Chinese Journal of Catalysis

Vol. 32 No. 4

文章编号: 0253-9837(2011)04-0637-06

DOI: 10.3724/SP.J.1088.2011.01246

研究论文: 637~642

二氧化钛纳米管阵列光电催化同时降解苯酚和Cr(VI)

王后锦^{1,2}, 吴晓婧^{1,2}, 王亚玲^{1,2}, 焦自斌¹, 颜声威¹, 黄浪欢^{1,2,*}

1暨南大学化学系,广东广州 510632

2暨南大学纳米化学研究所,广东广州 510632

摘要:采用电化学阳极氧化法在纯钛箔基底上制备了TiO₂纳米管阵列,并运用X射线衍射、扫描电镜和电化学工作站对其进行 了表征.结果表明,所制样品是锐钛矿相,管径约为100nm,管长约为2µm,在0.5V偏压下光电流最大.以苯酚和Cr(VI)混合溶 液为目标污染物,考察了TiO₂纳米管阵列光电催化同时去除苯酚和Cr(VI)的反应性能,探讨了催化方式、溶液pH和污染物初始 浓度对其催化性能的影响.结果表明,采用光电催化方式,苯酚和Cr(VI)的去除率分别达86.7%和96.9%,而光催化方式下则分 别仅为48.2%和65.2%.酸性条件下有利于TiO₂纳米管阵列光电催化同时去除苯酚和Cr(VI),且在pH=2时,效果最佳.Cr(VI)-苯酚共存体系中,Cr(VI)及苯酚的去除率均较单一组分体系的高;Cr(VI)的还原与苯酚的氧化之间产生了协同效应,共同促进了 苯酚与Cr(VI)的去除.

关键词:二氧化钛;光电催化;共去除;苯酚;铬 中图分类号:O643/X7 文献标识码:A

收稿日期: 2010-12-22. 接受日期: 2010-11-26. *通讯联系人. Tel: (020)85220597-802; E-mail: thuanglh@jnu.edu.cn 基金来源: 国家自然科学基金 (20801023); 暨南大学青年基金 (51208024); 本科生国家创新工程 (51023031).

Simultaneous Removal of Phenol and Cr(VI) by TiO₂ Nanotube Array Photoelectrocatalysis

WANG Houjin^{1,2}, WU Xiaojing^{1,2}, WANG Yaling^{1,2}, JIAO Zibin¹, YAN Shengwei¹, HUANG Langhuan^{1,2,*}

¹Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China ²Institute of Nano-chemistry, Jinan University, Guangzhou 510632, Guangdong, China

Abstract: TiO_2 nanotube arrays were prepared by electrochemical anodization on pure Ti surfaces. The products were characterized by X-ray diffraction, scanning electron microscopy and electrochemical workstation. The results showed that the prepared sample was anatase with a diameter of about 100 nm and a tube length of about 2 µm. The maximum photocurrent could be achieved when the bias potential of 0.5 V was applied on the TiO_2 nanotube array electrode. The photoelectrocatalytic properties of the TiO_2 nanotube array electrode were evaluated by the simultaneous removal of phenol and Cr(VI). The effects of catalytic processes, pH values, and various initial concentrations of Cr(VI) and phenol on the removal efficiency of phenol and Cr(VI) were investigated. The results indicated that in the photoelectrocatalytic mode, phenol and Cr(VI) removal ratios were 86.7% and 96.9%, respectively, while in the photocatalytic mode they were 48.2% and 65.2%, respectively. The removal efficiency by photoelectrocatalysis was higher than that by photocatalysis. The acidic solutions were favorable for the photoelectrocatalytic simultaneous removal of Cr (VI) and phenol, and the optimum pH was 2. In the phenol-Cr(VI) co-existed system, phenol and Cr(VI) were more efficiently eliminated than in the single phenol or Cr(VI) system. The reduction of Cr(VI) and the oxidation of phenol produced a synergistic effect, which promoted the simultaneous removal of Cr(VI) and phenol.

Key words: titania; photoelectrocatalysis; simultaneous removal; phenol; chromium

Received 22 December 2010. Accepted 21 January 2011.

