond those in [1]. In particular, we detail and ask the following questions. How does the level-sets 
approach compare with other related approaches? How is the resulting hierarchical clustering affected by the 
choice of radial basis function? What are the structural properties of a function formed as the sum of radial 
basis functions? Can the levels-sets approach be theoretically validated? Is there an efficient algorithm to 
implement the level-sets approach? 
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1. Introduction 
 
This article is an addendum to our 2001 paper [1] which 
considered algorithmic aspects of an approach to hier-
archical clustering based on the level sets of a “density 
function” induced on data points in a d-dimensional 
feature space. Quotes are invoked in the previous line 
because the density functions considered in [1] are not 
necessarily integrable. They do however satisfy the 
property the where the data points are dense, the value 
of the density function is relatively high in the associ-
ated region of feature space, and where the data points 
are sparse, the value of the density function is relatively 
low in the associated region of feature space. The den-
sity functions are taken as the sum of identical radial 
basis functions centered at the data points, each radial 
basis function assumed to be continuous, monotone 
decreasing, convex along each ray, and rising to posi-
tive infinity at its center point. Although this framework 
can be investigated with respect to both the Euclidean 
(L2) and Manhattan (L1) metrics, particular attention 

was paid to binary data under the Manhattan metric. That 
paper concluded with various open questions, which to 
our knowledge are still open. Among them: Is there a 
polynomial-time algorithm to implement the level sets 
approach for binary data in L1? Since the publication of 
[1], we have encountered other works in the literature, 
some slightly preceding ours, that seem to bear some 
relationship to our particular version of a level-sets ap-
proach. It seems to us that there is still an opportunity for 
further development of frameworks and potential unifi-
cation regarding these methods of hierarchical clustering 
and their validation. Toward this end, the present adden-
dum puts forth some observations and questions beyond 
those in [1] about the level-sets approach. In particular, 
we detail and ask the following questions. How does the 
level-sets approach compare with other related ap-
proaches? How is the resulting hierarchical clustering 
affected by the choice of radial basis function? What are 
the structural properties of a function formed as the sum 
of radial basis functions? Can the level-sets approach be 
theoretically validated? Are there efficient algorithms to 
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implement the level-sets approach? 
The essence of what we are calling the level-sets 

(equivalently, level-surfaces) approach to clustering is 
perhaps more commonly referred to as a density-based 
approach. The basic idea of using the level sets of a den-
sity function to create a hierarchical clustering of data 
points in a Euclidean space goes back at least as far as 
1975 with Hartigan [2], Fukunaga and Hostler [3], and 
Schnell [4].  

For ease of exposition, let us introduce some notation. 
For us, a radial basis function (RBF) ψ(x, c) on Rd means 
any real-valued function of x whose value depends only 
on the distance (either Euclidean or Manhattan) of x 
from a center point c. The characters {I, N, M, S, C} will 
be used to denote certain properties of the RBF along 
any ray from its center point: (I) means the value on 
every ray rises to infinity at the center point, but is eve-
rywhere else defined; (N) means the value along every 
ray is non-increasing; (M) means the value along every 
ray is monotone decreasing; (S) means the value along 
every ray is smooth; (C) means the value along every ray 
is convex. The notion of “ray” here is the same whether 
we are talking about Euclidean space or Manhattan space 
– it will always refer to a straight line originating from 
the center of the RBF. For our purposes, all RBF’s will 
be assumed continuous, except possibly at the center 
point. Note that in [1], the term point luminosity function 
was used instead of IMC RBF, and the term combined 
luminosity function was used instead of density function 
or sum of RBFs. In this addendum, there will be occa-
sion to use both terminologies. A real-valued function 
that still has the notion of a center or reference point (at 
which the function is either bounded or infinite) but is 
not necessarily radially-symmetric about that point will 
be called an Arbitrary Influence Function (AIF). For our 
purposes, all AIF’s are assumed continuous, except pos-
sibly at the reference point. The meanings of the charac-
ters {I, N, M, S, C} extend naturally to AIF’s. 

To give proper context to some of the questions al-
luded to earlier, we wish to draw attention to two other 
approaches in the literature that are related to the lev-
el-sets approach in that all three can be viewed as phys-
ics-based approaches to hierarchical clustering. 
 
