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ABSTRACT 

The main purpose of the work is to clarify the physical mechanisms which leads to the specific spectrums of the struc- 
tures [1-3]. The work is based on the ideas of the effective susceptibility. The effective susceptibility of cone-shaped 
nanohills located at the semiconductor surface is obtained in the frame of local-field approach. The knowledge of the 
effective susceptibility allows to calculate the optical absorption profiles. Using the approach similar to Levshin rule the 
photoluminescence spectra were calculated. Obtained results were compared with experimental luminescence spectra 
obtained earlier. The significant machanisms, that define the peculiarities of the spectra, is the shape of the nanoclasters 
and the inhomogeneity of the nanohills array are justificated. The main issue of the work is that the cause of the lu- 
minescence spectrums has electodynamical nature without spatial quantisation effects. 
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1. Introduction 

Nowadays the experiments of luminescence of the nano- 
hills fabricated by laser beam scanning along the silicon 
surface were reported [1-3]. The effect of luminescence 
by the nanohills in the works [1-3] was explained by ex- 
isting varyband structure of the nano-rods. The spatial 
quantization is the cause of luminescence effect in the 
nanohills. This explanation seems to us rather not well- 
grounded and, of course, it is only for qualitative. Indeed 
the electron state of the quantum dot is formed in the 
particle as a whole. It means one should obtain the elec- 
tron eigenstates inside the cone-like quantum dot and, then, 
calculate the transition currents, effective susceptibilities 
and luminescence spectra. The developing of correct mi- 
croscopic model for explanation of discussed results be- 
comes very hard problem. However, one can get round the 
difficulties using the mesoscopic approach using the lo- 
cal-field method. In the frame of so-called effective sus- 
ceptibility concept [4] it is possible to calculate the lumi- 
nescence spectra by the methods of the mesoscopic elec- 
trodynamics. In the frame of this approach the local-field 
effects can give the forthcoming result. As it is well-known, 
the local-field effects strongly depend on the particle 
shape and size [4,5]. Moreover, the effective susceptibil- 
ity of the nanoparticle arrays depends on the particle shapes 
and size distribution. Then, taking into account the cone- 
like shape of the particles at the surface and its shape dis- 

tribution one can calculate the absorption spectra and, 
then, using the widely applicable Levshin rule [6,7]—cal- 
culate the luminescence spectra. This problem was solved 
in this work. 

2. Model and Problem Set up 

The scanning by the laser beam of the semiconductor sur- 
face can lead to fabrication of the systems of the nano- 
hills shaped as a cone, which was reported in [1-3]. It is 
well known, that the mechanical stresses appear when the 
nano-objects are fabricated at the surface [8-11]. The 
stress fields lead to distortion of the electron and optical 
properties of the nano-systems [12,13]. 

Specifically, these distortions become apparent in shifts 
of the absorption edge and transform the indirect band 
energy structure to the direct one [12,13]. This fact leads, 
in part, to ability of the luminescence observation in Si 
nano-particles [12]. This effect is similar to the nanopor- 
ous silicon [12]. Moreover, the complicated structure of 
the absorption and luminescence spectra can’t be explained 
by the mechanical stresses [12]. Here we attempt to de- 
scribe the peculiarities of the absorption and lumines- 
cence spectra of the nanohills systems in the frame of 
local-field approach. There are many works where the 
similar effects were explained with the local field inter- 
actions in the nano-particles [5,14]. It is well known, that 
the local-field effects are strongly defined by the shapes 
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and dimensions of the particles [5,14,15]. Moreover the 
distribution of the nano-particles arrays over the shapes 
and the dimensions defines the optical properties of the 
nano-particles arrays. Just these two aspects of the sys- 
tem are taken into account in the present work. To de- 
scribe the luminescent properties of cone-shaped nano- 
hills one use the so-called effective susceptibility concept 
[5,14]. To calculate the effective susceptibility of the nano- 
particles array one should to start from the dielectric func- 
tion of the material from which the particle is fabricated. 
The dielectric function of silicon modified by the stress 
effects is used [13,16] in the frame of the discussed ap- 
proach. One should note that one of the features of the 
meso-particles array is the distribution of the particles as 
over its shape as over its dimension. It is clear that the 
optical properties of the system are defined by these dis- 
tributions. The distribution functions of Lifshits-Slezov- 
Wagner [17] and Gauss are used in the present work. 

