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Abstract

In this work, the (G’/ G) -expansion method is proposed for constructing more general exact solutions of the

(2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated
by the fact that the (G’/G)-expansion method provides not only more general forms of solutions but also

periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values,
then some previously known solutions can be recovered. The method appears to be easier and faster by

means of a symbolic computation system.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been the
subject of study in various branches of mathematical-

physical sciences such as physics, biology, chemistry, etc.

The analytical solutions of such equations are of funda-
mental importance since a lot of mathematical-physical
models are described by NLEEs. Among the possible
solutions to NLEEs, certain special form solutions may
depend only on a single combination of variables such as
traveling wave variables. In the literature, there is a wide
variety of approaches to nonlinear problems for con-
structing traveling wave solutions. Some of these ap-
proaches are the Jacobi elliptic function method [1], in-
verse scattering method [2], Hirotas bilinear method [3],
homogeneous balance method [4], homotopy perturba-
tion method [5], Weierstrass function method [6], sym-
metry method [7], Adomian decomposition method [8],
sine/cosine method [9], tanh/coth method [10], the
Exp-function method [11-16] and so on. But, most of the
methods may sometimes fail or can only lead to a kind of
special solution and the solution procedures become very
complex as the degree of nonlinearity increases.
Recently, the (G'/G)-expansion method, firstly in-
troduced by Wang et al. [17], has become widely used to
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search for various exact solutions of NLEES [17-27]. The
value of the (G'/G)-expansion method is that one treats
nonlinear problems by essentially linear methods. The
method is based on the explicit linearization of NLEEs
for traveling waves with a certain substitution which
leads to a second-order differential equation with con-
stant coefficients. Moreover, it transforms a nonlinear
equation to a simple algebraic computation.

The generalized (2 + 1)-dimensional Kadomtsov-Pe-
tviashivilli (gKP) equation given by

(ut +u'u +ou )X +§uw =0, |n| >1

The objectives of this work are twofold. First, we de-
scribe the (G'/G)-expansion method. Second, we aim
to implement the present method to obtain general exact
travelling wave solutions of governing equation.

2. Description of the (G'/G)-Expansion
Method

The objective of this section is to outline the use of the
(G'/G)-expansion method for solving certain nonlinear
partial differential equations (PDES). Suppose we have a
nonlinear PDE for u/(x, y,t), in the form
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P(u, u,u, un,uxy,---) =0,

M

where P is a polynomial in its arguments, which in-
cludes nonlinear terms and the highest order derivatives.
The transformation u(x,y,z,1)=U (&), E=hkx+ly+at,
reduces Equation (4) to the ordinary differential equation
(ODE)

P(U, kU', @', KU", ktU",-+) =0, )
where U =U(&), and prime denotes derivative with
respect to &£ . We assume that the solution of Equation
(2) can be expressed by a polynomial in (G'/G) as fol-
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lows:

U(E)=Ya,(G/G) +ay a, #0. @3)

where ¢,, and ¢,, are constants to be determined
later, G(&) satisfies a second order linear ordinary dif-
ferential equation (LODE):

d’G(¢&)  dG(¢)
dé? de

where A and u are arbitrary constants. Using the ge-
neral solutions of Equation (4), we have

+A

+uG(&) (4)

2 Clsmh[\/ﬂzz_ﬁff}+cz cosh{@gj
/12_4/1 2 > __,ﬂv2_4/u>0l
C; cosh [W§]+ C,sinh {W 5}
w: ®)
G(¢ — _
(€) > -G Sin( 4ﬂ2 §J+ G, cog[\/WgJ
4'1'12_/1 2 > _,12_4lu<01
G COS[ 4ﬂ2_ 5} +C,sin [\/A"uzﬁ 5}
and it follows, from (3) and (4), that
U'=-Yja[(GG) "+ 4(G/G) + m(c/G) "]
: (6)

U= ch [(1+1)(G/G) " +(2i+2) A(G/G) ™ +i(2* +24)(G'/G) +(2i-1) 2u( GG +(i-2) i (G/G) |,

and so on, here the prime denotes the derivative with
respectiveto & .

To determine u explicitly, we take the following
four steps:

Step 1. Determine the integer n by substituting Equa-
tion (3) along with Equation (4) into Equation (2), and
balancing the highest order nonlinear term(s) and the
highest order partial derivative.