2. Physics-Based Approaches to Hierarchical 

Clustering 
 
Although the level-sets approach to hierarchical cluster-
ing is considered a density-based approach, it may also 
be considered in a natural way a physics-based approach. 
The two perspectives are explained below. We assume 
the data points lie in Euclidean d-space unless otherwise 
stated. 

Density-based approaches to hierarchical clustering 
typically regard clusters as dense regions of data points 

in the feature space separated by regions of low density. 
Formalizing this requires the notion of a non-negative 
real-valued density function, which is defined over the 
feature space. Where the data points are dense, the value 
of the density function is relatively high, and where the 
data points are sparse, the value of the density function is 
relatively low. Such a density function might be obtained, 
for example, by evaluating the number of data points 
within a sliding volumetric window, or by evaluating the 
sum of identical, non-increasing RBF’s centered at the 
data points. 

One of several density-based algorithms frequently 
cited in the literature [5,6] is DENCLUE, due to Hinne-
burg and Keim [7]. In one version of DENCLUE, the 
density function is taken as the sum of identical Gaussian 
RBF’s centered at the data points. The associated algo-
rithm provides an efficient, approximate way to compute 
which data points are enclosed within the same level 
surface component of the density functionwhere the level 
surface components are induced by a threshold value ξ. 
A hierarchy of clusters may be obtained by varying the 
standard deviation σ of the Gaussian RBF’s while ad-
justing the value of ξ in concert. The reference [7] con-
siders other RBF’s too, in addition to the Gaussian.  

The level-sets approach is density-based as well, but 
unlike the approach in [7], it builds only one density 
function. The hierarchy of clusters is obtained by varying 
the threshold alone and not the density function. 

Physics-based approaches to hierarchical clustering 
are related to real-world physical processes involving 
matter or energy. Level-sets hierarchical clustering (one 
version thereof) qualifies as such because the underlying 
density function may be viewed as the sum of point lu-
minosity functions centered at the data points, where the 
density function models the total light flux impinging on 
each point of the feature space. A hierarchy of clusters is 
obtained from the level sets of this density function.  
Two other algorithms that could be called physics-based 
are GRIN [8,9], and again, DENCLUE from [7]. 

In GRIN, the clustering algorithm simulates how point 
masses, placed initially at the data points of the Euclid-
ean feature space, cluster together hierarchically under 
the influence of a gravitational force.  

In DENCLUE, expanding on the discussion above, a 
hierarchical clustering of the data, induced by a nesting 
of level surfaces, can be obtained by varying the standard 
deviation σ of the underlying Gaussian RBF’s while va-
rying the threshold ξ in concert. Although not explicitly 
mentioned in [7], the nesting of level surfaces they touch 
upon may be obtained from a different yet equivalent 
perspective, namely one involving the propagation of 
heat through a convective medium as follows.  

Imagine that the Euclidean feature space is filled with 
a convective medium. At time T = 0, let us assume that 
throughout the medium the temperature is 0 everywhere 
except for the data points, each of which is modeled as a 
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Dirac delta function “hotspot” with integrated tempera-
ture value equal to 1. Call this the initial heat configura-
tion. The temperature at any point in the medium is given 
by the time-dependent heat Equation. It is well-known 
that at any fixed time T, the solution of the heat equation 
may be obtained as (see for instance, Strang [10]) the 
convolution of the initial heat configuration by a Gaus-
sian kernel with σ2 proportional to T. But it is easily seen 
that for an initial heat configuration of finitely many del-
ta function hotspots, convolution by a Gaussian kernel is 
equivalent to summing copies of that Gaussian kernel 
centered at the hot spots.  

