

**关键词** 东准噶尔

阿尔曼泰蛇绿

混杂带

冥古宙

碎屑锆石

U-Pb 年龄

Hf 同位素

# 东准噶尔阿尔曼泰蛇绿混杂带中发现~4.0 Ga 碎屑锆石

黄岗<sup>0\*</sup>,牛广智<sup>0</sup>,张占武<sup>0</sup>,王新录<sup>0</sup>,徐学义<sup>2</sup>,郭俊<sup>0</sup>, 宇峰<sup>0</sup>

 ① 陕西省地质矿产勘察开发局区域地质矿产研究院,咸阳 712000;
 ② 西安地质矿产研究所,西安 710054

 \* 联系人, E-mail: hg1104220@yahoo.cn

2012-11-16 收稿, 2013-03-22 接受, 2013-08-16 网络版发表 中国地质调查局项目(2010010101)资助

摘要 东准噶尔是中亚造山带的重要组成部分,采用LA-(MC)-ICPMS 锆石微区原位 U-Pb 测 年和 Hf 同位素测定方法,在新疆东准噶尔地区阿尔曼泰蛇绿混杂带中的沉积岩块中发现了 ~4.0 Ga 碎屑锆石.这是迄今在新疆东准噶尔地区获得的最古老年龄记录,也是中亚造山带内 发现的第1粒大于 4.0 Ga 的锆石, 为进一步寻找冥古宙地壳物质提供了新的线索. 该粒锆石 的 ε<sub>Hf</sub>(t)值为-5.2, 两阶段模式年龄为 4474 Ma, 表明其物源区尚有十分古老(冥古代)的陆壳物 质. 141 个测年有效数据中还获得 3.6~3.1 Ga 碎屑锆石年龄以及 2.53~2.37, 1.14~0.89 和 0.47~0.42 Ga 三组年龄集中区, 主峰值年龄为~446 Ma, 其中最年轻的 5 粒碎屑锆石 U-Pb 年龄 为 426±4 Ma, 限定了该沉积岩块最老沉积时代. 碎屑锆石的 Hf 同位素研究表明, 对于 0.47~0.42 Ga 这一组碎屑锆石的 <sup>176</sup>Hf/<sup>177</sup>Hf 比值分布于 0.282156~0.282850, ε<sub>Hf</sub>(t)值为 -9.3~+12.0, 具有相对较老的 Hf 模式年龄为 2011~646 Ma, 与阿勒泰造山带中早古生代火成 岩和片麻岩锆石年龄及 Hf 同位素特征相似, 而明显区别于东准噶尔地体. 在研究对象长石杂 砂岩的物质结构及碎屑锆石的形态、内部结构、年龄分布及 Hf 同位素组成特点的基础上,结 合区域地质资料综合分析,认为东准噶尔地区阿尔曼泰蛇绿构造混杂带中的沉积岩块的沉积 时代可能为晚志留世,其物源主要来自北侧的阿勒泰造山带,暗示了在晚志留世期间阿尔曼 泰蛇绿岩所代表的早古生代大洋已经关闭、东准噶尔北缘与阿勒泰造山带已联为一体、二者 共同构成了古西伯利亚古陆南缘的一个边缘造山带.

单颗粒碎屑锆石 U-Pb 定年和 Hf 同位素组成分 析是沉积物源区示踪研究非常重要的工具<sup>[1-5]</sup>. 锆石 具有极好的抗风化、抗磨蚀和热蚀变的能力,在搬 运、沉积循环中不易被破坏. 锆石广泛存在于中、酸 性岩浆岩和中、高级(角闪岩相、麻粒岩相和榴辉岩 相)变质岩中,记录了地壳岩浆和变质事件. 通过单 颗粒碎屑锆石的 U-Pb 年龄和 Hf 同位素测定相结合 的技术,不仅可以确定每个锆石颗粒的年龄,而且可 以给出沉积岩源区组成的信息,结合周缘地质体出 露情况及构造演化特征进而界定其物源区<sup>[6-8]</sup>. 同时,

沉积物中碎屑锆石 U-Pb 年龄谱具有丰富的年代学信息,它们不仅提供了详细的有关古老地壳基底组成的年代学证据,而且界定了沉积岩形成时代的下限<sup>[9-11]</sup>. 特别是在造山带的物质组成、大地构造亲缘性和反演 盆山耦合体系等领域中具有独特的优势<sup>[12,13]</sup>.

地球的形成和早期演化一直是地球科学研究的 重要内容之一,备受国内外地质学家们的关注,涉及 最早的大陆地壳是何时形成的、性质如何,地球演化 的早期是否存在壳幔物质循环等一系列重要的基础 科学问题<sup>[14]</sup>.由于后期的地质作用改造,致使地球

引用格式: 黄岗,牛广智,张占武,等.东准噶尔阿尔曼泰蛇绿混杂带中发现~4.0 Ga 碎屑锆石. 科学通报, 2013, 58: 2966–2979
 英文版见: Huang G, Niu G Z, Zhang Z W, et al. Discovery of ~4.0 Ga detrital zircons in the Aermantai ophiolitic mélange, East Junggar, northwest China. Chin Sci Bull, 2013, 58: 3645–3663, doi: 10.1007/s11434-013-5842-y

上形成于冥古宙(4.56~3.85 Ga)的岩石分布十分有 限<sup>[15,16]</sup>. 迄今为止, ≥3.8 Ga 的地壳岩石仅在格陵 兰<sup>[17,18]</sup>、加拿大<sup>[19,20]</sup>、中国鞍山<sup>[21~23]</sup>和东南极<sup>[24~26]</sup> 地区被发现. 加拿大 Wopmay 造山带中 4.0 Ga 的 Acasta 片麻岩<sup>[27]</sup>是地球上目前发现的最古老岩石. 尽管地球早期形成的岩石保存的非常有限, 但保存 在年轻地质体中的古老锆石残留要比实际古老地壳 岩石丰富得多<sup>[28]</sup>.国内外地球科学家经过长期不懈 的探索,在世界多个地区均发现了≥3.8 Ga 的碎屑锆 石,国外包括在德国巴伐利亚东北<sup>[29]</sup>、美国怀俄明州 北部<sup>[30]</sup>、西澳 Yilgarn 克拉通<sup>[31]</sup>、巴西圣弗朗西斯科 克拉通<sup>[32]</sup>、尼泊尔西部高喜马拉雅地区<sup>[33]</sup>及中亚造 山带内哈萨克斯坦北部<sup>[34]</sup>等地区,其中西澳 Yilgarn 克拉通北部 Jack Hills 是目前发现大量>4.0 Ga碎屑锆 石的地区,~4.4 Ga 碎屑锆石为目前已知的最古老地 球物质[31]. 国内在寻找和研究最古老岩石和锆石方面 也取得了重要进展, 前人相继在河北迁西县[14,35~37]、 西藏普兰县<sup>[38,39]</sup>、湖北宜昌<sup>[40]</sup>、甘肃两当县<sup>[41,42]</sup>、广 东东南部平乐-北江<sup>[43]</sup>及青海玉树县<sup>[44]</sup>等地区发现了 ≥3.8 Ga 的碎屑锆石. 其中, 西藏普兰县喜马拉雅造 山带和甘肃两当县北秦岭造山带西段 4.1 Ga 锆石的 发现是我国目前发现的最老地质年龄记录,为寻找 和研究地球上最古老的物质做出了重大贡献.因此, 上述这些地区发现≥3.8 Ga的碎屑锆石无疑对寻找地 球形成早期地壳岩石和研究地球早期演化提供了良 好的线索.

笔者通过锆石 LA-(MC)-ICPMS 微区 U-Pb 测年 和 Hf 同位素测定方法,在新疆东准噶尔地区阿尔曼 泰蛇绿混杂带中的沉积岩块中发现了~4.0 Ga 碎屑锆 石,这是迄今为止东准噶尔地区发现的最古老地壳 年龄记录,同时也是中亚造山带中目前发现的形成 时代最老的锆石,这一发现对研究该地区早期地壳 的形成演化具有重要意义.

## 1 地质背景及其样品特征

准噶尔地块位于中亚造山带的中部,传统上将 准噶尔地块划分为西准噶尔地体、准噶尔盆地和东准 噶尔地体 3 个组成部分(图 1(a)).本次研究区位于东 准噶尔地体中北部,准噶尔盆地的东北缘.东准噶尔 地体北以额尔齐斯断裂带为界与中国阿尔泰造山带 相邻,南以卡拉麦里断裂带为界与准噶尔盆地和天 山造山带毗连,被认为是显生宙增生造山带<sup>[46,47]</sup>.在 构造单元划分上该地体从北向南依次为都拉特复合 岛弧、阿尔曼泰蛇绿混杂带、野马泉复合岛弧、卡拉 麦里蛇绿混杂带和将军增生杂岩.由于其复杂的构 造演化过程,东准噶尔地体及其邻区成为近年来地 学研究的热点地区之一<sup>[48-53]</sup>.

阿尔曼泰蛇绿混杂带位于东准噶尔地体的中北 部(图1(b)), 呈南东-北西走向从中蒙边界附近的北塔 山北坡,向北西通过阿尔曼泰山北坡,沿乌伦古河向 北西延伸到扎河坝地区,然后被准噶尔盆地第四系 沙漠覆盖,总计长约130多千米.在该带中可以见到 除席状岩墙群外所有组成蛇绿岩的岩石类型,包括 蛇纹石化方辉橄榄岩、纯橄岩、辉石岩、堆晶辉长岩、 辉绿岩、枕状和块状玄武岩、放射虫硅质岩等<sup>[55]</sup>,在 纯橄岩中偶尔可以见到条带状铬铁矿<sup>[56]</sup>,以上岩石 类型均以岩片或岩块产出.同时在扎河坝地区的蛇 绿混杂带中,相继发现洋内弧成因的富铌玄武岩[57] 和超高压岩石岩块,其中超高压岩块主要有二辉橄 榄岩(橄榄石含有定向分布的磁铁矿出熔体)、含超硅 和超钛石榴石的石榴辉石岩、石英菱镁岩和榴闪 岩[58-60],表明存在洋壳的超深俯冲作用.无论在扎 河坝、阿尔曼泰山及北塔山, 蛇绿岩基本都构造侵位 于晚古生代火山-沉积岩系中. 在北塔山和阿尔曼泰 山,可见蛇绿混杂带北界发育南倾的向北逆冲大型 断裂带.在扎河坝地区蛇绿岩中辉长岩和斜长花岗 岩的 SHRIMP 锆石 U-Pb 年龄分别为 489±4 Ma<sup>[61]</sup>和 496±6 Ma<sup>[62]</sup>,在阿尔曼泰山西侧兔子泉一带蛇绿岩 中斜长花岗岩 SHRIMP 锆石 U-Pb 年龄为 503±7 Ma<sup>[63]</sup>,这些年龄信息指示了该蛇绿岩形成时代为晚 寒武世-早奥陶世.