*Corresponding author. Tel: +86-20-85220597-802; E-mail: thuanglh@jnu.edu.cn This work was supported by the National Natural Science Foundation of China (20801023), the Youth Grants of Jinan University (51208024), and the Innovation Project for College Student of China (51023031). TiO₂因具有较高的光催化性能而被广泛用于环 境治理^[1-4],但所采用的TiO₂通常为粉体难以回收重 复利用,从而限制了其应用.近年来,采用阳极氧化 法制备的TiO₂纳米管分布均匀,以整齐的阵列形式 排列,与金属钛导电基底结合牢固,且制备方法简单, 因此受到广泛关注^[5-8].TiO₂纳米管阵列独特的管状 结构,为光生电子的转移提供了一个单向通道,具有 优异的光催化性能和光电转换效率^[9,10],人们对此分 别进行研究^[16-22].与光催化不同,光电催化需施以外 加偏压,有利于光生电子有效地从外环路导出,减少 电子与空穴复合几率,从而可提高光催化反应速率.

人们在研究 TiO₂用于环境污染处理时,往往以 单一的有机物或无机物重金属离子污染物为考察对 象^[9-24],但在实际中往往面临的是比较复杂的污染 体系,其中既可能含有机污染物,又可能含无机重金 属离子污染物,如皮革废水中就同时含有 Cr(VI)及 有机染料.当TiO₂用于处理污染物时,在光照条件下 产生的电子与空穴对复杂体系中有机物的氧化和金 属离子的还原均起作用.Cr(VI)是常见的无机金属 离子污染物,具有极强的致癌性,苯酚是毒性较强的 有机污染物,因此本文以电化学阳极氧化法在纯钛 箔基底上制备高度有序的 TiO₂纳米管阵列为催化 剂,考察了其光电催化共去除苯酚和 Cr(VI) 过程中, Cr(VI) 的还原与苯酚的氧化间的协同行为.这在理 论和实际应用上都具有重大意义.

1 实验部分

1.1 TiO₂纳米管阵列的制备

将钛箔 (0.1 mm,纯度 ≥ 99.6%, 宝鸡鹏盛鑫)用 金相砂纸逐级打磨至表面无明显划痕, 然后依次用 丙酮 (AR, 广州市化学试剂厂)、无水乙醇 (AR, 天津 市北联精细化学品开发有限公司)和去离子水超声 清洗以去除油脂, 每次15 min. 实验装置采用两电极 体系, 以钛箔为阳极, 铂片为阴极. 在 0.5% NH₄F 水 溶液 (AR, 天津福晨化学试剂厂)和乙二醇 (AR, 广 州市化学试剂厂)的混合溶液中, 在 40 V 电压下于 25 ℃ 阳极氧化 12 h, 然后用大量去离子水清洗样品 表面, 干燥, 最后在 450 ℃ 退火 2 h (升温速率 3 °C/min) 即得到 TiO₂样品.

1.2 TiO₂纳米管阵列的表征

X 射线衍射 (XRD) 分析在 MSAL-XRD2 型全

自动 X 射线粉末衍射仪上进行, Cu 靶, K_α 射线 (λ = 0.154056 nm), 管压 40 kV, 管流 20 mA, 扫描速率 4.0°/min. 样品形貌由 PHILIPS MODEL XL-30 扫描 电镜 (SEM) 观察.

1.3 TiO₂纳米管阵列的光电性能测试

采用北京赛凡光电仪器有限公司的 7ILX150 氙灯光源和 7ISW301 型三光栅扫描光谱仪,荷兰 IVIUM 公司的电化学工作站组成的光电联用测试 系统对 TiO₂纳米管阵列进行光电性能测试.采用三 电极体系,以饱和 Ag-AgCl 电极为参比电极,铂片 为对电极, 钛基 TiO₂纳米管阵列 (10 mm × 10 mm) 为工作电极,0.1 mol/L Na₂SO₄ (AR,上海化学试剂 厂) 为支持电解质.

