Chinese Journal of Catalysis

Vol. 33 No. 2

文章编号: 0253-9837(2012)02-0354-06

DOI: 10.3724/SP.J.1088.2012.10835

研究论文:354~359

BaTiO₃纳米颗粒的聚丙烯酰胺凝胶法合成及光催化降解甲基红性能

王伟鹏^{1,2},杨 华^{1,2,*},县 涛^{1,2},魏智强²,马金元²,李瑞山²,冯旺军²

1兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室,甘肃兰州 730050

2兰州理工大学理学院,甘肃兰州 730050

摘要:采用聚丙烯酰胺凝胶法合成了 BaTiO₃纳米颗粒,利用 X 射线衍射、傅里叶变换红外光谱、透射电镜和紫外-可见漫反射 光谱对样品进行了表征.结果表明,以柠檬酸酸为络合剂、pH = 2 且在 700 °C 焙烧时可制备出单相 BaTiO₃纳米颗粒,其形状 较为规整,近似呈球形,平均粒径约为 55 nm,光学带隙值为 3.25 eV. 以偶氮染料甲基红为目标降解物,研究了 BaTiO₃纳米颗 粒的光催化性能.结果表明,在紫外光照射下该纳米颗粒表现出较高的催化活性,光催化机理主要为光生空穴的直接氧化. 关键词: 钛酸钡; 纳米颗粒; 丙烯酰胺凝胶法; 光催化; 甲基红

中图分类号: O643/X7 文献标识码: A

收稿日期: 2011-08-30. 接受日期: 2011-10-25.

*通讯联系人. 电话: (0931)2973783; 传真: (0931)2976040; 电子信箱: hyang@lut.cn

基金来源:国家自然科学基金 (50962009);教育部科学技术研究重点项目 (209130);甘肃省自然科学基金 (1010RJZA041);兰州理工大学优秀青年基金 (Q200902).

Polyacrylamide Gel Synthesis of BaTiO₃ Nanoparticles and Its Photocatalytic Properties for Methyl Red Degradation

WANG Weipeng^{1,2}, YANG Hua^{1,2,*}, XIAN Tao^{1,2}, WEI Zhiqiang², MA Jinyuan², LI Ruishan², FENG Wangjun²

¹State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, Gansu, China ²School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China

Abstract: A polyacrylamide gel method was used to synthesize BaTiO₃ nanoparticles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy were adopted to characterize the sample. The results demonstrate that single-phase BaTiO₃ nanoparticles can be prepared at a calcination temperature of 700 °C when using citric acid as the chelating agent at pH = 2. The prepared particles are regularly shaped like spheres with an average particle size of ~55 nm and have an optical bandgap energy of 3.25 eV. The photocatalytic properties of BaTiO₃ nanoparticles were investigated using the degradation of the azo dye methyl red. The experimental results reveal that the nanoparticles exhibit a pronounced photocatalytic activity for the methyl red degradation under ultraviolet light irradiation, and the direct oxidation by the hole is suggested to be the main mechanism responsible for the dye decomposition.

Key words: barium titanate; nanoparticle; polyacrylamide gel method; photocatalysis; methyl red

Received 30 August 2011. Accepted 25 October 2011.

*Corresponding author. Tel: +86-931-2973783; Fax: +86-931-2976040; E-mail: hyang@lut.cn This work was supported by the National Natural Science Foundation of China (50962009), the Key Project of the Chinese Ministry of Education (209130), the Natural Science Foundation of Gansu Province (1010RJZA041), and the Excellent Young Scholars Foundation of Lanzhou University of Technology (Q200902).

ABO3型钙钛矿氧化物是重要的多功能材料,具 有优异的磁学、电学、光学和热学性能,是材料科学 和凝聚态物理研究领域的热点.近年来,随着环境 污染和能源短缺日益加剧,钙钛矿型氧化物的光催

化活性引起人们广泛关注,在光催化降解有机污染物和分解水制氢等领域表现出重要的应用前景^[1~5].