Now for some fixed time T0
 > 0, choose a threshold 

ξ(T0) such that when the sum S0(x) of time-dependent 
Gaussians (with variance σ2(T0) = T0) centered at the data 
points submits to this threshold, each data point is en-
capsulated within its own level surface component. Here 
the value of each Gaussian at its respective data point is 
proportional to 1/sqrt (2πσ2 (T0)). Now consider a time T1 

> T0. The value of each new Gaussian at its respective 
data point is 1/sqrt (2πσ2 (T1)), where standard deviation 
σ(T1) > σ(T0). Let S1(x) denote the sum of these new 
Gaussians. If we multiply each new Gaussian by σ 
(T1)/σ(T0), then the resulting sum S11(x) is greater than or 
equal to S0(x) everywhere. Thus the level sets of S11(x) at 
threshold ξ(T0) encapsulate those of S0(x) at threshold 
ξ(T0). The equivalent effect can be achieved without 
multiplying the Gaussians at time T1 by σ(T1)/σ(T0), but 
rather instead by introducing a new threshold ξ(T1) = 
ξ(T0)σ(T0)/σ(T1). That is to say, the level sets of S1(x) at 
threshold ξ(T1) are identical to the level sets of S11(x) at 
threshold ξ(T0), and thus encapsulate the level sets of 
S0(x) at threshold ξ(T0). More generally, if we set the 
time-dependent threshold ξ(T) = ξ(T0)σ(T0)/σ(T), then the 
sum of the time-dependent Gaussians yields a hierarchy 
of level surface components under encapsulation. Thus 
the approach in [7], given its connection to heat, may be 
considered a physics-based approach to hierarchical clus- 
tering, or more precisely, a heat-based approach.  
 
3. Open Questions 
 
The questions below are distinct from those mentioned at 
the end of [1], and are open to the best of our knowledge. 
We think they are of both mathematical and practical 
interest.  
 
3.1. Effect of Different Radial Basis Functions 
 
Given two different RBF’s, f(x) and g(x), what is the 
difference between the level set hierarchy associated 
with F(z), the sum of RBF’s f(x) centered at the data 
points, versus G(z), the sum of RBF’s g(x) centered at 
the data points?  What is the difference in the hierar-
chical clustering of the data points associated with F(z) 

versus G(z)? For example, what is the difference when 
f(x) and g(x) are two IM RBFs such that f(x) > g(x) for 
all x? 

In a related vein, suppose g(t, x) is a continuous family 
of RBF’s parameterized by the real-valued parameter t ≥ 
0. Let us assume that some natural notion of “radius” of 
g(t, x) grows monotonically with t. For example, when 
g(t, x) is the Gaussian heat kernel, this radius can be 
taken as the standard deviation σ, where σ2 = t. Suppose 
that ξ(t) is a (possibly) time-dependent threshold, such 
that the ξ(t)-level sets of g(t, x) form a hierarchy under 
encapsulation, where the ξ(0)-level set encapsulates each 
data point in its own component, and at some time t > 0, 
the ξ(t)-level set encapsulates all the data points within 
the same component. Thus g(t, x) and ξ(t) induce a hier-
archy of level sets, which in turn induces a hierarchical 
clustering of the data points. Call this the generalized 
heat-based approach to hierarchical clustering utilizing 
the generalized heat kernel g(t, x). What is the difference 
between the level set hierarchy in the generalized 
heat-based approach using g(t, x) versus some other pa-
rameterized family of RBF’s f(t, x)? What is the differ-
ence between the hierarchical clustering of the data 
points in the generalized heat-based approach using g(t, x) 
versus some other parameterized family of RBF’s f(t, x)? 

Given two different hierarchical clusterings of the 
same data points (as for example might be generated by 
two runs of the level sets approach, each using a different 
RBF), is there another hierarchical clustering that in 
some sense represents the hybrid of the two, in other 
words is in some sense consistent with both? 
 
3.2. Comparing the Physics-Based Approaches 
 
Is there a formal sense in which the level-sets approach 
to hierarchical clustering is approximately equivalent to 
the generalized heat-based approach? In other words, 
given a parameterized RBF g(t, x) and threshold ξ(t) for 
the generalized heat-based approach, is there a corre-
sponding RBF f(x) for the level sets approach such that 
the level set hierarchies generated by the two approaches 
are in some sense close, or the hierarchical clusterings 
that they induce on the data points are in some sense 
close?  

Given a parameterized RBF g(t, x) and threshold ξ(t) 
for the generalized heat-based approach, is there a cor-
responding function H(t, x) satisfying H(t, x) = H(0, x) + 
t for all t, and such that the 0-level sets of H(t, x) indexed 
by t are identical to the level sets of the generalized 
heat-based approach indexed by t? (The question as for-
mulated is reminiscent of the perspective taken in the 
“Level Set Method” by S. Osher and J. Sethian [11], 
which may be of relevance here.) Assuming the answer 
is yes, can H(0, x) be expressed as, or well-approximated 
by, a sum of RBF’s centered at the data points?  
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Is either the level-sets approach or heat-based ap-
proach to hierarchical clustering approximately equiva-
lent to the gravity-based approach of [8] and [9]?  
 