1.4 TiO₂纳米管阵列的光电催化实验

光电催化实验在 XPA-II 型光化学反应仪 (南 京胥江机电厂)上进行,采用三电极体系,以饱和 Ag-AgCl 电极为参比电极,铂片为对电极,钛基 TiO₂ 纳米管阵列 (15 mm×15 mm)为光阳极,0.1 mol/L Na₂SO₄为辅助电解质.外加偏压由 HDV-7C 型晶体管恒电位仪提供,光源为 500 W 高压汞灯 (光照强度为 13.5 mW/cm²).以苯酚和 Cr(VI)共存 溶液为目标污染物 (100 ml 反应液),用适当浓度的 H₂SO₄ 或 NaOH 调节反应体系的初始 pH 值.先在 暗态下搅拌 1 h 以达到吸附平衡 (苯酚与 Cr 离子的 吸附率分别为 1.6% 和 1%),接着开灯进行光电催化 实验.TiO₂纳米管阵列距光源 12 cm,在开灯的同时 计时,定时取样.

采用分光光度法测定 Cr(VI) 离子的浓度, 显色 剂为二苯碳酰二肼 (AR, 上海化学试剂厂), 测定波 长为 540 nm. 苯酚的浓度由 Waters 2695 型高效液 相色谱仪测定, 色谱柱为 Waters symmetry shield RP18 (4.6 mm × 250 mm, 5 μm), 流动相为甲醇与水 (ν/ν=4:1, 1 ml/min).

2 结果与讨论

2.1 TiO₂纳米管阵列的形貌与物相

图 1 和图 2 分别为阳极氧化法制备的 TiO₂ 纳 米管阵列的 SEM 照片和 XRD 谱.由图 1 可以看 出,样品表面呈现纳米管阵列排列,管径大小均一, 约为 100 nm,管长约为 2 μm(见插图).由样品 XRD 谱可见,在没有退火处理的情况下,制得的样品是无 定形的,于 2θ=38.34°,40.08°,53.13°和 70.14°处出 现钛基底特征峰;经 450 °C 退火后,于 2θ=25.25°, 48.05°和 62.8°处出现锐钛矿型 TiO₂的特征峰^[25],表 明样品为锐钛矿相 TiO₂.

图 1 TiO₂ 纳米管阵列的 SEM 照片 Fig. 1. SEM image of TiO₂ nanotube arrays.

图 2 TiO₂纳米管阵列的 XRD 谱

Fig. 2. XRD patterns of TiO_2 nanotube arrays. (1) Unannealed; (2) 450 °C annealed.

2.2 TiO₂纳米管阵列的光电性能

图 3(a) 为外加偏压下, TiO₂ 纳米管阵列的光电 流与入射波长之间的关系.可以看出,在 0.5 V 外加 偏压下,在 250~400 nm 范围内样品具有光电响应, 最大感应值为 350 nm.图 3(b) 为不同偏压下, TiO₂ 纳米管阵列在光源开-关情况下的感应光电流.由图 可见,感应光电流随着外加偏压的增加而逐渐增加, 至 0.5 V 时,达最大.由于 TiO₂ 纳米管阵列表面受 光照后产生电子和空穴,在施加偏压的作用下,迫使

图 3 光电流与入射波长之间的关系 (a) 及不同偏压下 TiO₂纳米管阵列在光源开-关情况下的感应光电流 (b) Fig. 3. (a) The relationship between the photocurrent and the wavelength; (b) Photocurrent in the light on-off process of TiO₂ nanotubes under different bias potentials (wavelength = 350 nm). (1) 0 V; (2) 0.1V; (3) 0.3V; (4) 0.5 V; (5) 0.7 V.

光致电子向对电极方向移动,减少了电子与空穴的 复合,产生光电流感应.因此,在一定电压范围,光 电流响应随外加偏压的逐渐增大而显著增强.然而 当光强固定时,光生电子的数量是一定的,故外加电 压达到一定值时,光生载流子已充分分离,形成饱和 光电流^[26].这个偏压值可以看成是能够有效控制电 子和空穴复合的电压^[25].在下文的光电催化实验 中,外加偏压均采用此电压值.

2.3 TiO₂纳米管阵列光电催化降解苯酚-Cr(VI) 共存体系

2.3.1 催化方式的影响

图 4 为以 TiO₂纳米管阵列电极为催化剂,在光 电催化、光催化、电催化、电解等四种催化方式下 苯酚与 Cr(VI) 的剩余率随时间的变化.由图可见, 在施加单一偏压条件下,苯酚不发生降解,可见单一 的电催化对苯酚降解不起作用^[18];在光照条件下,

图 4 在不同催化方式中苯酚与 Cr(VI) 的剩余率随时间的 变化

Fig. 4. Remaining rate of phenol and Cr(VI) under different processes. (a) Phenol; (b) Cr(VI). Reaction conditions: phenol = 10 mg/L, Cr(VI) = 10 mg/L, pH = 2, 3 h. (1) Photoelectrocatalysis; (2) Photocatalysis; (3) Electrocatalysis; (4) Photolytic.