钛酸钡 (BaTiO₃) 是典型的钙钛矿型氧化物, 具 有高的介电常数、低的介电损耗, 以及优良的铁电、 压电、热释电等性质, 是制备多层陶瓷电容器、非易 失性铁电随机存储器、压力传感器、热敏电阻器等 各种器件的重要功能材料^[6-9].同时, 它还具有与 TiO₂类似的带隙 (~3.2 eV), 也是一种重要的半导体 光催化剂, 在紫外光照下能有效光催化降解盐基性 红色染料、亚甲基蓝、罗丹明 B、以及各种氯代有 机污染物^[10~14].影响半导体光催化活性的因素较 多, 除了本身的物化性质外, 其微观结构的影响也很 大, 尤其是纳米尺度的光催化剂通常表现出更为优 异的催化性能.这是因为纳米结构可以提供更多的 表面活性位, 而且光生电子-空穴 (e⁻-h⁺) 对在体相内 复合的几率较小, 使其更易转移到催化剂表面.

近年来,各种纳米材料制备技术被广泛应用于 制备 BaTiO₃纳米颗粒,如溶胶-凝胶法、化学沉淀 法、水热法、微乳液法、熔盐法、喷雾热解法等[15~20]. 其中,溶胶-凝胶法能够在分子水平将反应物均匀混 合,在化学成分控制方面有重要优势.但传统溶胶-凝胶法主要通过水解、缩合化学反应使溶液成胶,制 备的颗粒形貌通常不甚规整,颗粒间易出现粘连团 聚现象. 聚丙烯酰胺凝胶法^[3,4,21]在制备钙钛矿氧化 物纳米颗粒时显示出独特的优势,它通过加入丙烯 酰胺使溶液成胶. 在溶液成胶过程中, 丙烯酰胺聚 合形成高分子三维网络骨架,为粒子提供生长空间. 所制颗粒均匀细小、形貌规整呈类球形,而且工艺简 单方便、可重复性好、易于扩大生产,已成为制备各 种氧化物纳米颗粒的一种重要方法.因此,本文采 用聚丙烯酰胺凝胶法制备了 BaTiO₃ 纳米颗粒,并在 紫外光照射下研究其光催化降解甲基红的性能.

1 实验部分

1.1 样品的制备

称取一定量的柠檬酸溶于蒸馏水中, 然后按 Ba²⁺/Ti⁴⁺ 摩尔比为1加入一定量的硝酸钡 (Ba(NO₃)₂)和钛酸四丁酯 (C₁₆H₃₆O₄Ti). 柠檬酸主 要用来与金属离子发生络合反应, 其摩尔用量为金 属离子的2倍. 待溶液澄清后, 加入葡萄糖 (约20 g/100 ml)、丙烯酰胺单体 (摩尔用量为金属离子的9 倍). 以上每一步都伴随着磁力搅拌, 以使添加物充 分溶解. 待溶液混合均匀、澄清后, 用硝酸和氨水调 节溶液至不同的 pH 值. 最后将所得的混合溶液加 热至 80°C 并恒温, 使之发生热聚合反应. 数分钟 后, 溶液缓慢成胶, 转变为凝胶体. 将获得的凝胶置 入恒温干燥箱中, 于 120°C 干燥 24 h, 形成干凝胶. 将干凝胶用研钵研碎成细粉, 置入管式炉中于 700 °C 焙烧 5 h, 然后随炉温降至室温, 即得到 BaTiO₃ 纳米颗粒.

1.2 样品的表征

利用德国 Bruker 公司 D8 Advanced 型 X 射线 衍射 (XRD) 仪对烧结产物的物相进行分析.采用美 国 Nicolet 公司傅里叶变换红外光谱 (FT-IR) 仪对样 品进行红外光谱分析.采用 JEM-2010 射透电子显 微电镜 (TEM) 观测样品的颗粒形貌.采用配置积分 球的紫外-可见 (UV-Vis) 分光光度计测试分析样品 的光吸收特性.