3.3. Validating the Physics-Based Approaches 
 
Here we are concerned with the possible theoretical va-
lidation of the physics-based approaches, rather than 
their empirical validation against selected data sets. To 
this end we ask several questions. 

Are there natural stochastic birth (or birth/death) pro- 
cesses to generate hierarchical data in Euclidean or 
Manhattan d-space, such that the descendents of a sam-
ple point of the process can form arbitrary-shaped clus-
ters, not just spherical or ellipsoidal ones? Are there such 
processes that can simulate natural physical processes 
(e.g., galactic cluster formation) and natural biological 
processes (e.g., biological evolution)? Can such stochas-
tic processes be designed as variants of the Hierarchical 
Dirichlet Process [12]?  

Is it possible to prove, under general assumptions 
about the stochastic process, that one or more of the three 
physics-based approaches to hierarchical clustering is 
inherently good, with high probability, at recovering the 
approximate phylogenetic structure of a sample run of 
the process? Inherent in this question, is another question 
that asks how do we measure the distance between two 
hierarchical clusterings of the data points, in this case the 
hierarchy constructed by the algorithm versus the true 
hierarchy of the data generation? 
 
3.4. Ghost Clusters 
 
Does the sum of identical, IMSC RBF’s centered at the 
data points in Euclidean d-space ever exhibit a finite lo-
cal maximum? Notice that if the answer is yes, then there 
is a threshold that yields a level surface component 
whose interior is devoid of data points. Such a compo-
nent could rightly be called a ghost cluster. Note that if 
there is reason to believe that a particular data set under 
investigation has an underlying phylogenetic structure, a 
finite local maximum might have a natural interpretation 
as encapsulating a one-time progenitor that has since 
gone extinct. 

What are necessary and sufficient conditions against 
an IMSC RBF such that the sum of identical such RBF’s 
centered at the date points does not exhibit a finite local 
maximum? A sufficient condition is that the RBF be 
harmonic in Rd – for if a finite local maximum were to 
occur, it would violate the Maximum Principle for Har-
monic Functions. (It is well-known that up to multiplica-
tive and additive constant, there is a unique positive ra-
dially-symmetric harmonic function in Euclidean Rd that 
goes to positive infinity at the origin and is elsewhere 
defined throughout the space. This fact is a corollary of 

Bôcher’s Theorem [13]. If necessary and sufficient con-
ditions do exist for RBF’s, do they also exist for IMSC 
AIFs? Can the RBF’s or AIF’s in the sum be non-iden-
tical?  

Does the heat-based approach to hierarchical clustering, 
using the time-dependent Gaussian heat kernel with σ2 = T 
and time-dependent threshold ξ(T) = ξ(T0)σ(T0)/σ(T), ever 
produce a ghost cluster? 
 
3.5. Ridge Paths in Euclidean Space 
 
Suppose identical IMSC RBF’s are centered at the data 
points p1, p2,…, pn in Euclidean d-space. Consider the 
sum F of these RBF’s. Say a continuous path P from pi 
to pj (i ≠ j) in Rd is a ridge path if for all but finitely 
many points x along the path, all the following condi-
tions hold: 1) the path tangent at x is well-defined; 2) the 
path tangent at x is aligned with the gradient of F at x; 3) 
the restriction of F to the (d-1)-plane normal to the path 
tangent at x assumes a local maximum at x. A ridge path 
is said to be a direct ridge path if it additionally satisfies: 
4) no other data point pk lies on the path. Thus a direct 
ridge path from pi to pj is in a sense locally maximum 
with respect to F all along its trajectory. Define the 
height of path P from pi to pj to be the minimum F-value 
assumed along its trajectory. Is there a highest path (one 
with maximum height as defined in the previous line) 
from pi to pj that is also a ridge path? If so, then there is 
the following connection between ridge paths and level- 
sets hierarchical clustering. If for some threshold, T1, the 
points pi and pj lie within the interiors of distinct level 
surface components Ci and Cj, respectively, and at thre-
shold T2 those components merge, then there is a direct 
ridge path between some data point in Ci and some data 
point in Cj who’s lowest F-value is T2.  