本文的研究重点是阿尔曼泰蛇绿混带中的沉积 岩块. 20世纪 90年代初,新疆一区调队开展的1:5万 区域地质调查工作,在结勒德喀拉一带填绘出了阿 尔曼泰蛇绿构造混杂带南部发育区,称为结勒德喀 拉蛇绿混杂带(图1(c)).该混杂带呈北西-南东向狭长 分布,出露宽度达 2 km,其北侧与上奥陶统大柳沟 组呈断层接触,东侧被中泥盆统北塔山组不整合覆 盖,南侧与上石炭统巴塔玛依内山组呈高角度断层 接触<sup>164]</sup>.本次野外地质调查表明,该蛇绿构造混杂 带主要包括规模大小不等的变超基性岩(蛇纹岩)、辉 长岩、闪长岩、硅质岩等岩块,它们为蛇绿岩肢解的 产物,这些岩块呈透镜状或不规则长条状产出,其中 超基性岩蚀变较强,为含铬尖晶石的方解石岩、



图 1 新疆东准噶尔及邻区地质简图

(a) 准噶尔地质简图(据 Chen 等人<sup>[45]</sup>修改); (b) 东准噶尔阿尔曼泰一带地质简图(据王洪亮等人<sup>[54]</sup>修改); (c) 结勒德喀拉一带地质简图 (据 1:5 万加勒帕克依增德幅区调资料<sup>[64]</sup>修改)

蛇纹石化纯橄岩、蛇纹岩等,同时也包含了不同时期 的火山岩和沉积岩岩块或岩片,岩性主要有安山岩、 安山质角砾熔岩、岩屑砂岩、长石岩屑砂岩、长石杂 砂岩(图 2),可见斜歪、顶厚褶皱, 边部叠加韧脆性断 裂,规模不等,代表了洋陆转换过程中的弧后盆地、 弧前盆地或大陆斜坡沉积. 基质主体由发育片理化 细碎屑岩及各种岩块研磨细化物质组成. 我们曾在 变辉长岩中获得 LA-ICPMS 锆石 U-Pb 年龄为 508±4 Ma (另文报道). 关于蛇绿混杂带中沉积岩块的形成 时代,存在较大的争议.1:20万卡姆斯特幅、奥克什 山幅将其划分为中泥盆统平顶山组[65,66], 1:20 万恰库 尔特幅划为中泥盆统蕴都喀拉组<sup>[67]</sup>, 1:5 万加勒帕克 依增德幅划分为中奥陶统科克萨依组<sup>[64]</sup>,在最新出 版的中国天山及邻区1:100万地质图将该地层厘定为 中奥陶统乌列盖组<sup>[54]</sup>.由于缺乏古生物化石的限定, 加之同位素年代学资料的匮乏,目前其时代的确定 还仅仅是依据区域地层对比,这严重制约了对区域 构造演化历史的认识.本次采样点正是来自该蛇绿

混杂带中的沉积岩块中,其与南侧变超基性岩(蛇纹 岩)和北侧岩屑砂岩均呈高角度断层接触(图 2).采样 位置 GPS 坐标为:45°56′04.2″N,89°55′54.8″E.样品 岩性为长石杂砂岩,岩石呈绿灰色,中-细粒砂状结 构,中层状构造,单层厚度约 15 cm.显微镜下观察, 岩石主要由碎屑物(60%~65%)和填隙物(30%~35%) 组成,碎屑物主要为石英(30%~35%)和长石(25%~ 30%),粒级一般为0.15~0.30 mm,次棱角状,显示分 选性和磨圆度均较差.填隙物主要由绢云母、绿泥石 及少量方解石组成.岩石整体呈杂基支撑,基底式胶 结,其结构成熟度较低,表明为搬运距离较短、快速 堆积的产物.

## 2 分析方法

用于测年的砂岩样品在核工业 203 所采用常规方 法进行粉碎,并用浮选和电磁选方法进行分选,最后 在双目显微镜下挑选出形态较为完整、无裂痕、无包 裹体的锆石作为测定对象.将分选出来的锆石样品置



于环氧树脂中,然后用无色透明的环氧树脂固定,待 环氧树脂充分固化后抛光使锆石露出一个平面,最 后对锆石进行可见光显微照相、阴极发光(CL)显微图 像和LA-ICPMS锆石 U-Pb同位素组成测定.锆石的阴 极发光显微照相在中国科学院地质与地球物理研究所 岩石圈演化国家重点实验室的 LEO1450VP 扫描电子 显微镜上完成,分析电压为 15 kV.

锆石 U-Pb 年代学分析测试工作分别在中国科学 院青藏高原研究所大陆碰撞与高原隆升重点实验室 和西北大学大陆动力学国家重点实验室的激光剥蚀 电感耦合等离子体质谱仪(LA-ICP-MS)上完成. 两家 测试单位的 LA-ICP-MS 激光剥蚀系统均为美国 NewWave 公司生产的 UP193FX 型 193 nmArF 准分 子系统, 激光器来自于德国 ATL 公司, ICP-MS 为 Agilent7500a. 但标样方法略有不同, 其中中国科学 院青藏高原研究所大陆碰撞与高原隆升重点实验室 采 Plesovice<sup>[68]</sup>和 Qinghu<sup>[69]</sup>标准锆石作为外标进行基 体校正,成分标样采用 NIST SRM 612,在测试过程 中每10个未知样品点插入一组标样(锆石标样和成分 标样). 西北大学大陆动力学国家重点实验室采用 91500和GJ-1标准锆石作为外标进行基体校正,成分 标样采用 NIST SRM 610, 在测试过程中每 6 个未知 样品点插入一组标样(锆石标样和成分标样). 上述两 个实验室分析的样品的同位素比值及元素含量计算 均采用 GLITTER(ver 4.0, Macquarie University)程序, 普通铅校正采用 Anderson<sup>[70]</sup>提出的 ComPbCorr<sup>#</sup>3.17 校正程序, U-Pb 谐和图和年龄权重平均计算采用 Isoplot/Ex \_ver 3.0 程序<sup>[71]</sup>完成.

锆石的 Lu-Hf 同位素分析在西北大学大陆动力 学国家重点实验室完成,使用仪器为 Nu Plasma HR (Wrexham, UK)多接收电感耦合等离子体质谱仪 (MC-ICPMS)和 GeoLas200M 激光剥蚀系统 Neptune 型,具体的分析步骤和流程见 Yuan 等人<sup>[72]</sup>. 激光剥 蚀以氦气作为剥蚀物质的载气, 斑束直径为~32 μm, 频率为 10 Hz, 激光能量的密度为 10 J cm<sup>-2</sup>. 采用 <sup>176</sup>Lu/<sup>175</sup>Lu=0.02669<sup>[73]</sup>和 <sup>176</sup>Yb/<sup>172</sup>Yb=0.5886<sup>[74]</sup>进行 样品<sup>176</sup>Lu/<sup>177</sup>Hf和<sup>176</sup>Hf/<sup>177</sup>Hf比值同量异位干扰校正. 在样品测定期间,使用标准锆石 91500 和 GJ-1 进行 仪器状态监控和样品校正. 91500 的 <sup>176</sup>Hf/<sup>177</sup>Hf 为 0.282295±0.000029 (*n*=17, 2σ), GJ-1 的<sup>176</sup>Hf/<sup>177</sup>Hf 为 0.282049±0.000023 (n=10, 2σ), 与二者推荐值分别为  $0.2823075\pm0.000058(2\sigma)^{[75]}$ 和  $0.282015\pm0.000019(2\sigma)^{[76]}$ 基本吻合. 计算 ɛ<sub>нf</sub>(t)时, <sup>176</sup>Lu 的衰变系数为 1.865× 10<sup>-11</sup> a<sup>-1[77]</sup>, 球粒陨石的 <sup>176</sup>Hf/<sup>177</sup>Hf 和 <sup>176</sup>Lu/<sup>177</sup>Hf 分 别为 0.282772 和 0.0332<sup>[78]</sup>. 单阶段 Hf 模式年龄(T<sub>DMI</sub>) 计算时, 亏损地幔 <sup>176</sup>Hf/<sup>177</sup>Hf 和 <sup>176</sup>Lu/<sup>177</sup>Hf 分别为 0.28325 和 0.0384<sup>[79]</sup>. 两阶段 Hf 模式年龄(T<sub>DM2</sub>)计算 时,平均地壳的<sup>176</sup>Lu/<sup>177</sup>Hf比值为0.015<sup>[80]</sup>.

## 3 结果分析

#### 3.1 碎屑锆石特征

长石杂砂岩样品(D0581-6TW)中锆石,多呈淡玫 瑰色、玫瑰色,约 5%锆石颜色为深玫瑰色,透明-半 透明,其粒径多集中在 70~170 μm 之间.依据锆石的 内部结构和形态将其划分为两类,第一类锆石大多 呈自形-半自形,磨圆度差,主要以次棱角状为主(图 3(a)),反映搬运距离较短,且这部分锆石多数发育岩 浆结晶的韵律环带结构,岩浆成因明显.第二类锆石 大多具有较好的磨圆度,自形程度较差,呈圆状、次 圆状(图 4(b)~(d)),反映经历了较长距离的搬运过程, 同时这类锆石中少数锆石发育宽窄不一的增生边和



图 3 长石杂砂岩代表性碎屑锆石 CL 图像

(a)~(d)分别为年龄<500, 2000~800, 3000~2000 和>3000 Ma 代表性碎屑锆石 CL 图像. 锆石中的圆圈为同位素测年激光剥蚀的示意范围, 相应的编号为测点号

残留的晶核结构,呈现锆石在搬运沉积前曾经历过 变质作用的改造.

## 3.2 锆石 U-Pb 年龄

对于碎屑锆石年龄大于 1000 Ma 的数据点,采用 <sup>207</sup>Pb/<sup>206</sup>Pb 表面年龄,年龄小于 1000 Ma 的数据点,采 用 <sup>206</sup>Pb/<sup>238</sup>U 表面年龄.对长石杂砂岩样品(D0581-6TW)随机挑选的 148 粒锆石进行了 154 个分析点的 测试分析,获得 135 个单颗粒锆石 141 个有效数据, 样品 LA-ICPMS 锆石 U-Pb 年龄的分析结果见表 S1, 表中列出了本次所有的测试数据,测点号1~119 在中 国科学院青藏高原研究所大陆碰撞与高原隆升重点 实验室完成,而测点号120~154西北大学大陆动力学 国家重点实验室完成,其中标注括弧的点号表示为 本次统计分析未被采用的数据.

长石杂砂岩(D0581-6TW)样品挑选锆石中存在 少量古老碎屑锆石,最古老的碎屑锆石(32和138为 同一粒锆石中两个不同位置的测点)<sup>207</sup>Pb/<sup>206</sup>Pb 年龄 分别为4043±5和4040±5 Ma,Th/U比值分别为0.42 和0.21.在U-Pb谐和图(图4(a))中,该粒锆石中2个 测点均位于谐和线上(谐和度均为99%),显示年龄数 据极好的谐和性及可靠性.在透射光显微镜下显示



图 4 长石杂砂岩碎屑锆石 U-Pb 谐和图(a)和锆石年龄频率分布图(b)

该粒锆石为深玫瑰色,半透明度,呈浑圆状,为典型 的碎屑锆石. CL 图像显示该粒锆石具核-幔-边结构 (图 3(d)),其中内核粒径较小,大小约 10~15 μm,并 且发育疏而宽的不规则条带;幔部表面略显凹凸不 平,略具环带结构、阴极发光强度均一但较弱,结合 其 Th/U 比值较高特点,极可能为岩浆成因锆石;边 部具窄而无环带和弱阴极发光的特征.本次2个测点 数据均采集于该颗锆石的幔部,且年龄的谐和性较 好,表明该锆石 U-Pb 同位素体系封闭较好,受后期 构造改造影响很小,测年数据可靠.