The paper is organized as follows. In Section 3 we give 
a brief description of the local field method and obtain 
the single meso-particle effective susceptibility. In Section 
4 we obtain the formula of the effective susceptibility of 
the inhomogeneous two-dimensional array of the parti- 
cles in the frame of Green function formalism. And in 
Section 5 the results of our calculations by semi analyti- 
cal method are presented and compared with the experi- 
mental data. 

3. Effective Susceptibility of Small Particle 

For solving the problem of the calculation of the linear re- 
sponse to the external field (so-called, effective suscepti- 
bility) of the single meso-particle at the surface of a solid 
(Figure 1), one use the local-field method [5,14,15]. Let 
one consider the interaction of the small particle with the 
external electromagnetic field. The self-consistent electric 
field at any point inside the system obeys the equation 
[5,14,15,18], 

       0
0, , , , ,i i ij j

V

E E i G j       R R R R R d R


(1) 

where 0 ,iE R
 , ,ijG

 is an electric component of external 
field, R R  is the photon propagator, describes 
the electromagnetic field propagating in the medium in 
which the particle is embedded. This medium is the sub- 
strate with flat surface in the case under consideration. 

Because of connection between the local current 
 ,jj R  and the local field  ,iE R  which usually 

named as constitutive equation, 
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where  jk   is susceptibility of the bulk material from 

 

Figure 1. Setup of calculations. 
 

which the particle is fabricated, Equation (1) transforms 
to self-consistent equation for local-field which usually 
named as Lippmann-Schwinger equation [5,14,15], 

   

     

0

2

2

, ,

               , , , d .

i i

ij jk k
V

E E

G E
c

 

    



  

R R

R R R R



(3) 

The introduction of the effective susceptibility which 
connects the local current  ,jj R  with the external field 

 0 ,kE R , 

    0,  , ,j jk kj i E S     R R R     (4) 

allows us to write the solution of Lippmann-Schwinger 
equation in the form, 
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with the dimensionless effective susceptibility    ,S
jk  R : 

      0,S S
jk jk ,   R R

d ,

. The effective susceptibility 
of the single meso-particle at the surface of the solid can 
be calculated according to the equation obtained in [5] 
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(6) 

where photon propagator corresponds to a two semi-spaces 
with the ideal flat interface. This expression will be ini-
tial one for calculations provided in the present work. The 
detail analysis of the effective susceptibility in form Equa-
tion (6) was provided in [5]. In part, it was shown that 
obtained expression for the effective susceptibility Equa-
tion (6) is true under condition of nonzero of imagine part 
of the matrix, 
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defines the eigenmodes in the system. It is clear that be- 
cause integral over the particle volume in Equation (6) 
the behavior of the effective susceptibility of the particle 
will be strongly depended on the particle shape and size. 
The behavior of the effective susceptibility  ,jk R  
can be studied numerically. For example, the imaginary 
part of xx  averaged over the volume of the particle for 
the single cone-like particle is depicted in the Figure 2 
(colour plot). In the Figure 3 depicted the same depend- 
ence via the curve representation. It is could be seen that 
the dependence of xx  on the particle shape (more cor- 
rectly, on the cone height h) is strong and at any value of 
h the behavior of  xx   drastically changes—line is 
split. 

4. Absorption Spectra of Two-Dimensional 
Cone-Like Particle Arrays 

It is clear that experimentally obtained meso-particle ar- 
rays are characterized by the particles with the different 

 

 

Figure 2. Effective susceptibility of single cone like Si mesopar- 
ticle (xx-part) as a function of photon energy and cone height 
(two dimensional dependence). 

 

 

Figure 3. Effective susceptibility of single cone like Si mesopar- 
ticle (xx-part) as a function of photon energy at different val- 
ues of the height of the cone under consideration. 

shapes and dimensions. Then, using the result of previ- 
ous section, one should calculate the effective suscep- 
tibility of the meso-particle array. To calculate the effec- 
tive susceptibility of the meso-particles array one should 
consider the self-consistent equation, 
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where the summation is over the different particles. 
Let us suppose that the meso-particles form the rare ar- 

ray, which means that average distances between the par- 
ticles are larger than linear dimensions of them. Taking 
into account the results of the works [14,19,20], one can 
consider the meso-particles as the point-like dipoles which 
polarises as the nonpointness object with the defined shape 
and dimension. Thus the second term in the right part of 
Equation (8) can be reduced to 
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with 