Step 2. Substitute Equation (3) give the value of n
determined in Step 1, along with Equation (4) into Equa-
tion (2) and collect all terms with the same order of
(G'/G) together, the left-hand side of Equation (2) is
converted into a polynomial in (G'/G). Then set each
coefficient of this polynomial to zero to derive a set of
algebraic equations for k, ®, e, and ¢, .

Step 3. Solve the system of algebraic equations ob-
tained in Step 2, for a,b,c,w,, and ¢, by use of
Maple.

Step 4. Use the results obtained in above steps to de-
rive a series of fundamental solutions u(&) of Equa-
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tion (2) depending on (G'/G), since the solutions of
Equation (4) have been well known for us, then we can
obtain exact solutions of Equation (1).

3. Application

In this section, we will demonstrate the (G'/G)-expan-
sion method on the generalized (2 + 1)-dimensional Ka-
domtsev-Petviashvili (KP) equation given by
Lu, =0,|n>1, )
2 P

where &, and y are constants. Using the wave vari-
able &=/kx+/ly+crt, in (7) and integrating the result-
ing equation and neglecting the constant of integration,
we find

n
(u, +u'u +ou,, )X +

7/€2 k2 n+l Ay rn
ko+— |U+—U""+5k*U"=0,|n|>1,  (8)
2 n+1l
To achieve our goal, we use the transformation
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1
U(&)=v" (&), thatwill carry (8) into the ODE

2
nz(n+1)(ka)+%j1/2 +k2n2V3+(n+1)5k4(nVV"+(l—n)(V’)2)= 0, 9)
According to Step 1, we get 3m=2m+2, hence 2 2 2 2
m=2. We then suppose that Equation (9) has the fol- a, :_Zk &I(ztn +3n),al = _Zk 5&(22;1 +3n),
lowing formal solutions: n n
, ) 2k%5(2+n*+3n 4512 _gk* 2,2
V=0,(G/G) +e,(G[G)+ap 2, 20, (10) g, =— ( : ),a,z_Z" o 2’;;“7“ ,
n
where «,,¢;, and «,, are constants which are un- (11)
known to be determined later. _ Substitute the above general case in (10), we get
Substituting Equation (10) into Equation (9) and col-
lecting all terms with the same order of (G'/G) to- _—25k2(2+n2+3’1) GGV + (GG
gether, the left-hand sides of Equation (9) are converted V= n? [( /G) +A(G/ )+”}’ (12)

into a polynomial in (G'/G). Setting each coefficient of
each polynomial to zero, we derive a set of algebraic
equations for k, ¢, o, 4, pa,, @, and «a,, and then use the transformation U(&)=r""(&), when
solving them by use of Maple, we get the following gen- A? —4u>0, the hyperbolic function solutions of Equa-
eral result: tion (7), becomes:

L JAZ =4 {Clsinh {*‘/122_4'”5] +C, cosh [“’122_4‘[5“
A
2 2 _E
2[C25inh[\’/12_4ﬂ§]+q cosh {\'/12_4“5}]

1

|n|>1n=-2.

el

J7—4u {Clsinh(wlzz_d”ug]+ C, cosh {\"122_4”5}]
)
2 2 _E
2[czsinh[\"1 2‘4” g}clcosh{\'/I 2_4” gﬂ

+A

+ul,

and when A° -4 <0, the trigonometric function solutions of Equation (7), will be:

JAu-A* [—Clsin{W§]+Cz cos(“ﬂrﬂz_ﬂ“zgﬂ
A
2 2 _E
2[C25in£V4ﬂ2_/1 §J+Clcos[“4ﬂ2_/1 5]}

2

BN

2
n

u(é)z[—25k2(2+nz+3n)}

L
I

Jau—-A? [—Clsin[*'d"uz_/lzfj+ C, co{“d"uz_/lzf]]
A
2 2 _E
2[C25in{“4'uz_/1 5]+Clcos[*'4ﬂ2_/l 5}]

+A

+ul|,

2k 607 =8k SA + y*n®
2kn?

C,,C,, A, and p are arbitrary constants.