Many other natural questions suggest themselves in 
relation to these ridge paths. How many direct ridge 
paths are there as a function of the number of data points 
and the dimension of the space in which they reside? 
How different is the connectivity structure of the direct 
ridge paths from say the Delauney triangulation of the 
points? Can there ever be two distinct direct ridge paths 
between a pair of data points? If direct ridge path P is 
parameterized by t in [0, 1], is the function G(t) = F(P(t)) 
a convex function of t? As a function of dimension, what 
is the largest possible ratio between the arc length of a 
direct ridge path and the Euclidean distance between the 
same pair of end points?  

With an eye toward generating an efficient algorithm 
to compute the level-sets hierarchical clustering, is there 
an efficient algorithm (that avoids the curse of dimen-
sionality, i.e., exponential run-time dependence on prob-
lem-space dimension) to find all the direct ridge paths 
induced by p1, p2,…, pn, in Euclidean d-space? In par-
ticular, is there an efficient algorithm based on the fol-
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lowing two-step paradigm: 1) Using an easy-to-evaluate 
criterion, determine which pairs of points {pi, pj} are 
candidates for a direct ridge path; 2) find the direct ridge 
path from pi to pj numerically, starting with a straight 
line of beads from pi to pj and then iteratively optimizing 
the bead positions in a manner similar to the variational 
active contour method of Snakes [14]. To reduce the 
number of calculations, if a bead B is “far” from a data 
point pk, then one might consider excluding the contribu-
tion of pk’s influence function while optimizing the posi-
tion of B.  

It also seems reasonable to ask for efficient approxi-
mation algorithms to recover the level-sets hiearchical 
clustering, especially given that many other problems 
related to clustering are already known to be NP-hard. 
Thes include: Optimal Binary Decision Tree [15], Opti-
mal Rectilinear Steiner Tree [16], Steiner Problem in 
Phylogeny [17], Maximum Likelihood Tree [18], and 
various versions of the Parsimony Problem in Phyloge-
netics [19]. 

Finally, in this section, we ask if the discussion on 
ridge paths can be generalized to the function function 
H(t, x) in Subsection 3.2, when evaluated a time t = 0. So 
doing might lead to an efficient algorithm for recovering 
the heat-based hierarchical clustering introduced in [7]. 
 
3.6. Approximate Level-Set Hierarchical  

Clustering 
 
An approximate level-set hierarchical clustering that 
does not involve finding direct ridge paths might be 
based, at least notionally, on the following two-step pa-
radigm. First, using an easy-to-evaluate criterion, deter-
mine which pairs of points {pi, pj} are candidates for a 
direct ridge path. Second, connect the two points of each 
candidate pair by a straight line segment and evaluate the 
density function along the line segments. This configura-
tion may be viewed as having restricted the density 
function, originally defined over the entirety of the fea-
ture space, to a restricted space now consisting only of 
the introduced line segments. Within this restricted space, 
it still makes sense to talk about level sets, and thus it 
still makes sense to speak of the level-sets approach to 
hierarchical clustering in this space. Can one design an 
efficient implementation of such an approach? How does 
the resulting hierarchical clustering compare with the 
unrestricted level-sets hierarchical clustering? 
 
3.7. Ridge Paths in Manhattan Space 
 
In certain hierarchical clustering applications, the L1 me-
tric may be preferred to the L2 metric for computing in-
ter-point distances. For example, quoting from the ab-
stract of Aggarwal, Hinneburg, Keim [20], “…we spe-

cifically examine the behavior of the commonly used L k 

norm and show that the problem of meaningfulness in 
high dimensionality is sensitive to the value of k. For 
example, this means that the Manhattan distance metric 
L1 is consistently more preferable than the Euclidean 
distance metric L2 for high dimensional data mining ap-
plications.” Hence there can be motivation to consider 
the same basic questions of Subsection 3.5, but now with 
respect to the L1 metric; for example, even the special 
case of the L1 metric on binary data. 