此外, 在样品中还获得了 4 组 <sup>207</sup>Pb/<sup>206</sup>Pb 年龄为 3606±6~3113±5 Ma 的古老碎屑锆石(测点 21, 129, 130 和 131), 这些测点均位于谐和线上或者附近. 其 中测点 130 和测点 131 为同一粒锆石的核部和边部所 测得, CL 图像显示该粒锆石也具核-幔-边结构(图 3(d)), 其中内核呈暗灰色, 无环带, Th/U 比值较高 (1.10); 幔部略具环带结构, 显示岩浆成因的特征; 边部发育白色和宽窄不均一的增生边, 无环带, Th/U 比值较低(0.34), 显示变质成因的特征; 核部和边部 的 <sup>207</sup>Pb/<sup>206</sup>Pb 年龄分别为 3606±6 和 3491±7 Ma, 可 能分别代表了至少两期的构造热事件. 测点 21 和测 点 129 的 <sup>207</sup>Pb/<sup>206</sup>Pb 年龄分别为 3247±6 和 3113±5 Ma, Th/U 比值均为 0.48, CL 图像显示这两个测点发育岩 浆韵律环带(图 3(d)), 应为典型的岩浆成因锆石.

锆石 U-Pb 谐和图(图 4(a))和锆石谐和年龄频率 分布图(图 4(b))表明,获得的 141 个有效数据主要集 中于 2.53~2.37, 1.14~0.89 和 0.47~0.42 Ga 3 个年龄时 段,其中 0.47~0.42 Ga 为主年龄集中区,共计有 57

个碎屑锆石 U-Pb 年龄, 占总有效数据的 40.4%, 其 相对峰值年龄为 446 Ma 和最年轻的 5 粒碎屑锆石 U-Pb 年龄为 426±4 Ma, Th/U 比值变化于 0.46~1.33 之间, CL 图像显示大部分的锆石发育清晰的韵律环 带(图 3(a)), 应为典型的岩浆锆石, 这些锆石多次棱 角状,属第一类锆石,表明其物源区相对较近且搬运 距离较短. 1.14~0.89 Ga 年龄集中区, 共计有 23 个碎 屑锆石 U-Pb 年龄, 占总有效数据的 16.3%, 没有明 显的峰值,这些锆石多为次浑圆状,少数呈圆状,大 部分锆石内部发育振荡环带结构,少数锆石边部发 育宽窄不一的增生边, Th/U 比值变化于 0.02~1.76 之 间(图 2(b)),属第二类锆石.2.53~2.37 Ga 年龄集中区, 共计有 19 个碎屑锆石 U-Pb 年龄, 占总有效数据的 13.5%, 其相对峰值年龄为 2464 Ma, Th/U 比值变化 于 0.31~2.33 之间. 这些锆石也多为次圆状, 少数呈 圆状,属第二类锆石,其内部结构又进一步可分为两 种类型,一类为内部发育清晰的韵律环带,边部发育 窄的变质增生边;另一类岩浆环带不发育,弱阴极发 光,结构相对复杂(图 3(c)).

#### 3.3 锆石 Hf 同位素组成

本文对长石杂砂岩(D0581-6TW)样品中的 55 粒 碎屑锆石颗粒进行了 55 个点的 LA-MC-ICPMS Lu-Hf 同位素组成分析,其分析结果见表 S2 和图 5((a), (b)). 所有锆石均具有低 <sup>176</sup>Lu<sup>/177</sup>Hf 比值(绝大多数小 于 0.002),显示锆石在形成以后具有较低的放射成因 Hf 的积累. 对于 0.47~0.42 Ga 的锆石,共计有 24 个测 点,其 <sup>176</sup>Hf/<sup>177</sup>Hf 值变化较大,变化范围为 0.282156~



图 5 长石杂砂岩碎屑锆石 Hf 同位素组成(a)和 Hf 同位素两阶段模式年龄频率分布直方图(b)

0.282850, ε<sub>Hf</sub>(*t*)值变化于-9.3~+12.0,两阶段模式年龄(*T*<sub>DM2</sub>)为2011~646 Ma.对于1.14~0.89 Ga的锆石,共计有12个测点,其<sup>176</sup>Hf/<sup>177</sup>Hf值较低,变化范围也较小(0.281721~0.282365),ε<sub>Hf</sub>(*t*)为-16.8~+7.8,两阶段模式年龄(*T*<sub>DM2</sub>)为2868~1420 Ma.对于2.53~2.37 Ga的锆石,共有8个测点,其<sup>176</sup>Hf/<sup>177</sup>Hf值更低且变化范围也较小(0.281104~0.281210),对应的ε<sub>Hf</sub>(*t*)值均为负值,介于-7.0~-0.5,两阶段模式年龄(*T*<sub>DM2</sub>)为3513~3009 Ma,远大于锆石的形成年龄.

另外对于~4040 Ma 的锆石,仅有一个测点, <sup>176</sup>Hf/<sup>177</sup>Hf 值为 0.280084,对应的  $\varepsilon_{\rm Hf}(t)$ 值为+5.2. 一 阶段模式年龄( $T_{\rm DM1}$ )和两阶段模式年龄( $T_{\rm DM2}$ )分别为 4326 和 4474 Ma.由于锆石的 Lu/Hf 比值( $f_{\rm Lu/Hf}$ =-0.92) 显著小于大陆地壳 Lu/Hf 比值( $f_{\rm Lu/Hf}$ =-0.72<sup>[81]</sup>),因此 两阶段模式年龄( $T_{\rm DM2}$ )更真实地反映其源区物质从亏 损地幔被抽取或其源区物质在地壳的平均存留年龄, 这些特征表明其物源区尚有十分古老(冥古代)的陆 壳物质.对于 1.90~1.65 Ga 年龄段的 3 个测点,其 <sup>176</sup>Hf/<sup>177</sup>Hf 值变化于 0.281642~0.281917,对应的  $\varepsilon_{\rm Hf}(t)$ 均呈正值(+0.7~+5.6),两阶段模式年龄( $T_{\rm DM2}$ )为 2455 ~2011 Ma,表明它们的原岩起源于新生的陆壳.

## 4 讨论

## 4.1 发现~4.0 Ga 碎屑锆石

本文所获得砂岩样品中 141 个有效碎屑锆石 U-Pb年龄变化范围为4.04~0.42 Ga. 样品中存在5粒 U-Pb年龄>3.0 Ga的古老碎屑锆石,其中最老的1粒 锆石两个不同位置分析,数据点都位于谐和线上,年 龄为~4040 Ma. 其余还有 <sup>207</sup>Pb/<sup>206</sup>Pb 年龄分别为 3606±6, 3491±7, 3247±6 和 3113±5 Ma 的古老碎屑锆 石.~4040 Ma 碎屑锆石年龄数据是目前东准噶尔地 区乃至中亚地区发现的最古老的地壳物质的年龄记 录. 碎屑锆石 Hf 同位素研究表明,~4040 Ma 的锆石 <sup>176</sup>Hf/<sup>177</sup>Hf 值为 0.280084, ε<sub>Hf</sub>(t) 值为-5.2, 一阶段模式 年龄(TDMI)和两阶段模式年龄 (TDM2)分别为 4326 和 4474 Ma, 与 Harrison 等人<sup>[82]</sup>报道的澳大利亚 Jack Hills 地区 4.01~4.37 Ga 锆石的 Hf 同位素组成存在着 相似的特征. Harrison 等人<sup>[82]</sup>提出大陆壳在 4.4~4.5 Ga 时就有显著的形成,但形成后很快就被循环至地 幔, 而明显不同于我国华北克拉通和扬子克拉通~3.8 Ga 锆石 Hf 同位素组成, 它们的 Hf 同位素组成与球 粒陨石相同,模式年龄也在 3.8 Ga 前后,证明他们来 自于未经历过显著壳幔分异的地幔源区. 据此, 前 人[14,83]认为华北地区可能不存在更老的地壳岩石记 录. 这些>3.0 Ga 的碎屑锆石在最后就位前, 很可能 经历了一次或多次搬运和再循环过程,它们的原始 源区位置目前难以确定. 但是, 这些大于 3.0 Ga 尤其 是~4040 Ma 数据的出现,至少说明东准噶尔地体岩 石中已经记录到了源自中-古太古代和冥古宙这些古 老地壳物质的再循环信息. 值得一提的是 Kröner 等 人<sup>[34]</sup>曾在中亚造山带哈萨克斯坦境内 Stepnya 地区的 早奥陶世闪长玢岩中获得了 1 粒 <sup>207</sup>Pb/<sup>206</sup>Pb 年龄为 3888±2 Ma 捕获锆石.

#### 4.2 岩块沉积时代及物源分析

东准噶尔阿尔曼泰蛇绿混杂带中沉积岩块的碎 屑锆石 U-Pb 年龄测试结果中最年轻的一组碎屑锆石 年龄变化于 0.47~0.42 Ga, 主峰值年龄为~446 Ma, 同时在该组年龄数据中相对年轻的 5 粒碎屑锆石加

2972

权平均年龄为 426±4 Ma, 此年龄为样品最新蚀源区 年龄,也限定了该砂岩形成时代的下限,因此该岩块 的沉积时代应为中-晚志留世或者更晚(泥盆纪).并 且这组年轻的碎屑锆石(早古生代)的比例远高于年 老的碎屑锆石(早古生代前),该组碎屑锆石 ε<sub>нf</sub>(t)值 为-9.3~+12.0, 两阶段模式年龄(T<sub>DM2</sub>)为 2011~646 Ma, 远大于锆石的形成年龄, 呈现地幔来源和新生 地壳的双重特征.同时这些年轻锆石大多呈自形或 半自形, 磨圆度差, 反映搬运距离较短. 而对于 1.14~ 0.89 Ga 和 2.53~2.37 Ga 这两组相对年老的碎屑锆石, 其 ε<sub>Hf</sub>(t)值分别为-16.8~+7.8 和-7.0~+0.5, 两阶段模 式年龄(T<sub>DM2</sub>)分别为 2868~1420 Ma 和 3513~3009 Ma, 并且对于 2.53~2.37 Ga 的碎屑锆石总体具负的 ε<sub>Hf</sub>(t) 值的特征,表明其物源区存在太古代从亏损地幔分 离进入地壳的重大地质事件,即太古代地壳增生事 件,同时这两组的碎屑锆石大多具有较好的磨圆度, 反映其经历了相对较长的搬运过程. 总之上述这些 特征表明本次研究的阿尔曼泰蛇绿混杂带中沉积岩 块很可能沉积于一个岩浆活动较为激烈的地区,这 一特征与活动陆缘的碎屑沉积极为相似.