苯酚剩余率随时间的增加而先上升后下降,这可归因于苯酚在光照作用下发生自身聚合和光降解所致^[26],此时苯酚去除率仅为 48.2%;而在光电协同催化下,苯酚去除率达 86.7%,可见,光电催化效率是光催化效率的 1.8 倍.这是因为施加的外加偏压减少了电子与空穴的复合,促进了光生载流子的分离,增加了空穴和羟基自由基的数量.另外,光解下Cr(VI)不发生降解,而在电催化、光催化和光电催化条件下,Cr(VI)的去除率分别为 6.7%,65.2% 和 96.9%.可见,光电催化效率是光催化的 1.5 倍,综上可见,光电催化去除效率优于单一的光催化.

2.3.2 溶液 pH 值的影响

不同 pH 值时苯酚-Cr(VI) 体系的空白实验表 明, 当 pH \leq 1 时, 苯酚与 Cr(VI) 会发生自身氧化还 原反应, 而当 pH = 2 时则不会发生.因此, 在考察溶 液初始 pH 值对 TiO₂ 纳米管阵列上降解苯酚-Cr(VI) 体系性能的影响时, pH 值宜采用 \geq 2, 结果见图 5.

图 5 不同初始 pH 值对苯酚与 Cr(VI) 的剩余率随时间的 变化

Fig. 5. Remaining rate of phenol and Cr(VI) under different initial pH. (a) Phenol; (b) Cr(VI). Reaction conditions: Phenol = 10 mg/L, Cr(VI) = 5 mg/L, bias potential = 0.5 V, 3 h. (1) pH = 2; (2) pH = 4; (3 pH = 6; (4) pH = 8; (5) pH = 10.

由图可见,在酸性条件下,TiO₂纳米管阵列催化剂对 苯酚-Cr(VI)体系具有很好的去除效果,pH=2时, 苯酚和 Cr(VI)的去除率分别为 84.6%和 97.1%,但 随着 pH 值的增加,苯酚与 Cr(VI)的去除率均逐渐 降低.在液相光催化反应中,pH 值是一个非常重要 的影响因素.在苯酚-Cr(VI)体系中,其 pH 值不仅 影响催化剂本身的活性与稳定性,而且影响苯酚与 Cr(VI)在催化剂表面的吸附、Cr(VI)的存在方式、 原电位的高低和电子捕获等.

首先, TiO₂纳米管阵列在光照下, 产生的羟基自 由基一部分来自 H₂O 和 OH⁻与 TiO₂ 表面的光生空 穴反应, 另一部分来自 e⁻和 •O₂⁻与 H₂O₂ 反应. 酸 性条件下有利于生成大量 •HO₂, 从而有利于羟基自 由基的生成, 因此酸性条件下有利于苯酚的去除^[27].

其次,在酸性条件下,Cr(VI)离子主要以 Cr₂O₇²⁻的形式存在,碱性条件下,Cr(VI)离子主要以 CrO₄²⁻的形式存在,溶液 pH 值直接影响 Cr(VI)的

氧化还原电位[28].

 $\operatorname{Cr}_{2}\operatorname{O_{7}}^{2-} + 14 \operatorname{H}^{+} + 6e = 2\operatorname{Cr}^{3+} + 7\operatorname{H}_{2}\operatorname{O}, E_{0} = 1.33 \operatorname{V}$ (1) $\operatorname{CrO_{4}}^{2-} + 4\operatorname{H}_{2}\operatorname{O} + 3e = \operatorname{Cr}(\operatorname{OH})_{3} + 5\operatorname{OH}^{-}, E_{0} = -0.13 \operatorname{V}$ (2)

显然, Cr(VI) 在碱性条件下的氧化能力远低于酸性环境,即 pH 值越低, Cr(VI) 氧化能力越强.可见, 在酸性条件下有利于 Cr(VI) 的还原. 这与 Yoon 等^[29]采用钛基 TiO₂ 纳米管光催化还原 Cr(VI) 的结果一致.