Suppose identical IMSC RBF’s are centered at the da-
ta points p1, p2, …, pn which are located at some corners 
of the closed binary cube [0, 1]d within Manhattan 
d-space. Consider the sum F of these RBF’s. Say a con-
tinuous path P from pi to pj (i ≠ j) in [0, 1]d is a ridge 
path if for all but finitely many points x along the path, 
all the following conditions hold: 1) the path tangent at x 
is well-defined; 2) the path tangent at x is aligned with 
the limiting value of grad F(y) (for y in the open binary 
cube (0,1)d arbitrarily near x) projected into the closed 
binary cube [0, 1]d; 3) the restriction of F to the (d-1)- 
plane normal to the path tangent at x assumes a local 
maximum at x within the closed binary cube [0, 1]d. A 
ridge path is said to be a direct ridge path if it addition-
ally satisfies: 4) no other data point pk lies on the path. 

In view of Theorem 3.2 of [1], if there is a direct ridge 
path from pi to pj , is there a direct ridge path from pi to 
pj  that is also an edge-path of the closed cube, i.e., that 
consists solely of edges of the closed cube [0, 1]d? If so, 
call such a path a direct ridge edge-path. Again various 
questions arise. How many direct ridge edge-paths are 
there as a function of the number of data points and the 
dimension of the space in which they reside? When there 
are at least three data points in the data set, can there ever 
be two distinct direct ridge edge-paths between a pair of 
data points? If direct ridge path P is parameterized by t in 
[0, 1], then is the function G(t) = F(P(t)) a convex func-
tion of t? As a function of dimension, what is the largest 
possible ratio between the Manhattan length of a direct 
ridge path and the Manhattan distance between its end 
points?  

With an eye toward generating an efficient algorithm 
to compute the level-sets hierarchical clustering, is 
there an efficient algorithm, that avoids the curse of 
dimensionality, to find all the direct ridge edge-paths 
induced by p1, p2,…,pn, in the closed binary cube [0, 
1]d? In particular, is there an efficient algorithm based 
on the following two-step paradigm: 1) Using an 
easy-to-evaluate criterion, determine which pairs of 
points {pi, pj} are candidates for a direct ridge 
edge-path; 2) find a direct ridge edge-path from pi to pj 
by starting with an arbitrary shortest edge path from pi 
to pj and then iteratively generating a finite sequence of 
edge paths from pi to pj, each a local and improved 
modification of the previous, until finally a direct ridge 
edge-path is obtained from pi to pj? 
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3.8. Highest Paths of a Convex Function over a 
Convex Body 

 
Theorems 3.1 and 3.2 from [1] state, respectively, that 
given two points p1, p2 on the surface of a closed convex 
body (convex polytope) B in Rd and a convex function F 
defined throughout B, there is a highest B-path from p1 to 
p2 with respect to F that resides wholly within the sur-
face ∂B of B (that manifests itself as a sequence of edges 
within the surface ∂B of B.) A highest B-path with re-
spect to F from p1 to p2 is defined to be a path within B 
connecting p1 to p2 whose minimum F-value is maxi-
mized. Can these theorems be generalized? For example, 
can their conclusions be maintained in certain circum-
stances under relaxed assumptions that would require B 
or F to be only star-convex rather than convex? 
 
4. Conclusions 
 
In this addendum, we considered a level-sets approach to 
hierarchical clustering where the underlying density 
function is formed as the sum of identical radial basis 
functions centered at the data points in either Euclidean 
or Manhattan Cartesian space. Each radial basis function 
was assumed to be continuous, monotone decreasing, 
convex on every ray, and rising to positive infinity at its 
center. We indicated how this setup can be viewed as a 
physics-based approach to hierarchical clustering mod-
eled on light flux. Two other physics-based approaches 
were identified in the literature, one based on heat, the 
other based on gravity. This addendum puts forth basic 
and natural questions concerning the level sets approach. 
In particular, we asked the following questions. How 
does the level-sets approach compare with the other 
physics-based approaches? How is the resulting hierar-
chical clustering affected by the choice of radial basis 
function? What are the structural properties of a function 
formed as the sum of radial basis functions, each with 
convex profile? Can the levels-sets approach be theo-
retically validated? Is there an efficient algorithm to im-
plement the level-sets approach in L1 and L2? We hope 
these questions will stir interest within the scientific 
community and be resolved. 
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