近年来,我们在该区进行的 1:25 万区调修测工 作和一些学者先后在东准噶尔地区发现了早古生代 岩浆活动的信息,如我们曾在东准噶尔野马泉一带 分别获得了石英闪长岩和英云闪长岩的锆石 U-Pb 年 龄分别为443±6和442±5 Ma(未发表的数据), 张永等 人<sup>[84]</sup>报道了琼河坝地区花岗斑岩中破碎变形的锆石 核年龄为 442±7 Ma, 杜世俊等人<sup>[85]</sup>通过锆石 CAMECA U-Pb 测年获得了和尔赛地区钾长花岗岩 的年龄为 429 Ma, 但是这些岩石具有高的 ε<sub>Hf</sub>(t)值和 相对低的两阶段模式年龄(小于 700 Ma) (图 6(a)),表 明它们对所研究砂岩的物源贡献较小. 在东准噶尔 地体南缘的哈尔里克山一带也发现了大量的早古生 代的侵入岩,如哈尔里克山口门子附近的闪长岩锆 石 SHRIMP U-Pb 年龄为 430±6 Ma<sup>[86]</sup>,哈尔里克山东 段主脊闪长岩和花岗岩的锆石 SHRIMP U-Pb 年龄为 447±11 和 462±9 Ma<sup>[87]</sup>, 这些岩浆岩被认为是古生代 期间向南逐渐迁移的吐哈盆地南缘活动陆缘的一部 分,其形成与康古尔塔格一带洋壳残片代表的洋盆 岩石圈板块向北的俯冲有关<sup>[88]</sup>,很显然也不能为 研究的沉积残块提供物源. 在研究区北侧阿尔泰 南缘地区广泛发育早古生代的花岗岩、同时代的火山 岩和片麻岩系<sup>[89-94]</sup>,如切木尔切克片麻状花岗岩

SHRIMP 锆石 U-Pb 年龄为 462±10 Ma<sup>[90]</sup>, 冲呼尔盆 地火山岩锆石 U-Pb 年龄为 436±4 Ma<sup>[91]</sup>, 阿巴宫片麻 状二云母正长花岗的 SHRIMP 锆石 U-Pb 年龄为 458±3 Ma<sup>[92]</sup>, 阿尔格达依变辉长岩 SHRIMP 锆石 U-Pb 年龄为 439±17 Ma<sup>[93]</sup>, 克朗盆地铁木尔特黑云 母花岗岩锆石年龄为 459±5 Ma<sup>[94]</sup>. 近年来的研究表 明,这些早古生代的花岗岩和火山岩为俯冲-同造山 的产物,形成于活动陆缘的构造环境<sup>[90-96]</sup>,这些岩 石的 ε<sub>Hf</sub>(t)值和两阶段模式年龄与所研究的早古生代 碎屑锆石具有很好的吻合性(图 6(b), (c)),揭示了所 研究砂岩样品中早古生代的碎屑锆石可能主要来自 北侧的阿尔泰造山带. 另外该沉积岩块与 Long 等 人<sup>[96]</sup>报道的研究区北侧阿尔泰地区中-上奥陶统哈巴 河群和前人研究的早古生代的片麻岩在 Hf 同位素组 成和碎屑锆石年龄分布模式方面存在相似性(图 6(d), (e)和图 7(a), (b)),同时也与东准噶尔地区伊吾县境 内奥陶系荒草坡群也有着类似的碎屑锆石年龄分布 模式(图 7(c)),因此很可能表明它们具有类似物源区, 而后者的物源被认为是来自北侧的阿尔泰造山带<sup>[53]</sup>, 这一认识与我们对阿尔曼泰蛇绿混杂带中沉积岩块 的碎屑锆石的研究结果完全一致. 但与卡拉麦里蛇 绿岩以北的东准噶尔地区晚古生代地层的碎屑锆石 年龄谱系存在着显著的差异(图 7(d)), 后者均较缺乏 前寒武纪的碎屑锆石年龄信息,并且物源主要来自 于东准噶尔地区古生代岛弧岩浆活动的火山-沉积岩 系<sup>[53,99]</sup>. 在卡拉麦里蛇绿岩带以南石炭纪砂岩中也 有早古生代和前寒武系的碎屑锆石信息(图 7(e)),但 其物源区被认为来自南侧的吐哈盆地和准噶尔盆地 所覆盖的地区<sup>[100]</sup>.因此,在碎屑锆石组成方面揭示 本次研究的沉积岩块的物源应来自北侧阿尔泰造山 带,并且也不属于泥盆纪地层,考虑到最年轻的碎屑 锆石年龄为 426±4 Ma, 应将本次研究的阿尔曼泰蛇 绿混杂带中沉积岩块的沉积时代置于晚志留世是合 适的.

## 4.3 对东准噶尔及邻区早古生代构造演化的启示

东准噶尔阿尔曼泰蛇绿混杂带中沉积岩块的碎 屑锆石 U-Pb 年龄和 Hf 同位素特征指示了其物源来 自于北侧的阿尔泰造山带,其沉积时代置于晚志留 世.近年来的研究表明,东准噶尔由一系列的岛弧杂 岩带和增生楔杂岩组成,这些杂岩是在古生代俯冲-增生过程中产生的<sup>[50,51]</sup>.东准噶尔构造单元划分上



资料来源: (a) 张永等人<sup>[84]</sup>; (b) 孙敏等人<sup>[52]</sup>和 Cai 等人<sup>[97]</sup>; (c) Wang 等人<sup>[98]</sup>; (d) Long 等人<sup>[96]</sup>; (e) Sun 等人<sup>[89]</sup>; (f) 本文数据(未包括>3.0 Ga 的数据)

从北向南依次为都拉特复合岛弧、野马泉复合岛弧和 将军增生杂岩,它们被两个蛇绿岩带(阿尔曼泰蛇绿 岩带和卡拉麦里蛇绿岩带)分开.阿尔曼泰蛇绿岩和 卡拉麦里蛇绿岩反映了早-中古生代大洋地壳的形 成<sup>[60,101]</sup>.而位于阿尔曼泰和额尔齐斯构造带以北的 阿尔泰陆块南缘内发育有早古生代的活动陆缘岩浆 弧,其锆石 U-Pb 年龄集中于 470~440 Ma之间<sup>[90,95]</sup>, 略晚于阿尔曼泰 SSZ 型蛇绿岩的形成时代(505~489 Ma)<sup>[60-62]</sup>,本次在东准噶尔北缘结勒德喀拉一带获得 石英闪长岩和花岗闪长岩的锆石 U-Pb 年龄分别为 483±6 和 481±5 Ma (未发表的数据),具有岛弧岩浆 岩的属性,代表了阿尔曼泰蛇绿岩所代表的早古生 代大洋向北俯冲最早一期岩浆事件,同时也为其洋 盆的俯冲极性提供了有力的证据.从阿尔泰山到东 准噶尔南部,大型断裂构造以向南西的斜冲运动为 主,且具有"北老南新"的构造迁移特征<sup>[102,103]</sup>;东准 噶尔地区的宽频地震探测数据揭示,在卡拉麦里以 北、富蕴以南间的地表以下 50 和 100 km 深度存在两 条均向北倾的强反射体<sup>[104,105]</sup>.并且从卡拉麦里以南 到北部的阿尔泰山,Moho 面向北逐渐变深,在 18~28 km 深度下存在高速 P 波异常体,而且该异常体的厚 度(10 km)和波速值(7.3 km/s)与洋壳的厚度和波速值 相当.在准噶尔盆地东北缘,中志留统-下石炭统下 部之间为连续沉积,岩性以陆缘碎屑岩为主,夹有少 量碳酸盐岩,具有被动陆缘沉积岩系的特征.

依据上述北部的阿尔泰早古生代活动陆缘弧的





资料来源: (a) Long 等人[53]; (b) 孙敏等人[52]; (c) Long 等人[96]; (d) 王一剑等人[99]; (e) 李亚萍等人[100]; (f) 本文数据(未包括>3.6 Ga 的数据)

发育、中部的东准噶尔地体早奥陶世岛弧岩浆岩、地 表构造变形的运动学和深部地球物理特征、以及南部 准噶尔盆地东北缘(卡拉麦里蛇绿岩带以南)中志留 世-早石炭世之间的被动陆缘连续沉积等特征,可以 说明东准噶尔洋盆是自南向北逐渐俯冲-消减的,并 且洋盆在俯冲-消减作用过程中, 消减带存在自北向 南的后退式迁移作用, 在早奥陶世-中志留世期间, 阿尔曼泰蛇绿岩所代表的早古生代大洋向北俯冲形 成阿尔泰古陆南缘活动陆缘岩浆弧;至中-晚志留世, 东准噶尔地区含局限于西伯利亚地台南缘浅水区的 地方性冷水生物群-图瓦贝化石[106,107]、且具有海相磨 拉石特征的中-顶志留统地层与下伏奥陶系火山-沉 积地层不整合接触,表明中-晚志留世时东准噶尔早 古牛代洋盆体系已发生了关闭,并且与西伯利亚古 陆联接为一体(但海水尚未完全消退),成为西伯利亚 古陆的广阔边缘. 使得图瓦贝生物群能够越过西伯 利亚南缘,到达东准噶尔(包括卡拉麦里蛇绿岩带以 南的地区), 那么位于其北部的额尔齐斯-南蒙古晚古 生代洋和位于南部的卡拉麦里晚古生代洋盆必是发 育在增生了的西伯利亚古陆的内部,也可以说它们 是后张开的、发育在陆壳再破裂基础上的次生洋.而

本次在阿尔曼泰蛇绿混杂岩中识辨出的晚志留世沉 积岩块,其物源主要为北侧的阿勒泰造山带,进一步 揭示了在晚志留世期间东准噶尔北缘与阿勒泰造山 带已联为一体,二者共同构成了古西伯利亚古陆南 缘的一个边缘造山带,最终为本次研究的阿尔曼泰 蛇绿蛇绿混杂带中的沉积残块提供了物源.同时也 揭示了阿尔曼泰蛇绿岩所代表的早古生代大洋至少 在晚志留世已经关闭,蛇绿岩的侵位已经完成.

## 5 结论

(1)利用LA-(MC)-ICPMS 锆石微区 U-Pb 同位素 测年技术,在东准噶尔地区阿尔曼泰蛇绿混杂岩中 的沉积岩块获得~4040 Ma 的碎屑锆石年龄.Hf 同位 素研究表明,~4040 Ma 的锆石具负的 *ɛ*Hf(*t*)值和稍大 于锆石形成年龄的 Hf 同位素两阶段模式年龄,表明 其物源区尚有十分古老(冥古代)的陆壳物质.同时也 获得 3606±6~3113±5 Ma 的碎屑锆石年龄.目前难以 推测这些>3.0 Ga 的物源,但至少说明东准噶尔地体 岩石中已经记录到了源自中太古-古太古代和冥古宙 这些古老地壳物质的再循环信息.

(2) 426±4 Ma 为所研究沉积岩块中最年轻的碎

屑锆石年龄,由此限定了地层时代的下限,结合区域 地质特征,认为阿尔曼泰蛇绿混杂带中沉积岩块的 沉积时代应为晚志留世.

(3) 东准噶尔阿尔曼泰蛇绿混杂带中沉积岩块的碎屑锆石年龄主要存在 2.53~2.37, 1.14~0.89 和 0.47~0.42 Ga 3 个年龄集中区, 主峰值年龄为~446

Ma,结合碎屑锆石的形态、内部结构和 Hf 同位素组 成等特点,认为其物源可能来自北侧的阿勒泰造山 带,同时也暗示了在晚志留世期间阿尔曼泰蛇绿岩 所代表的早古生代大洋已经关闭,东准噶尔北缘与 阿勒泰造山带已联为一体,二者共同构成了古西伯 利亚古陆南缘的一个边缘造山带.

**致谢** 在野外地质工作过程中得到了中国地质科学院李继亮研究员、西安地质矿产研究所陈隽璐研究员和马仲平研究员的悉心指点; 文中锆石 LA-ICPMS U-Pb 定年测试和解释得到了中国科学院青藏高原研究所岳雅慧副研究员、 王厚起博士和李顺博士及中国地质大学(北京)张金玉博士的热情帮助;本文在成稿过程中得到中国地质科学院 李锦轶研究员、中国地质大学(北京)王瑜教授、陕西区域地质矿产研究院杨永成高工的建设性意见和建议,在此 表示衷心的感谢!

