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ABSTRACT 

In this article, we use scaling function interpolation method to solve linear Fredholm integral equations, and we prove a 
convergence theorem for the solution of Fredholm integral equations. We present two examples which have better re- 
sults than others. 
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1. Introduction 

Integral equations play an important role in both mathe- 
matics and other applicable areas. Many physical phe- 
nomena can be modeled by differential equations. In fact, 
a differential equation can be replaced by an integral 
equation that incorporates its boundary conditions. Inte- 
gral equations are also useful in many branches of pure 
mathematics as well. Here we study Fredholm integral 
Equations [1-3]. 

Wavelets have been applied in a wide range of engi- 
neering and physicaldisciplines, and it is an exciting tool 
for mathematicians. In this paper we will find a numeri- 
cal solution for the second kind Fredholm integral equa- 
tion of the form 

       ,
b

a

y x g x k x t y t t   d ,           (1) 

where the function  g x


 and are  given, and 
the unknown function 

 ,k x t
y t  is to be determined. 

1.1. Wavelets 

In this subsection we will provide a brief account of 
wavelet transform and Multiresolution analysis (MRA). 
We first define the scaling function  x  and the se- 
quence  such that   ,p p Z  

   2 j
p

p

x x p    



           (2) 

By using this dilation and translation [4], we defined a 
nested sequence spaces  which is called MRA 
of  with the following properties 

 ,jV j Z

 
 2L R

1,j jV V j Z                 (3) 

 0j
j Z

V V


                   (4) 

j
j

V  is dense in           (5)  L R2

    12j jx V x    V            (6) 

For the subspace  is built by 1V  2 ,x p   p Z  
then   0V x p Z  ,p ,  and since  we  0V V 1

can write 

  2 .p
p

x x p     

In general, 

    ,2 j
p p

p p

x x p p j               (7) 

Any function    2f x L R  can be approximated by 
scaling functions in one of the subspace in the given 
nested sequence. In fact, for each j we define the 
orthogonal complement subspace jW  of jV  in the 
subspace 1jV  . The orthogonal basis of jW  is denoted 
by 

   , 2 j
j p ,x x p                    (8) 

and the wavelet function can be obtained by 

   ,p j p
p

x x    .                  (9) 

Some interesting properties of scaling and wavelet 
functions make wavelet method more efficiently than 
quadrature formula methods and spline approximations 
in solving Integral equations. A lot of computational time 
and storage capacity can be saved since we do not re-
quire a huge number of arithmetic operations partly due 
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to the following properties. 
1) Vanishing Moments: 

 d 0, 0, , 1kx x x k m



    .        (10) 

and in this case the wavelet is said to have a vanishing 
moments of order m, 

2) Semiorthogonality: 

     , , , ,, 0

; , ,

j p j k j p j kx x x

p k j k p Z

   



 

 
 ;

      (11) 

The set of scaling functions  are orthogonal at 
the same level n, which means: 

 , .n

       , , , , d ,

, ,

n k n p n k n p k px x x x x

n k p Z

    



 


 ,

.

  (12) 

Coiflet (of order L) has more symmetries and is an 
orthogonal multiresolution wavelet system with, 

 d 0, 1, 2, , 1k
kM x x x k L            (13) 

( )d 0, 0,1, 1.kx x x k L               (14) 

where  are the moments of the scaling functions.  kM

1.2. Scaling Function Interpolation 

The function  f x  can be interpolated by using the 
basis functions in the subspace jV  as follows. 

  2j
p

p
jf x a x  p             (15) 

where pa  are the coefficients evaluated by using Equa- 
tion (12) such that 

       ,, 2 dj
p j pa f x x f x x p x   

j

.  (16) 

Hence the Equation (15) becomes: 

        2 d 2j j

p

f x f x x p x x    p . 

On the other hand, one can use sampling values of f  
at certain points to approximate the function .f  It is 
proved in [5], namely, an interpolation theoremusing 
coiflet such that if  x  and  x  are sufficiently 
smooth and satisfy the Equations (10)-(14) and the 
function    kf x C  , where  is a bounded open 
set in  



2 , 2,R k N j Z    

Then, 

     

 

, ,
,

1
, ,

2 2 2

,

j
j p j qj j

p q

p c q c
,f x y f x y

x y

 


    
 




 (17) 

where the index set is 

       , ,, sup supj p j qp q ,        

Sup denote the support of a function. 
In addition, the moment lM  satisfies 

 
1

, 1,2, , 1

.

l

lM c l N

c M

.  