1.3 光催化实验

以甲基红为目标降解物,考察 BaTiO₃纳米颗粒 的光催化活性.分别以不同浓度的乙醇水溶液为溶 剂 (H₂O 含量分别为 0%, 5%, 10%, 15%, 20%, 30%, 40% 和 60%),配置一组浓度为 10 mg/L 的甲基红溶 液.将 BaTiO₃纳米颗粒加入到甲基红溶液中 (加载 量为 1 g/L),于暗室中超声处理 15 min,以使颗粒均 匀分散.采用 15 W 的低压汞灯 (λ = 254 nm, 无臭氧 型)为辐射源,进行甲基红的光催化降解脱色实验. 在光照过程中,持续施予磁力搅拌,以防止 BaTiO₃ 纳米颗粒团聚.光催化后的甲基红溶液高速离心分 离 10 min (转速 4000 r/min).取上层清液,用分光光 度计测试甲基红的浓度 (测试波长 λ = 520 nm),从 而获得甲基红降解率: ($C_0 - C_t$)/ $C_0 \times 100\%$.其中, C_0 和 C_t 分别为光照前和光照 t 时甲基红溶液浓度.

BaTiO₃纳米颗粒对甲基红吸附率的测试方法 如下:向甲基红溶液中加入1g/L的BaTiO₃纳米颗 粒,于暗室中超声分散并放置;每间隔0.5h取出部 分混合溶液,离心分离取清液测试甲基红浓度,从而 获得甲基红的吸附率.

2 结果与讨论

2.1 XRD 结果

图 1 为不同 pH 值下制备的 BaTiO3 样品的

XRD 谱 (各样品均为 700 °C 焙烧 5 h 所得). 可以看 出,在 pH = 1 时,所得样品除含有四方相 BaTiO₃ 外, 还存在大量的 Ba₂TiO₄, BaTi₂O₅ 和 BaCO₃等杂质 相;当 pH 值提高至 2 时,所有杂质相消失,形成了 单相的 BaTiO₃样品;继续提高 pH 值时,样品中又 开始出现 BaCO₃等其它杂质相.由此可见,前驱体 溶液的 pH 值对所制 BaTiO₃样品性质的影响很大, 适宜的 pH 值约为 2.

图 1 不同 pH 值下制备的 BaTiO₃ 样品的 XRD 谱 Fig. 1. XRD patterns of BaTiO₃ samples prepared at different pH values (using citric acid as the chelating agent).

根据 Brönsted-Lowry 酸碱质子理论, 所有络 合剂都可以看作是一种碱.在 H⁺离子浓度较高 时, 络合剂易与 H⁺结合形成弱酸, 在一定程度上 滞碍了络合剂与金属离子的络合反应, 从而导致 金属离子络合不完全而影响它们在前驱体溶液中 的均匀分散.因此, pH 值过小时易产生杂质相. 另一方面, 金属离子在水中通常会有不同程度的 水解作用, 溶液的 pH 值愈高, 水解作用愈明显, 这也会影响前驱体溶液的均匀性.因此, 在较高 pH 值下同样不利于单相 BaTiO₃ 的形成.

本文还尝试了采用 EDTA、草酸、酒石酸、乙 酸等其它有机酸为络合剂制备 BaTiO₃颗粒.但均 未制备出单相样品.其主要原因是使用这些络合剂 时都不易获得均匀的凝胶前驱体;但是,通过提高 焙烧温度可在一定程度上消除杂质相.图 2 给出了 以 EDTA 为络合剂 (pH = 2) 时在不同温度焙烧制得 的 BaTiO₃样品的 XRD 谱.可以看出,在700°C 焙 烧时,所得样品中含有大量的 Ba₂TiO₄, BaTi₂O₅, BaCO₃和 TiO₂等杂质相.随着烧结温度的提高,这 些杂质相显著减少;至1050°C 时,仅有少量的杂相 Ba₂TiO₄和 BaTi₂O₅存在.因此,下文均以柠檬酸作 为络合剂, pH = 2,并于700°C 焙烧而制得的单相 BaTiO₃样品为实验对象.