#### 参考文献

- 1 Pell S D, Williams I S, Chivas A R. The use of protolith zircon age fingerprints in determining the protosource areas for some Australian the dune sands. Sedim Geol, 1997, 109: 233–360
- 2 Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem, 2003, 53: 277-303
- 3 Richards A, Argles T, Harris N, et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett, 2005, 236: 773–796
- 4 Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and review of the palegeographical and denudational history of the Yilgarn Craton. Earth-Sci Rev, 2005, 68: 245–279
- 5 Veevers J J, Belousova E A, Saeed A, et al. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, T<sub>DM</sub> of 2.0–1.0 Ga, and alkaline affinity. Earth-Sci Rev, 2006, 76: 135–174
- 6 Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of Dabie Orogen: Evidence from SHRIMP dating of zircon and monazite from a UHP frantic gneiss cobble form the Heifei Basin, China. Geochim Cosmochim Acta, 2005, 69: 4333–4348
- 7 Wan Y S, Song T R, Liu D Y, et al. Mesozoic monazite in Neoproterozoic metasediments: Evidence for low-grade metamorphism of Sinian sediments during Triassic continental collision, Liaodong Peninsula, NE China. Geochem J, 2007, 41: 47–55
- 8 Wan Y S, Liu D Y, Wang W, et al. Provenance of Mesoto Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gandwana Res, 2011, 20: 219–242
- 9 Bernet M, Spiedel C. Detrital thermochronology provenance analysis, exhumation, and landscape evolution of mountain belts. Geol Soc Am Spec Pap, 2004, 378: 1–126
- 10 Zhou J B, Wilde S A, Zhao G C, et al. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrance, North China, and their tectonic implications. Precambrian Res, 2008, 160: 323–340
- 11 陆松年,李怀坤,王惠初,等.秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究.岩石学报,2009,25:2195-2208
- 12 Li R W, Wan Y S, Cheng Z Y, et al. Provenance of Jurassic sediments in the Heifei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth Planet Sci Lett, 2005, 231: 279–294
- 13 Zhou J B, Wilde S A, Zhao G C, et al. SHRIMP U-Pb zircon dating of the Wulian Complex: Defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China. Precambrian Res, 2008, 162: 559–576
- 14 吴福元,杨进辉,柳小明,等. 冀东 3.8 Ga 锆石 Hf 同位素特征与华北克拉通早期地壳时代.科学通报, 2005, 50: 1996-2003
- 15 Gradstein F M, Ogg J G, Smith A G, et al. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 2004, 27: 83–100
- 16 陆松年,王惠初,李怀坤. 解读国际地层委员会 2004 年前寒武纪地层表及 2004~2008 年参考方案. 地层学杂志, 2005, 25: 180-187
- 17 Kinny P D. 3820 Ma zircons from a tonalitic Amitsoq gneiss in the Godthab district of southern West Greenland. Earth Planet Sci Lett, 1986, 79: 337–347

- 18 Nutman A P, Mojzsis S J, Friend C R L. Recognition of ≥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochim Cosmochim Acta, 1997, 61: 2475–2484
- 19 Bowring S A, Housh T B, Isachsen C E. The Acasta gneisses: Remnant of Earth's early crust. In: Newsom H E, Jones J H, eds. Origin of the Earth. New York: Oxford University Press, 1990. 319–343
- 20 Iizuka T, Horie K, Komiya T, et al. 4.2 Ga zircon xenocryst in Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 2006, 34: 245–248
- 21 Liu D Y, Nutman A P, Compston W, et al. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 1992, 20: 339–342
- 22 Song B, Nutman A P, Liu D Y, et al. 3800 to 2500 Ma crust in the Anshan area of Liaoning Provence, northeastern China. Precambrian Res, 1996, 78: 79–94
- 23 Wan Y S, Liu D Y, Song B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz diorite and trondhjemitie rocks from the Anshan area and their geological significance. J Asian Earth Sci, 2005, 24: 563–575
- 24 Black L P, Williams I S, Compston W. Four zircon ages from one rock: The history of a 3930 Ma old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol, 1986, 94: 427–437
- 25 Harley S L, Black L P. A revised Archean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antar Sci, 1997, 9: 74–91
- 26 Choi S H, Mukasa S B, Andronikov A V, et al. Lu-Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle. Earth Planet Sci Lett, 2006, 246: 305–316
- 27 Sano Y, Terada K, Hidaka H, et al. Palaeoproterozoic thermal events recorded in the ~4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim Cosmochim Acta, 1999, 63: 899–905
- 28 万渝生, 刘敦一, 董春艳, 等. 中国最老岩石和锆石. 岩石学报, 2009, 25: 1973-1807
- 29 Gebauer D, Williams I S, Compston W, et al. The development of the Central European Continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 Ga old detrital zircons. Tectonophysics, 1989, 157: 81–96
- 30 Mueller P A, Wooden J L, Nutman A P, et al. Early Archean crust in the northern Wyoming Province evidence from U-Pb ages of detrital zircons. Precambrian Res, 1998, 91: 295–307
- 31 Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature, 2001, 409: 175–178
- 32 Hartmann L A, Endo I, Suita M T F, et al. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes. J South Am Earth Sci, 2006, 20: 273–285
- 33 Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J Asian Earth Sci, 2006, 28: 385–408
- 34 Kröner A, Hegner E, Lehmann B, et al. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. J Asian Earth Sci, 2008, 32: 118–130
- 35 Wu F Y, Yang J H, Liu X M, et al. Nd isotopic constrains on crustal formation in the North China Craton. J Asian Earth Sci, 2005, 24: 523–545
- 36 Wilde S A, Valley J W, Kita N T, et al. SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. Am J Sci, 2008, 308: 185–199
- 37 Nutman A P, Wan Y S, Du L L, et al. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Res, 2011, 189: 43–65
- 38 温春齐, 多吉, 范小平, 等. 西藏普兰石英岩中发现 41 亿年碎屑锆石. 地质学报, 2006, 80: 1249-1251
- 39 多吉, 温春齐, 郭建慈, 等. 西藏 4.1 Ga 碎屑锆石年龄的发现. 科学通报, 2007, 52: 19-22
- 40 Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodeic reworking of Archean crust in South China. Earth Planet Sci Lett, 2006, 252: 56–71
- 41 王洪亮, 陈亮, 孙勇, 等. 北秦岭西段奥陶纪火山岩中发现近 4.1 Ga 的捕虏锆石. 科学通报, 2007, 52: 1685-1693
- 42 第五春荣, 孙勇, 董增产, 等. 北秦岭冥古宙(4.1~3.9 Ga)锆石年代学新进展. 岩石学报, 2010, 26: 1171-1174
- 43 郑建平, Griffin W L, 汤华云, 等. 西部华夏地区深部可能存在与华北和扬子大陆相似的太古代基底. 高校地质学报, 2008, 14: 549-557
- 44 何世平, 李荣社, 王超, 等. 青藏高原北羌塘昌都地块发现~4.0 Ga 碎屑锆石. 科学通报, 2011, 56: 573-582
- 45 Chen B, Jahn B M. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. J Asian Earth Sci, 2004, 23: 691–703
- 46 Coleman R. Continental growth of Northwest China. Tectonics, 1989, 8: 621-625
- 47 Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature, 1993, 364: 299–307

- 48 李锦轶. 新疆东部古元古代晚期和古生代构造格局及其演变. 地质论评, 2004, 50: 304-322
- 49 舒良树, 卢华复, 印栋浩, 等. 新疆北部古生代大陆增生构造. 新疆地质, 2001, 19: 59-63
- 50 Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. J Asian Earth Sci, 2008, 32: 102–117
- 51 Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am J Sci, 2009, 309: 221–270
- 52 孙敏, 龙小平, 蔡克大, 等. 阿尔泰早古生代末期洋中脊俯冲: 锆石 Hf 同位素组成突变的启示. 中国科学 D 辑: 地球科学, 2009, 39:935-948
- 53 Long X P, Yuan C, Sun M. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res, 2012, 21: 637–653
- 54 王洪亮,徐学义,何世平,等.中国天山及邻区1:100万地质图.北京:地质出版社,2007
- 55 何国琦,李茂松,贾进斗,等.中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义.北京大学学报(自然科学版),2001,37: 99-110
- 56 李锦轶. 新疆东准噶尔蛇绿岩的主要特征及其侵位历史. 岩石学报, 1995, 11: 73-84
- 57 牛贺才,张海祥,单强,等.扎河坝蛇绿混杂岩内富铌玄武(安山)岩的地球化学特征及其地质意义.岩石学报,2009,25:916-924
- 58 牛贺才,张海祥,单强,等.扎河坝石榴辉石岩中超硅-超钛石榴子石的发现及其地质意义.科学通报,2007,52:2169-2174
- 59 牛贺才,单强,张海祥,等.东准噶尔扎河坝超高压变质成因石英菱镁岩的 <sup>40</sup>Ar/<sup>39</sup>Ar 同位素年代学信息机地质意义. 岩石学报, 2007,23:1627-1634
- 60 牛贺才,单强,张兵,等. 东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩. 岩石学报, 2009, 25: 1484-1491
- 61 简平, 刘敦一, 张旗, 等. 蛇绿岩及蛇绿岩中浅色岩的 SHRIMP U-Pb 测年. 地学前缘, 2003, 10: 439-456
- 62 张元元,郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 2010, 26: 422-430
- 63 肖文交, Windley BF, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石 SHRIMP 年龄及其大地构造意义. 地质学报, 2006, 80: 32-37
- 64 新疆地质矿产局第二区域地质调查大队.1:5万加勒帕克依增德幅、塔斯喀克幅区域地质调查报告.1995
- 65 新疆地质局区域地质测量大队.1:20万奥什克山幅区域地质调查报告.1966
- 66 新疆地质局区域地质测量大队.1:20万卡姆斯特幅区域地质调查报告.1976
- 67 新疆地质局区域地质测量大队.1:20万恰库尔特幅区域地质调查报告.1966
- 68 Sláma J, Košler J, Daniel J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1–35
- 69 Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization, Geochem Geophys Geosyst, 2009, 10: Q04010, doi: 10.1029/2009GC002400
- 70 Andersen T. Correction of common Pb in U-Pb analyses that do not report <sup>204</sup>Pb. Chem Geol, 2002, 192: 59–79
- 71 Ludwig K R. Isoplot 3.0-A geochronological toolkit for Microsoft Excel. Berkeley Geochron Cent, Spec Publ, 2003, 4: 70
- 72 Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 2008, 247: 100–118
- 73 Bievre D P, Taylor P D. Table of the isotopic compositions of the elements. Int J Mass Spectrom Ion Process, 1993, 123: 149–166
- 74 Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J Anal At Spectrom, 2002, 17: 1567–1574
- 75 Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105–126
- 76 Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochim Cosmochim Acta, 2006, 70(Suppl): A158, doi: 10.1016/j.gca.2006.06.1383
- 77 Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683-687
- 78 Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148: 243–258
- 79 Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63: 533–556
- 80 Griffin W L, Pearson N J, Belousova E. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 2000, 64: 133–147
- 81 Amelin Y, Lee D C, Halliday A N. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 1999, 399: 252–255
- 82 Harrison T M, Blichert-Toft J, Muller W, et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science, 2005, 310: 1947–1950