       ( ) 1 d  ,S
jl jl

V

V



 ,    R R  

is the averaged polarizability of the single particle of α-th 
kind at the surface. In general, the mesoparticle arrays 
consist of the particles having different dimensions and 
differently shapes. It means that the sum in Equation (9) 
splits to the double sum, internal term of which is the 
sum of particles with the same parameters (named by the 
α-th subsystem), 

   
Ns

q



 
               (10) 

where N  is a number of particles in the α-th subsys- 
tem, and s is a number of the subsystems. It is naturally 
to suppose that the particles are distributed homogene- 
ously along the surface of the substrate. Then, one should 
average Equation (9) over the particles positions. For this 
purpose one should, first, to perform Fourier transforma- 
tion of Equation (8) taking into account Equation (9), due 
to lateral homogeneity. Let one average out Equation (9) 
by the particle positions, using Equation (10). Then, tak- 
ing into account that occupied position can’t be occupied 
by the other particle, one should use the uniform distri- 
bution [14,19]. Because the meso-particle array can be 
considered as quasi-uniform spatial system in the plane 
of the substrate (XOY plane), one can transmit to so-called 
k-z representation [4], 
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where r and k are the coordinate and wave vector in the 
XOY plane, respectively, S is the area of the substrate. 
To calculate this expression one should to consider 1N   
summand of the sum in right part of Equation (11), which 
has a form, 
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As a result, the right part of Equation (9) is written as 
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Then, the equation of the self-consistent field written 
for the system under consideration has form 
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where 
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is concentration of the particles of α-th type. The depend- 
ence between the induced subsystem dipole moment and 
the external field, 
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Substituting Equation (15) in Equation (14) one can ob-

tain the polarization of the β-th subsystem 
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Then, the polarizability (the effective susceptibility) of 
the total system has a form, 
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This equation will be used for further calculations of 
the absorption and luminescent spectra of the system un- 
der consideration. Present paper calculation based on the 
method developed in [18] with adaptation into present 
model of the one. According to the definition of the ab- 
sorption spectra, 
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.
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All characteristics that include Equation (18) are vol- 
ume averaged already, and due to time averaging, 
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is local field factor. 
Formulas above are written in  representation, 

they must be convenient to use in Equation (19). Thus it is 
necessary to perform inverse Fourier transformation. Due 
to suppositions considered above they has simple view, 
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Substituting Equations (22) and (23) into Equation (19) 
one obtains the dissipative function of nanoparticle array 
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in the form, 
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Include into consideration distribution function 
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where   is some parameter of the particle. 
Final view of absorption spectra formula 
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where  jl
   is effective susceptibility of the single parti-

cle with the parameter , which founded in previous section. 

4. Numerical Calculations and Discussions 

Numerical calculations were performed in the frames of 
the model of the bulk material susceptibility with correc- 
tions discussed above. The susceptibility of the bulk sili- 
con and germanium were taken from [13,16]. As could 
be seen from the experimental data (green colored lines 
at Figures 4 and 5) the range of luminescence spectrum is 
about 1 eV near the absorption edge from 1.2 eV to 2.3 
eV. That is why in the theoretical calculations only ab-
sorption edge were taken into consideration with the fre- 
quency shift about 0.2 eV and grows of the intensity about 
2 units. In the model we use the different distribution func- 
tions which fulfill different models of growing of the struc- 
tures to find the most suitable. The averaged dimension 
of the particles were chosen as the next: Radius of the base 
of the cone was equal to , the averaged height 
of the cone-like particles was equal to mid . It was 
supposed that heights of the cone-like particles are var- 
ies from min  to max . There dif-
ferent shape distributions of the particles were used in 
the present work. Gauss distribution function has form 
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with the constant  being founded from the relation GC
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N f h  , where is the total number of the particles 

in the array. Lifshits-Slezov-Wagner distribution function 
can be represented in the form [17], 
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Figure 4. Luminescence spectra of different structures [1-3]: 
Green colored line is experimental data, red colored Lif- 
shits-Slezov distribution (x = 1), purple is Wagner distribu-
tion (x = 0), blue is Gauss distribution, SiO2/Si structure, Tne = 
60. 