图 2 以 EDTA 为络合剂在不同温度下焙烧制备的 BaTiO₃ 样品的 XRD 谱

Fig. 2. XRD patterns of $BaTiO_3$ samples prepared by using EDTA as the chelating agent (pH = 2) at different calcination temperatures.

2.2 FT-IR 结果

图 3 是 BaTiO₃颗粒的 FT-IR 谱. 由图可见,样 品在 407 和 437 cm⁻¹ 处出现 BaTiO₃ 钙钛矿结构中 TiO₆ 八面体的弯曲振动;在 580 cm⁻¹ 附近出现 TiO₆ 八面体的伸缩振动^[22]. 这表明制备的样品具有

典型的 BaTiO₃钙钛矿结构.此外,样品中未观察到 其它非钙钛矿杂质相的振动吸收峰.

2.3 TEM 结果

图 4(a) 是 BaTiO₃纳米颗粒的 TEM 照片.可以 看出,颗粒形貌较为规整,基本呈球形,颗粒大小主 要分布在 45~70 nm 间,平均粒径为 55 nm 左右.图 4(b) 是 BaTiO₃纳米颗粒的选区电子衍射花样.显 示出清晰的多晶衍射环,这些环均可按照 BaTiO₃四 方结构标定,多晶环外无其它衍射斑点出现.这进 一步表明,制备样品为单相的 BaTiO₃钙钛矿结构.

图 4 BaTiO₃ 纳米颗粒的 TEM 照片和选区电子衍射花样 Fig. 4. TEM image (a) and selected-area electron diffraction pattern (b) of BaTiO₃ nanoparticles.

2.4 UV-Vis 结果

图 5(a) 是 BaTiO₃ 纳米颗粒的 UV-Vis 吸收光 谱. 该图谱根据 Kubelka-Munk (K-M) 理论^[23]转换 实验测得的 UV-Vis 反射光谱而得到.可以看出, BaTiO₃ 纳米颗粒的截止吸收边在 380 nm 附近,其 精确的光学带隙值可进一步通过 Tauc 法则^[24]求得. 图 5(b) 是根据 Tauc 法则获得的 (*ahv*)^{1/2}~*hv* 关系曲 线.其中, *α* 为 K-M 吸收系数, *hv* 为入射光子的能 量.将 Tauc 曲线的线性部分外延至与横坐标轴相 交,其交点的横坐标即为 BaTiO₃ 纳米颗粒的光学带 隙 Eg. 其值约为 3.25 eV. .

2.5 BaTiO₃光催化性能

图 6(a) 是 BaTiO₃纳米颗粒对不同 H₂O 含量溶 液中甲基红的吸附率随时间的变化.可以看出, Ba-TiO₃ 吸附甲基红 0.5 h 左右即达到平衡, 进一步延 长时间吸附率基本无变化.还可以看出, 溶液中 H₂O 含量对催化剂吸附甲基红性能的影响很大.在 暗室中放置 2.5 h 后, BaTiO₃纳米颗粒对甲基红的 吸附率随 H₂O 含量的变化示于图 6(c).可以看出, 不加 H₂O 时, 甲基红吸附率为 19% 左右;随着少量 H₂O 的加入, 甲基红吸附率显著下降 (在 5%~10% 的 H₂O 含量范围内不足 1%);随着 H₂O 含量的进 一步增加, 甲基红吸附率开始急剧升高 (至 40% 时, 甲基红的吸附率高达 90%);当 H₂O 含量高于 40% 时, 甲基红吸附率基本维持在 90% 左右.