- 83 Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 2005, 24: 523–545
- 84 张永,梁广林, 屈迅,等. 东准噶尔琼河坝岛弧早古生代岩浆活动的锆石 U-Pb 年龄和 Hf 同位素证据. 岩石学报, 2010, 26: 2389-2398
- 85 杜世俊, 屈迅, 邓刚, 等. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景. 岩石学报, 2010, 26: 2981-2996
- 86 郭华春,钟莉,李丽群.新疆哈尔里克山口门子地区石英闪长岩年代研究及地质意义.地质通报,2006,25:928-931
- 87 曹福根,涂其军,张晓梅,等.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石 SHRIMP U-Pb 测年的 证据. 地质通报,2006,25:923–927
- 88 李锦轶,王克卓,孙桂华,等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录.岩石学报, 2006,22:1087-1102
- 89 Sun M, Yuan C, Xiao W J, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Paleozoic. Chem Geol, 2008, 247: 352–383
- 90 Wang T, Hong D W, Jahn B, et al. Timing, petrogenesis and setting of Paleozoic synorogenic intrusions from the Altai Moutains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. J Geol, 2006, 114: 735–751
- 91 曾乔松,陈广浩,王核,等.阿尔泰冲呼尔盆地花岗质岩类的锆石 SHRIMP U-Pb 定年及其构造意义.岩石学报,2007,23: 1921-1932
- 92 刘峰,李延河,毛景文,等. 阿尔泰造山带阿巴宫花岗岩锆石 SHRIMP 年龄及其地质意义. 地球学报, 2008, 29: 795-804
- 93 Wong K, Sun M, Zhao G C, et al. Geochemical and geochronological studies of the Alegedayi ophiolitic complex and its implication for the evolution of the Chinese Altai. Gondwana Res, 2010, 18: 438–454
- 94 柴凤梅,董连慧,杨富全,等.阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因.岩石学报,2010,26:377-386
- 95 王涛, 童英, 李舢, 等. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 2010, 29: 595-618
- 96 Long X P, Yuan C, Sun M. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophys, 2010, 480: 213–231
- 97 Cai K D, Sun M, Yuan C, et al. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. J Asian Earth Sci, 2011, 42: 949–968
- 98 Wang Y J, Yuan C, Long X P, et al. Geochemistry, zircon U-Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: Petrogenesis and tectonic implications. J Asian Earth Sci, 2011, 42: 969–985
- 99 王一剑,刘洪军,周娟萍,等.东准噶尔卡姆斯特北海相火山-沉积岩碎屑锆石 LA-ICP-MS U-Pb 年龄及地质意义.现代地质,2011, 25:1047-1058
- 100 李亚萍,李锦轶,孙桂华,等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,2007,23: 1577-1590
- 101 黄岗,牛广智,王新录,等.新疆东准噶尔卡拉麦里蛇绿岩形成和侵位时限:来自辉绿岩和凝灰岩的年代学证据.地质通报,2012, 31:1267-1278
- 102 李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报,2006,80:148-167
- 103 姜耀俭,杨丙中,王岫岩,等.准噶尔盆地东北缘构造特征、演化及与油气的关系.地质学报,2002,76:462-468
- 104 李海鸥,姜枚,王亚军,等.新疆富蕴-库尔勒剖面接收函数方法获得的地壳上地幔结构成像.地质学报,2006,80:135-141
- 105 王亚军, 钱荣毅, 姜枚, 等. 新疆富蕴-库尔勒剖面地震层析图像与地壳上地幔的速度结构. 地质学报, 2006, 80: 142-147
- 106 苏养正. 论图瓦贝 Tuvaella 的时空分布和生态环境. 古生物学报, 1981, 20: 567-576
- 107 张梓歆, 戎嘉余, 邸巧玲. 新疆巴里坤地区志留纪的大型图瓦贝组合. 古生物学报, 1983, 22: 278-294

## 补充材料

#### 表 S1 阿尔曼泰蛇绿混杂带中长石杂砂岩碎屑锆石 LA-ICPMS U-Pb 分析结果

#### 表 S2 阿尔曼泰蛇绿混杂带中长石杂砂岩碎屑锆石 LA-MC-ICPMS Lu-Hf 同位素分析结果

本文以上补充材料见网络版 csb.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.

| 测点               | 元素含量(ppm) 元素比值 |      |      |                                      | 同位素       | 比值                                  |           |            |         |                                      | 年龄(Ma)    | )                                   |           |            | 谐和度       |     |
|------------------|----------------|------|------|--------------------------------------|-----------|-------------------------------------|-----------|------------|---------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|-----|
| 编号               | Th             | U    | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | 1σ      | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | (%) |
| 01               | 124            | 256  | 0.48 | 0.06752                              | 0.00158   | 1.32369                             | 0.02879   | 0.14219    | 0.00121 | 854                                  | 50        | 856                                 | 13        | 857        | 7         | 100 |
| 02               | 169            | 278  | 0.61 | 0.05893                              | 0.00204   | 0.57963                             | 0.01933   | 0.07134    | 0.00067 | 564                                  | 77        | 464                                 | 12        | 444        | 4         | 105 |
| 03               | 587            | 669  | 0.88 | 0.05656                              | 0.00179   | 0.55207                             | 0.01680   | 0.07079    | 0.00061 | 474                                  | 72        | 446                                 | 11        | 441        | 4         | 101 |
| 04               | 263            | 253  | 1.04 | 0.06481                              | 0.00220   | 1.10059                             | 0.03580   | 0.12316    | 0.00116 | 768                                  | 73        | 754                                 | 17        | 749        | 7         | 101 |
| 05               | 172            | 211  | 0.82 | 0.05567                              | 0.00120   | 0.53945                             | 0.01086   | 0.07029    | 0.00062 | 439                                  | 29        | 438                                 | 7         | 438        | 4         | 100 |
| 06               | 193            | 365  | 0.53 | 0.06202                              | 0.00126   | 0.63552                             | 0.01198   | 0.07433    | 0.00065 | 675                                  | 25        | 500                                 | 7         | 462        | 4         | 108 |
| 07               | 193            | 135  | 1.42 | 0.07286                              | 0.00137   | 1.59918                             | 0.02786   | 0.15922    | 0.00143 | 1010                                 | 21        | 970                                 | 11        | 952        | 8         | 102 |
| 08               | 146            | 185  | 0.79 | 0.05831                              | 0.00132   | 0.57604                             | 0.01229   | 0.07166    | 0.00065 | 541                                  | 31        | 462                                 | 8         | 446        | 4         | 104 |
| 09               | 373            | 584  | 0.64 | 0.05914                              | 0.00233   | 0.55983                             | 0.02159   | 0.06867    | 0.00067 | 572                                  | 67        | 451                                 | 14        | 428        | 4         | 105 |
| 10               | 137            | 113  | 1.22 | 0.06183                              | 0.00179   | 0.61648                             | 0.01705   | 0.07233    | 0.00074 | 668                                  | 42        | 488                                 | 11        | 450        | 4         | 108 |
| 11               | 103            | 140  | 0.74 | 0.06097                              | 0.00192   | 0.60343                             | 0.01816   | 0.07179    | 0.00077 | 638                                  | 46        | 479                                 | 11        | 447        | 5         | 107 |
| 12               | 570            | 638  | 0.89 | 0.06031                              | 0.00160   | 0.57448                             | 0.01459   | 0.06910    | 0.00061 | 615                                  | 39        | 461                                 | 9         | 431        | 4         | 107 |
| 13               | 106            | 345  | 0.31 | 0.07336                              | 0.00097   | 1.62335                             | 0.01849   | 0.16052    | 0.00127 | 1024                                 | 11        | 979                                 | 7         | 960        | 7         | 102 |
| 14               | 333            | 269  | 1.24 | 0.05867                              | 0.00120   | 0.58243                             | 0.01104   | 0.07202    | 0.00063 | 555                                  | 26        | 466                                 | 7         | 448        | 4         | 104 |
| 15               | 525            | 647  | 0.81 | 0.05596                              | 0.00087   | 0.53251                             | 0.00736   | 0.06903    | 0.00055 | 451                                  | 17        | 433                                 | 5         | 430        | 3         | 101 |
| 16               | 183            | 171  | 1.07 | 0.05946                              | 0.00160   | 0.59572                             | 0.01522   | 0.07268    | 0.00071 | 584                                  | 38        | 475                                 | 10        | 452        | 4         | 105 |
| 17               | 231            | 806  | 0.29 | 0.06771                              | 0.00102   | 1.19036                             | 0.01542   | 0.12750    | 0.00099 | 860                                  | 32        | 796                                 | 7         | 774        | 6         | 103 |
| 18               | 285            | 290  | 0.98 | 0.06106                              | 0.00132   | 0.59724                             | 0.01207   | 0.07096    | 0.00064 | 641                                  | 28        | 475                                 | 8         | 442        | 4         | 107 |
| 19               | 104            | 155  | 0.67 | 0.11286                              | 0.00146   | 5.30999                             | 0.05932   | 0.34130    | 0.00285 | 1846                                 | 10        | 1870                                | 10        | 1893       | 14        | 98  |
| 20               | 253            | 274  | 0.92 | 0.15258                              | 0.00161   | 8.63814                             | 0.07213   | 0.41069    | 0.00319 | 2375                                 | 6         | 2301                                | 8         | 2218       | 15        | 107 |
| 21               | 127            | 265  | 0.48 | 0.25997                              | 0.00264   | 21.26805                            | 0.16871   | 0.59346    | 0.00464 | 3247                                 | 6         | 3151                                | 8         | 3003       | 19        | 108 |
| 22               | 210            | 109  | 1.93 | 0.16534                              | 0.00204   | 10.04548                            | 0.10618   | 0.44073    | 0.00379 | 2511                                 | 8         | 2439                                | 10        | 2354       | 17        | 107 |
| 23               | 217            | 359  | 0.60 | 0.06080                              | 0.00108   | 0.59731                             | 0.00971   | 0.07127    | 0.00060 | 632                                  | 21        | 476                                 | 6         | 444        | 4         | 107 |
| 24               | 84             | 407  | 0.21 | 0.07760                              | 0.00109   | 1.98512                             | 0.02329   | 0.18554    | 0.00144 | 1137                                 | 29        | 1110                                | 8         | 1097       | 8         | 104 |
| 25               | 236            | 230  | 1.03 | 0.05795                              | 0.00122   | 0.57705                             | 0.01139   | 0.07224    | 0.00064 | 528                                  | 28        | 463                                 | 7         | 450        | 4         | 103 |
| 26               | 789            | 728  | 1.08 | 0.05957                              | 0.00195   | 0.56943                             | 0.01792   | 0.06933    | 0.00063 | 588                                  | 73        | 458                                 | 12        | 432        | 4         | 106 |
| 27               | 189            | 278  | 0.68 | 0.05572                              | 0.00109   | 0.54991                             | 0.00998   | 0.07160    | 0.00061 | 441                                  | 25        | 445                                 | 7         | 446        | 4         | 100 |
| 28 <sup>a)</sup> | 180            | 202  | 0.89 | 0.09279                              | 0.00199   | 0.93857                             | 0.01859   | 0.07338    | 0.00071 | 1484                                 | 23        | 672                                 | 10        | 456        | 4         | 147 |
| 29               | 681            | 665  | 1.02 | 0.06005                              | 0.00128   | 0.55016                             | 0.01105   | 0.06646    | 0.00055 | 605                                  | 29        | 445                                 | 7         | 445        | 3         | 100 |
| 30               | 875            | 496  | 1.77 | 0.07558                              | 0.00102   | 1.80127                             | 0.02120   | 0.17289    | 0.00139 | 1084                                 | 12        | 1046                                | 8         | 1028       | 8         | 105 |
| 31               | 91             | 112  | 0.81 | 0.05658                              | 0.00253   | 0.57163                             | 0.02485   | 0.07328    | 0.00078 | 475                                  | 102       | 459                                 | 16        | 456        | 5         | 101 |
| 32               | 154            | 362  | 0.42 | 0.43757                              | 0.00425   | 53.02645                            | 0.39295   | 0.87911    | 0.00672 | 4043                                 | 5         | 4051                                | 7         | 4066       | 23        | 99  |
| 33               | 172            | 410  | 0.42 | 0.07525                              | 0.00092   | 1.75629                             | 0.01810   | 0.16932    | 0.00133 | 1075                                 | 10        | 1029                                | 7         | 1008       | 7         | 107 |
| 34               | 336            | 503  | 0.67 | 0.05721                              | 0.00156   | 0.57299                             | 0.01481   | 0.07264    | 0.00063 | 500                                  | 61        | 460                                 | 10        | 452        | 4         | 102 |
| 35               | 458            | 461  | 0.99 | 0.06020                              | 0.00198   | 0.58167                             | 0.01862   | 0.07009    | 0.00064 | 611                                  | 53        | 466                                 | 12        | 437        | 4         | 107 |
| 36 <sup>a)</sup> | 370            | 1050 | 0.35 | 0.17014                              | 0.00175   | 7.22516                             | 0.05788   | 0.30807    | 0.00237 | 2559                                 | 6         | 2140                                | 7         | 1731       | 12        | 148 |
| 37               | 190            | 164  | 1.15 | 0.05910                              | 0.00150   | 0.59657                             | 0.01444   | 0.07323    | 0.00068 | 571                                  | 36        | 475                                 | 9         | 456        | 4         | 104 |
| 38               | 68             | 119  | 0.57 | 0.08927                              | 0.00158   | 2.74830                             | 0.04473   | 0.22333    | 0.00206 | 1410                                 | 17        | 1342                                | 12        | 1299       | 11        | 109 |
| 39               | 381            | 645  | 0.59 | 0.07183                              | 0.00084   | 1.59071                             | 0.01535   | 0.16066    | 0.00124 | 981                                  | 9         | 967                                 | 6         | 960        | 7         | 101 |