2.3.3 Cr(VI)浓度的影响

图 6 为不同 Cr(VI) 初始浓度的混合溶液中苯酚与 Cr(VI) 的剩余率随时间的变化.由图可见,随着 Cr(VI) 离子初始浓度的增加,苯酚去除率逐渐增加,至 10 mg/L 时,达最佳,为 86.7%;继续增加 Cr(VI) 初始浓度,苯酚去除率下降.这表明适量浓度的 Cr(VI) 有利于苯酚的去除.这是因为 Cr(VI) 捕获光生电子 (e⁻) 发生还原反应,减少了光生空穴(h⁺) 和光生电子 (e⁻) 的复合率,随着 Cr(VI) 浓度的增加,其捕获的光生电子越多,从而增加了苯酚光催

图 6 不同初始浓度 Cr(VI) 下苯酚与 Cr(VI) 的剩余率随时间的变化

Fig. 6. Remaining rate of phenol (a) and Cr(VI) (b) under different initial concentrations. Reaction conditions: Phenol = 10 mg/L, pH = 2, bias potential = 0.5 V, 3 h.

化氧化反应所需的光生空穴.另外,Cr(VI)本身的 去除率也随着其初始浓度的增加而增加,至10 mg/L时,达最大,随后下降.结果表明,Cr(VI)的还 原与苯酚的氧化产生了协同效应.这是因为Cr(VI) 作为电子受体,苯酚作为空穴受体,从而有效地抑制 了光生电子和空穴对的复合.这与吕学钧等^[30]研究 Fe³⁺与X3B共存体系时所得结果一致.金属离子浓 度过高也不利于有机物和自身的降解.这可能是由 于Cr(VI)浓度过大时,会容易形成Cr⁶⁺/Cr³⁺之间的 短路循环,从而抑制了自身的还原效果乃至苯酚的 氧化^[31].

2.3.4 苯酚浓度的影响

图 7 为不同苯酚初始浓度的混合溶液中苯酚与 Cr(VI) 的剩余率随时间的变化.由图可见,随着苯 酚初始浓度的增加, Cr(VI) 离子去除率逐渐增加,至 10 mg/L 时达最大,为 96.9%;继续增加苯酚初始浓 度至 15 mg/L 时, Cr(VI) 去除率下降,与前文现象相 一致.有机物对金属离子光催化还原的促进作用是

图 7 不同初始浓度苯酚下苯酚与 Cr(VI) 的剩余率随时间 的变化

Fig. 7. Remaining rate of Cr(VI) (a) and phenol (b) under different initial concentrations. Reaction conditions: Cr(VI) = 10 mg/L, pH = 2, bias potential = 0.5 V, 3 h.

通过俘获•OH 自由基和光生空穴实现的. 苯酚捕获 光生空穴(h⁺)发生氧化反应,减少了光生空穴(h⁺) 和光生电子(e⁻)的复合率. 随着苯酚浓度的增加, 其捕获的光生空穴越多,从而增加了 Cr(VI) 光催化 还原反应所需的光生电子(e⁻). Schrank等^[32]在进 行光催化处理 Cr(VI) 和有机染料时发现,在 Cr(VI) 体系中加入染料, Cr(VI) 还原速率加快,说明 Cr(VI) 的还原与染料的氧化间产生了协同效应. 因此不同 苯酚初始浓度条件下,苯酚去除率也因 Cr(VI)还原 速率的增加而增加(见图 7(b)).

3 结论

采用电化学阳极氧化法,在纯钛箔基底上制备 了锐钛矿相 TiO₂纳米管阵列,管径约为 100 nm,管 长约为 2 μm,在 0.5 V 偏压下光电流最大.在 TiO₂ 纳米管阵列催化降解苯酚和 Cr(VI) 共存体系的反 应中,光电催化时,苯酚和 Cr(VI) 去除效率明显高 于光催化的,且在酸性,尤其在 pH = 2 时去除效果 最佳.结果表明, Cr(VI) 的还原与苯酚的氧化反应 之间产生了协同效应,共同促进了苯酚与 Cr(VI) 的 降解.这充分利用了 TiO₂纳米管阵列在光照下产生 的电子与空穴,提高了光能的利用率,对于提高光催 化剂的活性具有重要的意义.