BaTiO₃是一种强极性氧化物,而甲基红是一种 极性分子.因此,在甲基红的无水乙醇溶液中,Ba-TiO₃颗粒对甲基红具有一定吸附作用. 当加入 H₂O 时,甲基红开始电离,电离出的H⁺离子使溶液的pH 值降低,随着 H₂O 含量的增加, pH 值从 6.2 逐渐降 至 4.0 (从甲基红的颜色变化可以看出). 另一方面, BaTiO₃颗粒在溶液中的带电情况与溶液的 pH 值紧 密相关,其等电点的 pH = 4.8 左右: pH > 4.8 时带 负电, pH < 4.8 时带正电^[25].因此, 当 H₂O 含量较 少,即 pH 较高时 (pH > 4.8), BaTiO,颗粒带负电,对 甲基红阴离子产生排斥作用,使其吸附率减小;当 H₂O含量增加到使 pH < 4.8 时, BaTiO₃颗粒带正电, 对甲基红阴离子产生吸引作用,使其吸附率开始增 大. 正是由于 H₂O 的加入使得甲基红溶液的 pH 值 和 BaTiO, 颗粒的带电情况发生改变, 从而导致 Ba-TiO₃颗粒对甲基红的吸附发生显著变化.

图 5 BaTiO₃ 纳米颗粒的 UV-Vis 吸收光谱和 (*ahv*)^{1/2} 与 *hv* 的关系曲线 Fig. 5. UV-Vis absorption spectrum (a) and Tauc plot of (*ahv*)^{1/2} versus *hv* (b) of BaTiO₃ nanoparticles.

图 6 不同 H_2O 含量时 $BaTiO_3$ 纳米颗粒对甲基红的吸附率 (a) 和光催化降解率 (b) 以及 2.5 h 后甲基红的光催化降解率、吸 附率和空白降解率随 H_2O 含量的变化关系 (c)

Fig. 6. Absorption (a) and photocatalytic degradation (b) of methyl red of $BaTiO_3$ nanoparticles as a function of time at different H_2O contents and photocatalytic degradation rate, absorption rate and blank degradation rate of methyl red after 2.5 h irradiation as a function of H_2O content (c).

图 6(b) 是不同 H₂O 含量时 BaTiO₃纳米颗粒光 催化降解甲基红的效率随时间的变化. 当w(H₂O) < 20% 时,甲基红降解率随着时间的延长而不断升高, 显示出光催化降解的动力学特征;当 H₂O ≥ 20% 时,光催化降解曲线与吸附曲线相似,光照 0.5 h 左 右降解率基本达到最大值,继续延长光照时间降解 率变化不大.

由图 6(c) 还可以看出, 未加催化剂颗粒时, 甲 基红在紫外光照下表现得比较稳定,在不同H2O含 量下其降解率均不足 2%. 因此, 甲基红脱色主要与 催化剂颗粒的吸附和光催化降解有关. 排除吸附的 影响之后,可以近似得到甲基红净光催化降解率随 H₂O含量的变化关系.可以看出: (1)随着少量 H₂O 的加入 (w(H₂O) ≤ 5%), 甲基红的净降解率有所提 高,其主要原因与甲基红吸附的减少有关.通常催 化剂颗粒对染料少量的吸附有助于提高光催化效 率^[26],但吸附较多时会阻碍催化剂对光子的吸收, 反而导致催化效率下降.(2)当H₂O含量为 5%~20%时,甲基红净降解率随H2O含量的增加而 不断下降. 这与光催化反应活性物种的减少(下面 将对光催化机理进行进一步讨论)和甲基红吸附的 增加有关. (3) 当 w(H₂O) ≥ 20% 时, 甲基红净降解 率近似为零.这是因为甲基红的吸附量过多,完全阻 止了 BaTiO₃ 颗粒对光子的吸收.