表 S1 阿尔曼泰蛇绿混杂带中长石杂砂岩碎屑锆石 LA-ICPMS U-Pb 分析结果

(续表 S1)

| 测点               | 元素含量 | e(ppm) | 元素比值 |                                      | 同位素比值     |                                     |           |            |           |                                      |           | 年龄(Ma)                              |           |            |           | 谐和度 |
|------------------|------|--------|------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|-----|
| 编号               | Th   | U      | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | (%) |
| 40               | 39   | 517    | 0.08 | 0.07480                              | 0.00091   | 1.52708                             | 0.01568   | 0.14810    | 0.00116   | 1063                                 | 10        | 941                                 | 6         | 890        | 7         | 106 |
| 41               | 275  | 316    | 0.87 | 0.05866                              | 0.00112   | 0.58168                             | 0.01028   | 0.07193    | 0.00062   | 555                                  | 24        | 466                                 | 7         | 448        | 4         | 104 |
| 42               | 58   | 53     | 1.10 | 0.07114                              | 0.00232   | 1.31062                             | 0.04112   | 0.13365    | 0.00160   | 961                                  | 44        | 850                                 | 18        | 809        | 9         | 105 |
| 43               | 160  | 206    | 0.77 | 0.05872                              | 0.00152   | 0.59736                             | 0.01472   | 0.07381    | 0.00072   | 557                                  | 37        | 476                                 | 9         | 459        | 4         | 104 |
| 44               | 286  | 123    | 2.33 | 0.16722                              | 0.00190   | 11.35925                            | 0.10828   | 0.49281    | 0.00409   | 2530                                 | 7         | 2553                                | 9         | 2583       | 18        | 98  |
| 45               | 85   | 167    | 0.51 | 0.11639                              | 0.00140   | 5.42452                             | 0.05514   | 0.33811    | 0.00276   | 1902                                 | 8         | 1889                                | 9         | 1878       | 13        | 101 |
| 46               | 171  | 335    | 0.51 | 0.07254                              | 0.00099   | 1.64028                             | 0.01950   | 0.16406    | 0.00133   | 1001                                 | 12        | 986                                 | 7         | 979        | 7         | 101 |
| 47               | 128  | 258    | 0.50 | 0.17881                              | 0.00186   | 12.07034                            | 0.10031   | 0.48971    | 0.00386   | 2642                                 | 6         | 2610                                | 8         | 2569       | 17        | 103 |
| 48               | 516  | 92     | 5.58 | 0.07326                              | 0.00196   | 1.37140                             | 0.03500   | 0.13581    | 0.00146   | 1021                                 | 34        | 877                                 | 15        | 821        | 8         | 107 |
| 49               | 214  | 173    | 1.24 | 0.06177                              | 0.00201   | 0.62754                             | 0.01956   | 0.07371    | 0.00081   | 666                                  | 48        | 495                                 | 12        | 458        | 5         | 108 |
| 50               | 84   | 95     | 0.89 | 0.05648                              | 0.00350   | 0.57578                             | 0.03487   | 0.07394    | 0.00097   | 471                                  | 141       | 462                                 | 22        | 460        | 6         | 100 |
| 51               | 133  | 294    | 0.45 | 0.16115                              | 0.00172   | 9.63400                             | 0.08314   | 0.43372    | 0.00345   | 2468                                 | 7         | 2400                                | 8         | 2322       | 16        | 106 |
| 52               | 415  | 357    | 1.16 | 0.06016                              | 0.00308   | 0.57505                             | 0.02901   | 0.06935    | 0.00073   | 609                                  | 91        | 461                                 | 19        | 432        | 4         | 107 |
| 53               | 121  | 610    | 0.20 | 0.07539                              | 0.00087   | 1.90456                             | 0.01831   | 0.18329    | 0.00143   | 1079                                 | 9         | 1083                                | 6         | 1085       | 8         | 100 |
| 54               | 425  | 529    | 0.80 | 0.06235                              | 0.00149   | 0.61362                             | 0.01383   | 0.07140    | 0.00068   | 686                                  | 32        | 486                                 | 9         | 445        | 4         | 109 |
| 55               | 80   | 142    | 0.57 | 0.16348                              | 0.00182   | 10.97714                            | 0.10131   | 0.48716    | 0.00399   | 2532                                 | 7         | 2521                                | 9         | 2558       | 17        | 99  |
| 56               | 230  | 213    | 1.08 | 0.10225                              | 0.00128   | 4.12274                             | 0.04449   | 0.29254    | 0.00241   | 1665                                 | 9         | 1659                                | 9         | 1654       | 12        | 101 |
| 57               | 65   | 120    | 0.54 | 0.05989                              | 0.00187   | 0.61971                             | 0.01853   | 0.07508    | 0.00081   | 600                                  | 46        | 490                                 | 12        | 467        | 5         | 105 |
| 58               | 73   | 82     | 0.89 | 0.06256                              | 0.00258   | 0.70013                             | 0.02789   | 0.08120    | 0.00107   | 693                                  | 62        | 539                                 | 17        | 503        | 6         | 107 |
| 59               | 117  | 103    | 1.14 | 0.06139                              | 0.00205   | 0.64513                             | 0.02072   | 0.07624    | 0.00086   | 653                                  | 49        | 505                                 | 13        | 474        | 5         | 107 |
| 60 <sup>a)</sup> | 1202 | 1464   | 0.82 | 0.07853                              | 0.00444   | 0.55377                             | 0.03076   | 0.05114    | 0.00052   | 1160                                 | 115       | 447                                 | 20        | 322        | 3         | 139 |
| 61               | 95   | 115    | 0.83 | 0.13942                              | 0.00175   | 7.73343                             | 0.08442   | 0.40245    | 0.00347   | 2220                                 | 9         | 2200                                | 10        | 2180       | 16        | 102 |
| 62               | 88   | 132    | 0.67 | 0.05891                              | 0.00172   | 0.65429                             | 0.01832   | 0.08058    | 0.00084   | 564                                  | 43        | 511                                 | 11        | 500        | 5         | 102 |
| 63               | 515  | 648    | 0.79 | 0.05905                              | 0.00145   | 0.57422                             | 0.01343   | 0.07055    | 0.00064   | 569                                  | 35        | 461                                 | 9         | 439        | 4         | 105 |
| 64 <sup>a)</sup> | 564  | 665    | 0.85 | 0.08711                              | 0.00125   | 2.02851                             | 0.02577   | 0.16895    | 0.00142   | 1363                                 | 12        | 1125                                | 9         | 1006       | 8         | 135 |
| 65               | 112  | 183    | 0.61 | 0.07182                              | 0.00132   | 1.62838                             | 0.02777   | 0.16451    | 0.00148   | 981                                  | 20        | 981                                 | 11        | 982        | 8         | 100 |
| 66               | 81   | 62     | 1.30 | 0.08376                              | 0.00172   | 2.39213                             | 0.04599   | 0.20720    | 0.00204   | 1287                                 | 22        | 1240                                | 14        | 1214       | 11        | 106 |
| 67               | 275  | 262    | 1.05 | 0.05670                              | 0.00119   | 0.59598                             | 0.01170   | 0.07627    | 0.00068   | 480                                  | 28        | 475                                 | 7         | 474        | 4         | 100 |
| 68               | 60   | 128    | 0.47 | 0.07402                              | 0.00131   | 1.75937                             | 0.02854   | 0.17246    | 0.00154   | 1042                                 | 19        | 1031                                | 11        | 1026       | 8         | 102 |
| 69               | 123  | 212    | 0.58 | 0.15476                              | 0.00232   | 9.16584                             | 0.11315   | 0.42956    | 0.00366   | 2399                                 | 26        | 2355                                | 11        | 2304       | 16        | 104 |
| 70               | 654  | 976    | 0.67 | 0.07421                              | 0.00139   | 1.52998                             | 0.02684   | 0.14958    | 0.00124   | 1047                                 | 22        | 942                                 | 11        | 899        | 7         | 105 |
| 71               | 31   | 61     | 0.52 | 0.08864                              | 0.00223   | 2.68105                             | 0.06438   | 0.21945    | 0.00249   | 1396                                 | 29        | 1323                                | 18        | 1279       | 13        | 109 |
| 72 <sup>a)</sup> | 2998 | 1736   | 1.73 | 0.13253                              | 0.00625   | 0.86441                             | 0.03932   | 0.04730    | 0.00058   | 2132                                 | 85        | 633                                 | 21        | 298        | 4         | 212 |
| 73               | 209  | 225    | 0.93 | 0.10158                              | 0.00123   | 4.23871                             | 0.04380   | 0.30278    | 0.00247   | 1653                                 | 9         | 1682                                | 8         | 1705       | 12        | 97  |
| 74               | 94   | 384    | 0.25 | 0.07381                              | 0.00095   | 1.80244                             | 0.02004   | 0.17718    | 0.00143   | 1036                                 | 11        | 1046                                | 7         | 1052       | 8         | 98  |
| 75               | 141  | 194    | 0.73 | 0.08351                              | 0.00120   | 2.78844                             | 0.03581   | 0.24228    | 0.00206   | 1281                                 | 13        | 1352                                | 10        | 1399       | 11        | 92  |
| 76               | 164  | 177    | 0.93 | 0.05768                              | 0.00150   | 0.58364                             | 0.01448   | 0.07342    | 0.00072   | 518                                  | 37        | 467                                 | 9         | 457        | 4         | 102 |
| 77               | 302  | 289    | 1.05 | 0.07674                              | 0.00103   | 2.05747                             | 0.02424   | 0.19455    | 0.00159   | 1114                                 | 12        | 1135                                | 8         | 1146       | 9         | 97  |
| 78               | 208  | 169    | 1.23 | 0.05942                              | 0.00269   | 0.77788                             | 0.03432   | 0.09500    | 0.00118   | 583                                  | 74        | 584                                 | 20        | 585        | 7         | 100 |