¢, and . .
In particular, when C, =0, then the general solutions

where &=kx+/ly—
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(13) and (14) reduces, respectively,

2 2 . 2
20k (2+n"+3n) | 2 _ 2 _ 4592 _qp4 2.2
u(f):[ ( )] [\/224ﬂtanh{\/ﬂ,24ﬂ(kx+gy_2k S —8K*5A+ y*n tJ]_iJ

2

n 2kn® 2
(15)
1
2 2 _ 4692 4 2.2 "
v A —4u tanh AT —4u kx+£y—2k OA° -8k ?'/1+7/€n ; A ful
2 2 2kn 2
1 2
~26K* (2+n* +3n) 1" | [~ 22 —4u (22 —4u 2k* 547 —8k*SA + y1*n? A
u(é): 5 tan kx + 0y — 5 t|—-—
n 2 2 2kn 2
) (16)
a2 2 4692 a4 2 2 n
1 JAS —du @n JAZ —du kx+£y—2k oA" -8k ;&Hﬂ n, A vul
2 2 2kn 2
and when C, =0, then we deduce from general solutions (13) and (14) that,
1
= 2
20k (2+n* +3n) || (a2 —au (2 —au 2k A7 8K S+ yt%n? )| A
u(§)= 5 coth kx + ly — 5 t||—-=
n 2 2 2kn 2
) (17)
2 2 4 2 _ 4 2.2 n
il JAZ—4u coth JAZ—4u kx+£y—2k oA -8k f/1+y£ n, A vul
2 2 2kn 2
1 2
—20k*(2+n*+3n) )" 2 _ 2 _ 4692 4 2 2
&) - ( 2 )V (2% =au ot NP4 i vaw L | I
n 2 2 2kn 2
. (18)
2 2 4 2 _ 4 2.2 n
v JA 4ﬂcot VA —4u kx+fy—2k OoA° -8k f/1+)/€n ; A ful
2 2 2kn
where k, ¢, A, and u are arbitrary constants. (u, +u¥Pu +6u, ) +(7/2)u,, =0, (19)
For important case n = 3 , the KP Equation (7) re- where_ o, and y are constants, then accor_ding to re-
2 sults in (11), the general hyperbolic and trigonometric

duce to function solution of (19) will be

23

35k°5| CH(A* —du)-C2(A* -4
(&)= |G (A —au) -G (7" -4 | | 0

18{C2 sinh(;w/ﬁz —4,u§J+C1 cosh (;«//12 —4;15)}

2/3
35K°6] €2 (4u—27)+ C3 (4p-27) |

18{@2 +(ct - Cf)cosz[“d'ﬂz_lz cf}r 2C,C, sin {“4#2_/12 5} cos{“‘ﬂz—/12 §H

u(f): — (21)
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where and C,C,, k, ¢, A, and p are arbitrary constants. When
et 4k*SA% —16k* 04 +(9/2) y 0? C, =0, then the general hyperbolic and trigonometric
c=htly= 9k . function solution (20) and (21) reduce to
_ 2
3
35k25( A% —4u
7 Ak*6A? 16k 52 + =y (*
18cos . 2. 4
9%k
_ 2
3
35k25 (4 —A*
112 A 5% 16k 04+~ y1?
18cos?| YA | et py - 2" 4
2 9%
and when C, =0, then the general solution (20)-(21) reduce to
_2
i B
35k%5( A% —4u
u(é)= ( ) 5 , (24)
7 .. 4k*SA? 16k SA + =y 1?
18sinh?| YA =) sy 2.
2 9%
_ 2
3
35k%5(4u—A?
u(é)= ( ) 5 (25)
A 12 Ak 527 —16k oA+~ y0?
18sin?| VX4 | p v iy — o 2"

We would like to note that the obtained solutions with
an explicit linear function in & have been checked with
Maple by putting them back into the original Equations

(7).
4. Conclusions and Future Work

This study shows that the (G'/G)-expansion method is

Copyright © 2011 SciRes.

quite efficient and practically well suited for use in find-
ing exact solutions for the generalized (2 + 1)-dimen-
sional Kadomtsev-Petviashvili (gKP) equation. The reli-
ability of the method and the reduction in the size of
computational domain give this method a wider applica-
bility. Though the obtained solutions represent only a
small part of the large variety of possible solutions for
the equations considered, they might serve as seeding
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solutions for a class of localized structures existing in the
physical systems. Furthermore, our solutions are in more
general forms, and many known solutions to these equa-
tions are only special cases of them. With the aid of Ma-
ple, we have assured the correctness of the obtained so-
lutions by putting them back into the original equation.
We hope that they will be useful for further studies in
applied sciences. According to Case 5, present method
failed to obtain the general solution of gKP for n=-1,

and

n=-2, therefore the authors hope to extend the

(G'/G)-expansion method to solve these especial type
of gKP.
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