图 7 是 H₂O 含量为 10% 的甲基红溶液光催化 反应前和反应 2.5 h 后的 UV-Vis 吸收谱. 440 和

520 nm 附近的吸收峰对应于甲基红的偶氮发色基团 (-N=N-),其强度在光催化后明显减弱,表明甲基 红的基本骨架发生裂解.300~350 nm 间的吸收峰在 光催化后有所增强,其原因可能是光催化过程中生 成的中间产物所致^[27].

2.6 光催化机理分析

在钙钛矿型氧化物 BaTiO₃中,O 2p轨道位于 低能级构成价带,Ti 3d轨道位于费米能级附近构成 导带,价带与导带之间的能量差形成带隙 (E_g)^[28]. 当受到光子能量大于 E_g 的光照射时,价带电子被激 发跃迁到导带,产生电子-空穴 (e⁻-h⁺) 对 (式 (1)). 光生 h⁺具有氧化性,它可直接氧化分解染料有机

图 7 H₂O 含量为 10% 的甲基红溶液光催化前 (1) 和光催 化 2.5 h 后 (2) 的 UV-Vis 吸收谱

Fig. 7. UV-Vis absorption spectra of methyl red solution before (1) and after 2.5 h irradiation (2).

物,还可与吸附在催化剂颗粒表面的 OH⁻/H₂O 发生 反应,生成有强氧化能力的羟基自由基 (•OH,式 (2), (3)). 这是光催化降解染料有机物的两种主要机制.

$$BaTiO_3 + hv \rightarrow e^- + h^+$$
(1)

$$h^+ + OH^- \rightarrow \bullet OH$$
 (2)

 $h^+ + H_2O \rightarrow \bullet OH + H^+$ (3)

$$OH + Dye \rightarrow oxidation products$$
 (4)

$$h^{+} + Dye \rightarrow oxidation products$$
 (5)

在本文中,当甲基红的乙醇溶液不加 H₂O 时, BaTiO₃ 纳米颗粒对甲基红表现出显著的光催化降 解效率.这表明其光催化机理主要以空穴直接氧化 为主,由于当溶液中不存在 H₂O 分子或 OH⁻离子时, 无法通过式 (2) 和 (3) 反应生成 •OH;而且乙醇是 一种优良的 •OH 俘获剂^[29],即便有少许 •OH 生成, 也将被其俘获而消耗掉.因此,通过 •OH 氧化降解 甲基红的可能性基本可以排除.由图 6(c)可知,溶 液 H₂O 含量为 5%~10% 时,甲基红吸附率保持在 1% 左右,但其降解率随 H₂O 含量的增加而显著降 低.这是因为随着 H₂O 含量的增加,更多的光生 h⁺ 与其发生反应生成 •OH,从而导致参与氧化降解甲 基红的 h⁺ 减少.这进一步表明光催化降解甲基红 的主要机制是光生 h⁺ 直接氧化,而不是 •OH 进攻.

3 结论

采用聚丙烯酰胺凝胶路线,以柠檬酸为络合剂、 pH=2并在700℃焙烧制备了高纯的四方相Ba-TiO₃纳米颗粒.其形貌较为规整,基本呈球形,平均 粒径为55 nm 左右,其光学带隙为3.25 eV. 在紫外 光照射下,BaTiO₃纳米颗粒对甲基红表现出良好的 光催化降解性能,其光催化机理主要为光生空穴直 接氧化.甲基红乙醇溶液中H₂O含量对甲基红的吸 附及降解的影响很大.