 

 

Figure 5. Luminescence spectra of different structures [1-3]: 
Green colored line is experimental data, red colored Lif- 
shits-Slezov distribution (x = 1), purple is Wagner distribu- 
tion (x = 0), blue is Gauss distribution, Si0.7Ge0.3/Ge, Tne = 55. 
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where 
max

h
u

h
 ,  is the maximal dimension of the  maxh

particle in the array, x is the parameter of the model de- 
pends on the kinetic properties of the different materials 
( 0 1x  ) [11]. Constant LSC  is founded from the nor- 
malisation equation. 

The luminescence spectra for structures 1) SiO2 (sub- 
strate)/Si(particle) and 2) Si0.7Ge0.3/Ge are depicted in 
Figures 4 and 5, green colored lines are experimental 
data. For estimation the luminescence spectra via absorp-
tion profile we use so-called Levshin rule [6,7,21], 
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where ne  is the fenomenological constant. From the form 
of the structures obtained by the laser beam scanning along 
the silicon surface [1-3] one can see that interparticle dis- 
tances are comparable with wave length. As we can see 
from the experimental spectra wave length at the left side 
of the spectra two times larger than at the right side. More- 
over intensity of the diffuse scattering for the small wave 
length is larger. That is why the effective intensity of ra- 
diation at the detector must be smaller. For the estimation 
of the theoretical curve one uses the phenomenological 
function which describes intensity at the detector. The func- 
tion must satisfy the next conditions: 1) The scattering 
processes are not appreciable for the long wave length pho- 
tons. It means the function must be constant in the long 
wavelength limit; 2) When the wavelength is comparable 
with inhomogeneties of the structure the function must 
abate, 

T

 0
0

1
,

1 exp

f E
E E

 
    

          (32) 

where 0  is the phenomenological energy which corre- 
sponds to the critical wavelength, and which corresponds 
to range of the frequencies of the effective scattering. 

E

It could be easily seen (Figure 4)) that model with 
Lifshits-Slezov (Lifshits-Slezov-Wagner, x = 1) (red col- 
ored line) the distribution function more suitable than sym- 
metric Gauss distribution (blue colored line). And at the 
Figure 5 we can see the same situation where Wagner 
distribution function (Lifshits-Slezov-Wagner, x = 0) more 
suitable than symmetrical Gausian. It is expected result 
because of the heat action of the laser beam because Lif- 
shits-Slezov distribution was derived for the annealing 
process [11]. In contrast the etching process [8] where pre- 
sented logarithmic normal size distribution with the domi- 
nant number of the smaller particles. We can see from 
Figure 4 that the local field effects lead to rather strong 
distortion of the initial curve [13] describing absorption 
properties of the bulk material from which the nanohills 
are made. As we can see from Figures 4 and 5, the maxi- 
mum of the calculated luminescence curve has the same 
position as at the experimental data curve and it has the 
similar low frequency side. In Figure 5 for another pair of 
materials (Si0.7Ge0.3/Ge) we can see the same features at the 
low frequency range and it is comparable with experi-
mental data. It is easy to see that both SiO2/Si and 
Si0.7Ge0.3/Ge have similar peculiarities in the same re- 
gion of the photon energies. It allows us to think that the 
nature of the features observed above are similar. 

5. Conclusion 

The model of two dimensional array of cone-shaped 
meso-particles for explanation of the experimental data 

reported earlier by the authors in [1-3] is proposed. As 
opposed to [1-3] where obtained the results were ex- 
plained by the spatial quantization effects here one pro- 
posed the additional approach based on taking into ac- 
count the local-field interactions inside the particles and 
the interparticle interactions. The local-field interactions 
inside the particles were considered in the frame of effec- 
tive susceptibility concept in the near-field approximation. 
The interparticle electro dynamical interactions were con- 
sidered rather strongly by solution of Lippmann-Schwinger 
equation for the system under consideration with what taken 
into account as near- as middle- and far-field interactions. 
Different models of the particle distributions—Gaus- 
sian-like distribution and Lifshits-Slezov-Wagner distri- 
bution were used. The both models of the particle distri- 
bution give qualitatively correct results. But the Lifshits- 
Slezov-Wagner distribution model is the most suitable. 
This fact allows us to conclude that particle distri- bution 
obtained by laser heating [1-3] of SiO2 surface is de-
scribed by Lifshits-Slezov-Wagner distribution with x = 1. 
In the case of Si0.7Ge0.3 surface the luminescence spec-
trum is described by Wagner distribution. Comparison of 
calculated and experimentally obtained luminescence spec- 
tra allows us to think that the luminescence of the nano-
hills can be explained by the local-field effects. 
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