参考文献

- 1 Park H, Choi W. J Phys Chem B, 2005, 109: 11667
- 2 Wang X C, Yu J C, Ho C, Hou Y D, Fu X Z. *Langmuir*, 2005, **21**: 2552
- 3 Ryu J, Choi W, Choo K H. *Water Sci Technol*, 2005, **51**: 491
- 4 Fujishima A, Rao T N, Tryk D A. *J Photochem Photobiol C*, 2000, **1**: 1
- 5 Macak J M, Tsuchiya H, Schmuki P. Angew Chem, Int Ed, 2005, 44: 2100
- 6 Bauer S, Kleber S, Schmuki P. *Electrochem Commun*, 2006, **8**: 1321
- 7 Feng X, Macak J M, Schmuki P. Chem Mater, 2007, 19: 1534
- 8 Shankar K, Mor G K, Fitzgerald A, Grimes C A. J Phys Chem C, 2007, 111: 21
- 9 Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Mura-

kami T, Fujishima A. J phys Chem C, 2008, 112: 253

- Macak J M, Zlamal M, Krysa J, Schmuki P. Small, 2007, 2: 300
- 11 Xu J C, Lu M, Guo X Y, Li H L. *J Mol Catal A*, 2005, **226**: 123
- 12 Albu S P, Ghicov A, Macak J M, Hahn R, Schmuki P. Nano Lett, 2007, 7: 1286
- 13 Paramasivalm I, Macak J M, Schmuki P. Electrochem Commun, 2008, 10: 71
- 14 Lai Y K, Sun L, Chen Y C, Zhuang H F, Lin C J, Chin J W. J Electrochem Soc, 2006, 153: D123
- 15 Yang S G, Liu Y Z, Sun C. Appl Catal A, 2006, 301: 284
- 16 Quan X, Yang S, Ruan X, Zhao H. Environ Sci Technol, 2005, **39**: 3770
- 17 Zhang Z, Yuan Y, Shi G, Fang Y, Liang L, Ding H, Jin L. Environ Sci Technol, 2007, **41**: 6259
- 18 Quan X, Ruan X, Zhao H, Chen S, Zhao Y. *Environ Pollut*, 2007, **147**: 409
- 19 Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. J Phys Chem C, 2007, 111: 11836
- 20 Xie Y B. Electrochim Acta, 2006, 51: 3399
- 21 Sohn Y S, Smith Y R, Misra M, Subramanian V. Appl Catal B, 2008, 84: 372
- 22 Cardoso J C, Lizier T M, Zanoni M V B. *Appl Catal B*, 2010, **99**: 96
- 23 Jiang F, Zheng Z, Xu Z Y, Zheng S R, Guo Z B, Chen L Q. *J Hazard Mate*, 2006, **134**: 94
- 24 Yang L X, Xiao Y, Liu S H, Li Y, Cai Q Y, Luo S L, Zeng G M. Appl Catal B, 2010, 94: 142
- 25 万斌, 沈嘉年, 陈鸣波, 王东, 张新荣, 李谋成. 化学学报 (Wan B, Shen J N, Chen M B, Wang D, Zhang X R, Li M Ch. Acta Chim Sin), 2008, 66: 1301
- 26 孙岚,李静,王成林,林昌健,杜荣归,陈鸿博. 无机化 学学报 (Sun L, Li J, Wang Ch L, Lin Ch J, Du R G, Chen H B. Chin J Inorg Chem), 2009, 25: 334
- 27 Chiou C H, Wu C Y, Juang R S. Sep Purif Technol, 2008,
 62: 559
- 28 Papadam T, Xekoukoulotakis N P, Poulios I, Mantzavinos D. J Photochem Photobiol A, 2007, 186: 308
- 29 Yoon J, Shim E, Bae S, Joo H. J Hazard Mate, 2009, 161: 1069
- 30 吕学钧, 许宜铭, 王智, 赵进才, 吴烨铤. 化学学报 (Lu X J, Xu Y M, Wang Zh, Zhao J C, Wu Y T. Acta Chim Sin), 2004, 62: 1455
- 31 Lam S W, Chiang K, Lim T M, Amal R, Low G K C. Appl Catal B, 2005, 55: 123
- 32 Schrank S G, Jose H J, Moreira R F P M. J Photochem Photobiol A, 2002, 147: 71