参考文献

- Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T. Int J Hydrogen Energ, 2010, 35: 12428
- 2 Sulaeman U, Yin S, Sato T. Appl Catal B, 2011, 102: 286
- 3 县涛,杨华,戴剑锋,魏智强,马金元,冯旺军.催化学报 (Xian T, Yang H, Dai J F, Wei Zh Q, Ma J Y, Feng W J. Chin J Catal), 2011, 32: 618
- 4 王仕发,杨华,县涛.催化学报 (Wang Sh F, Yang H,

Xiao T. Chin J Catal), 2011, 32: 1199

- 5 Dong B, Li Z C, Li Z Y, Xu X R, Song M X, Zheng W, Wang C, Al-Deyab S S, El-Newehy M. J Am Ceram Soc, 2010, 93: 3587
- 6 Karaki T, Yan K, Miyamoto T, Adach M. *Jpn J Appl Phys*, 2007, **46**: L97
- 7 Sharma H B, Sarma H N K, Mansingh A. J Mater Sci, 1999, **34**: 1385
- 8 Lang S B, Rice L H, Shaw S A. J Appl Phys, 1969, 40: 4335
- 9 Simon-Seveyrat L, Hajjaji A, Emziane Y, Guiffard B, Guyomar D. Ceram Inter, 2007, 33: 35
- 10 Sydorchuk V, Khalameida S, Zazhigalov V. Annales UMCS, 2009, 11: 159
- 11 Chen Y H, Chen Y D. J Hazard Mater, 2011, 185: 168
- 12 牛新书, 陈晓丽, 李华, 茹祥莉, 李自强. 化学研究与应用 (Niu X Sh, Chen X L, Li H, Ru X L, Li Z Q. *Chem Res Appl*), 2009, **21**: 1296
- GomathiDevi L, Krishnamurthy G. J Hazard Mater, 2009, 162: 899
- 14 GomathiDevi L, Krishnamurthy G. J Phys Chem A, 2011, 115: 460
- 15 Kavian R, Saidi A. J Alloys Compd, 2009, 468: 528
- 16 陈妍妍, 张 云, 王晓燕. 化学学报 (Chen Y Y, Zhang Y, Wang X Y. Acta Chim Sin), 2010, 68: 2409
- 17 Xue L H, Yan Y W. J Nanosci Nanotechnol, 2010, 10: 973
- 18 Suzuki K, Tanaka N, Kageyama K, Takagi H. J Mater Res, 2009, 24: 1543
- 19 丁西亚, 沈波, 翟继卫, 付芳, 张景基, 姚熹. 硅酸盐学 报 (Ding X Y, Shen B, Zhai J W, Fu F, Zhang J J, Yao X. *J Chin Ceram Soc*), 2009, **37**: 1282
- 20 Terashi Y, Purwanto A, Wang W N, Iskandar F, Okuyama K. J Eur Ceram Soc, 2008, 28: 2573
- 21 Yang H, Cao Z E, Shen X, Jiang J L, Wei Zh Q, Dai J F, Feng W J. *Mater Lett*, 2009, **63**: 655
- 22 Zhang Y C, Wang G L, Li K W, Zhang M, Hu X Y, Wang H. J Cryst Growth, 2006, **290**: 513
- 23 Kubelka P, Munk F. Z Tech Phys, 1931, 12: 593
- 24 Tauc J, Grigorovici R, Vancu A. Phys Stat Sol, 1966, 15: 627
- 25 崔爱莉,陈仁政,尉京志,李龙土.无机化学学报 (Cui A L, Chen R Zh, Wei J Zh, Li L T. Chin J Inorg Chem), 2001, 17: 627
- 26 郭鹏, 刘春燕, 高敏, 王祥生, 郭洪臣. 催化学报 (Guo P, Liu Ch Y, Gao M, Wang X Sh, Guo H Ch. *Chin J Catal*), 2010, **31**: 573
- 27 Ayed L, Mandhi A, Cheref A, Bakhrouf A. Desalination, 2011, 274: 272
- 28 Cuong D D, Lee J. Integr Ferroelectr, 2006, 84: 23
- 29 Behnajady M A, Modirshahla N, Shokri M. Chemosphere, 2004, 55: 129