 

Then, 

 
 

2

1
.

2

N
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jL
f f C f

 

    
 

 

where  is a constant depending only on , diameter 
of 

C N
  and  

 
 

 
, , 0, ,
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N
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f
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x y
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For the function with one variable, we have 

     ,

1
, ,

2 2
j

j pj j
p

p
f x f x x a b   

 
 ,      (18) 

and 

 
 

2 ,

1
.

2

N
Nj

L a b
f f C f



    
 

      (19) 

where 

   
( , ), 0, ,

: max
N

N

mx a b m N

f
.f x

x


 




     (20) 

2. Solve Fredholm Integral Equations Using 
Coiflet 

In this section we will apply coiflet and the interpolation 
formula (18) to solve the Fredholm integral Equation (1). 
The unknown function  y x  in Equation (1) can be 
expanded in term of the scaling functions  ,j p x  in 
the subspace jV  such that 

  , .j
p j p

p

 y x a x             (21) 

Consider the Equation (1) and the function  y x  
which is defined on the interval [a, b] and the scaling 
function  x  defined on the interval  then we 
have the index: 

 ,a b

 2 , 2 1, , 2j j ja d a d b c      .  

By applying Equation (21) into Equation (1), we get 
the system, 

 

     

2

, 2

j
p

p

b j
pa

p

a x p

d ,g x k x t a t p









  



 t
     (22) 

which is equivalent to the following system, 
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        2 , 2 d
bj j

p a
p

a x p k x t t p t g 


     ,x



(23) 

where thecoefficients  ,pa p  can be evaluated by 
substituting   , ,b p p  into the system (23). 
Moreover, the system (23) can be expressed in compact 
form, 

x a

 A B C G                 (24) 

where 

 , 2 j
p p ,A a B x p         

     , 2 d ,
b j

p pa
C k x t t p t G g x      

1

.  

Then    .A G B C 
This gives rise to coefficients in (21) and we obtain a 

numerical solution of (1). In what follows, we will derive 
a convergence theorem of this numerical solution. 

3. Error Analysis 

In this section will discuss the convergence rate of our 
method for solving linear Fredholm integral Equation (1). 

Theorem 1. In Equation (1), supposethat the function 
     , , ,k x t C c d a b   ,  and the functions  g x  and 
   ,y x C a b ,j Z, for  

  2j j
p

p
y x a x  p             (25) 

is an approximate solution of the Equation (1) with the 
coefficients obtained in (24). Then, 

      1

2

j
je x y x y x C

     
 

      (26) 

where, 

     1
.

b

pa
p

e x e x e x


 
   

Proof. Subtracting Equation (25) from Equation (1) 
and taking the norm for both sides, we get the following 
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(27) 

where  1 , d .
b

a

c k x t t   

By [5], the unknown function  y x  can be interpo- 
lated by using coiflet such that: 

  2
2

j
j

p

p
y x y x p   

 
 .j           (28) 

Let t x  in Equation (28) then add and subtract it in 
Equation (27), we get the following inequalities. 
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which equals to  the equation 
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By [5], we have 

     
0

1
2 .

2 2
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p
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Since 
2 pj

p

p
y a

     
  

 
  is finite we define it as 

22 pj
p

p
y a

  
c   

  
 .            (31) 

Using the above results and the orthonomality of the 
scaling functions   ,x , we conclude that 

   
1 0 2

1 1 1
.

2 22

N j j
N

j
e x c c f c c

                    


,

 (32) 

4. Numerical Examples 

In the following examples, we will solve linear Fredholm 
integral Equation (1) using coiflet of order 5 and provide 
errors between exact solutions and our numerical solu- 
tions at different resolution levels. Both examples are 
also presented in [6] by using different method. 

Example 1.  

Consider where        , d
b

a
y x g x k x t y t t  

   sin , , .g x x x k x t   xt  
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correlation with the level of resolutions but they basically 
validate our theorem. In fact, we can also interpolate the 
given functions in the integral equation. This would sim- 
plify the calculations in finding numerical solutions of in- 
tegral equations. It would be interesting to use our method 
to solve nonlinear integral equations as well. 

The exact solution is    siny x  x  and 
π

0,
2

x
    

 

Example 2.  
Consider 

       , d
b

a
y x g x k x t y t t   ,  

where  g x  and  are given on the interval [0,1] 
such that, 
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