| (续表 | S1) |
|-----|-----|

| 测点                | 元素含量 | e(ppm) | 元素比值 | 同位素比值                                |           |                                     | 比值        |            |           |                                      |           | 年龄(Ma)                              | )         |            |           | 谐和度 |
|-------------------|------|--------|------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|-----|
| 编号                | Th   | U      | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | (%) |
| 79                | 483  | 406    | 1.19 | 0.06065                              | 0.00116   | 0.63209                             | 0.01119   | 0.07562    | 0.00066   | 627                                  | 23        | 497                                 | 7         | 470        | 4         | 106 |
| 80                | 109  | 155    | 0.71 | 0.10142                              | 0.00155   | 4.07656                             | 0.05647   | 0.29168    | 0.00263   | 1650                                 | 13        | 1650                                | 11        | 1650       | 13        | 100 |
| 81                | 157  | 278    | 0.56 | 0.05923                              | 0.00164   | 0.60745                             | 0.01609   | 0.07442    | 0.00076   | 576                                  | 40        | 482                                 | 10        | 463        | 5         | 104 |
| 82                | 688  | 626    | 1.10 | 0.05898                              | 0.00232   | 0.59314                             | 0.02284   | 0.07297    | 0.00069   | 566                                  | 67        | 473                                 | 15        | 454        | 4         | 104 |
| 83                | 163  | 256    | 0.64 | 0.14683                              | 0.00190   | 7.78867                             | 0.08955   | 0.38491    | 0.00343   | 2309                                 | 9         | 2207                                | 10        | 2099       | 16        | 110 |
| 84                | 144  | 224    | 0.64 | 0.05638                              | 0.00184   | 0.55577                             | 0.01733   | 0.07149    | 0.00067   | 467                                  | 74        | 449                                 | 11        | 445        | 4         | 101 |
| 85                | 92   | 205    | 0.45 | 0.16693                              | 0.00254   | 10.06473                            | 0.12432   | 0.43729    | 0.00390   | 2527                                 | 26        | 2441                                | 11        | 2338       | 17        | 108 |
| 86                | 318  | 529    | 0.60 | 0.05832                              | 0.00271   | 0.56649                             | 0.02581   | 0.07048    | 0.00080   | 542                                  | 80        | 456                                 | 17        | 439        | 5         | 104 |
| 87 <sup>a)</sup>  | 638  | 674    | 0.95 | 0.07402                              | 0.00389   | 0.69140                             | 0.03553   | 0.06774    | 0.00076   | 1042                                 | 109       | 534                                 | 21        | 423        | 5         | 126 |
| 88                | 46   | 39     | 1.18 | 0.16410                              | 0.00243   | 10.80015                            | 0.14833   | 0.47751    | 0.00484   | 2498                                 | 11        | 2506                                | 13        | 2516       | 21        | 99  |
| 89                | 82   | 161    | 0.51 | 0.05646                              | 0.00188   | 0.56579                             | 0.01826   | 0.07271    | 0.00074   | 471                                  | 53        | 455                                 | 12        | 452        | 4         | 101 |
| 90                | 193  | 172    | 1.13 | 0.05930                              | 0.00265   | 0.58602                             | 0.02554   | 0.07170    | 0.00086   | 578                                  | 74        | 468                                 | 16        | 446        | 5         | 105 |
| 91                | 290  | 244    | 1.19 | 0.16109                              | 0.00165   | 10.79226                            | 0.08927   | 0.48605    | 0.00386   | 2467                                 | 6         | 2505                                | 8         | 2554       | 17        | 97  |
| 92                | 382  | 396    | 0.96 | 0.05898                              | 0.00123   | 0.58271                             | 0.01142   | 0.07167    | 0.00064   | 566                                  | 27        | 466                                 | 7         | 446        | 4         | 104 |
| 93                | 186  | 145    | 1.28 | 0.05843                              | 0.00191   | 0.56577                             | 0.01776   | 0.07025    | 0.00077   | 546                                  | 49        | 455                                 | 12        | 438        | 5         | 104 |
| 94                | 390  | 554    | 0.70 | 0.06297                              | 0.00157   | 0.62658                             | 0.01483   | 0.07218    | 0.00068   | 707                                  | 34        | 494                                 | 9         | 449        | 4         | 110 |
| 95                | 190  | 277    | 0.68 | 0.05777                              | 0.00141   | 0.57723                             | 0.01333   | 0.07249    | 0.00069   | 521                                  | 34        | 463                                 | 9         | 451        | 4         | 103 |
| 96                | 134  | 295    | 0.46 | 0.05564                              | 0.00191   | 0.55034                             | 0.01814   | 0.07174    | 0.00070   | 438                                  | 78        | 445                                 | 12        | 447        | 4         | 100 |
| 97 <sup>a)</sup>  | 981  | 1424   | 0.69 | 0.11499                              | 0.00188   | 1.25764                             | 0.01773   | 0.07932    | 0.00066   | 1880                                 | 30        | 827                                 | 8         | 492        | 4         | 168 |
| 98                | 120  | 132    | 0.91 | 0.15676                              | 0.00187   | 9.86374                             | 0.10196   | 0.45646    | 0.00394   | 2421                                 | 8         | 2422                                | 10        | 2424       | 17        | 100 |
| 99                | 360  | 664    | 0.54 | 0.15811                              | 0.00155   | 10.14146                            | 0.07785   | 0.46529    | 0.00359   | 2436                                 | 6         | 2448                                | 7         | 2463       | 16        | 99  |
| 100               | 182  | 141    | 1.29 | 0.05913                              | 0.00182   | 0.57478                             | 0.01696   | 0.07051    | 0.00075   | 572                                  | 46        | 461                                 | 11        | 439        | 5         | 105 |
| 101               | 395  | 485    | 0.81 | 0.05856                              | 0.00098   | 0.55074                             | 0.00840   | 0.06822    | 0.00057   | 551                                  | 19        | 445                                 | 6         | 425        | 3         | 105 |
| 102               | 98   | 255    | 0.38 | 0.05940                              | 0.00224   | 0.74077                             | 0.02731   | 0.09046    | 0.00088   | 582                                  | 63        | 563                                 | 16        | 558        | 5         | 101 |
| 103               | 92   | 125    | 0.74 | 0.06239                              | 0.00284   | 0.60230                             | 0.02660   | 0.07002    | 0.00096   | 688                                  | 71        | 479                                 | 17        | 436        | 6         | 110 |
| 104               | 256  | 218    | 1.18 | 0.05455                              | 0.00116   | 0.52634                             | 0.01048   | 0.06999    | 0.00062   | 394                                  | 29        | 429                                 | 7         | 436        | 4         | 98  |
| 105               | 227  | 242    | 0.94 | 0.07520                              | 0.00181   | 1.34635                             | 0.03064   | 0.12987    | 0.00133   | 1074                                 | 29        | 866                                 | 13        | 787        | 8         | 110 |
| 106               | 771  | 728    | 1.06 | 0.05951                              | 0.00130   | 0.55505                             | 0.01157   | 0.06765    | 0.00055   | 586                                  | 31        | 448                                 | 8         | 422        | 3         | 106 |
| 107               | 78   | 190    | 0.41 | 0.08523                              | 0.00124   | 2.59285                             | 0.03367   | 0.22067    | 0.00188   | 1321                                 | 13        | 1299                                | 10        | 1285       | 10        | 103 |
| 108               | 232  | 210    | 1.11 | 0.05671                              | 0.00128   | 0.54452                             | 0.01162   | 0.06964    | 0.00064   | 480                                  | 31        | 441                                 | 8         | 434        | 4         | 102 |
| 109 <sup>a)</sup> | 848  | 1684   | 0.50 | 0.10799                              | 0.00252   | 1.64009                             | 0.03529   | 0.11015    | 0.00100   | 1766                                 | 44        | 986                                 | 14        | 674        | 6         | 146 |
| 110               | 120  | 142    | 0.85 | 0.05606                              | 0.00142   | 0.54262                             | 0.01306   | 0.07021    | 0.00067   | 455                                  | 36        | 440                                 | 9         | 437        | 4         | 101 |
| 111               | 228  | 497    | 0.46 | 0.05956                              | 0.00095   | 0.60026                             | 0.00868   | 0.07310    | 0.00060   | 588                                  | 18        | 477                                 | 6         | 455        | 4         | 105 |
| 112               | 194  | 252    | 0.77 | 0.05990                              | 0.00162   | 0.56621                             | 0.01458   | 0.06856    | 0.00069   | 600                                  | 38        | 456                                 | 9         | 427        | 4         | 107 |
| 113               | 71   | 83     | 0.85 | 0.06692                              | 0.00173   | 1.19030                             | 0.02937   | 0.12900    | 0.00132   | 835                                  | 34        | 796                                 | 14        | 782        | 8         | 102 |
| 114               | 829  | 624    | 1.33 | 0.06005                              | 0.00288   | 0.58326                             | 0.02759   | 0.07044    | 0.00065   | 605                                  | 87        | 467                                 | 18        | 439        | 4         | 106 |
| 115               | 87   | 258    | 0.34 | 0.11654                              | 0.00249   | 5.21950                             | 0.09942   | 0.32483    | 0.00315   | 1904                                 | 39        | 1856                                | 16        | 1813       | 15        | 105 |
| 116 <sup>a)</sup> | 2334 | 1584   | 1.47 | 0.13018                              | 0.00431   | 0.96749                             | 0.03041   | 0.05390    | 0.00056   | 2100                                 | 60        | 687                                 | 16        | 338        | 3         | 203 |
| 117               | 160  | 260    | 0.61 | 0.06077                              | 0.00409   | 0.57308                             | 0.03816   | 0.06839    | 0.00082   | 631                                  | 124       | 460                                 | 25        | 426        | 5         | 108 |

(续表 S1)

| 测点                | 元素含  | 量(ppm) | 元素比值 |                                      |           | 同位素                                 | 比值        |            |           |                                      |           | 年龄(Ma)                              | )         |            |           | 谐和度 |
|-------------------|------|--------|------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|--------------------------------------|-----------|-------------------------------------|-----------|------------|-----------|-----|
| 编号                | Th   | U      | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | <sup>207</sup> Pb/ <sup>206</sup> Pb | $1\sigma$ | <sup>207</sup> Pb/ <sup>235</sup> U | $1\sigma$ | 206Pb/238U | $1\sigma$ | (%) |
| 118 <sup>a)</sup> | 1851 | 1840   | 1.01 | 0.26021                              | 0.00264   | 11.79089                            | 0.09429   | 0.32862    | 0.00259   | 3248                                 | 6         | 2588                                | 7         | 1832       | 13        | 141 |
| 119 <sup>a)</sup> | 447  | 530    | 0.84 | 0.16276                              | 0.00165   | 8.96043                             | 0.07210   | 0.39926    | 0.00310   | 2485                                 | 6         | 2334                                | 7         | 2166       | 14        | 115 |
| 120               | 122  | 188    | 0.65 | 0.05783                              | 0.00167   | 0.66650                             | 0.01800   | 0.08357    | 0.00074   | 523                                  | 44        | 519                                 | 11        | 517        | 4         | 100 |
| 121               | 205  | 449    | 0.46 | 0.07498                              | 0.00095   | 1.82394                             | 0.01724   | 0.17641    | 0.00108   | 1068                                 | 25        | 1054                                | 6         | 1047       | 6         | 101 |
| 122 <sup>a)</sup> | 703  | 732    | 0.96 | 0.09431                              | 0.00103   | 0.88513                             | 0.00820   | 0.06807    | 0.00040   | 1514                                 | 21        | 644                                 | 4         | 425        | 2         | 152 |
| 123               | 67   | 132    | 0.51 | 0.05881                              | 0.00142   | 0.64958                             | 0.01439   | 0.08010    | 0.00063   | 560                                  | 34        | 508                                 | 9         | 497        | 4         | 98  |
| 124               | 42   | 114    | 0.37 | 0.07566                              | 0.00128   | 1.89739                             | 0.02758   | 0.18187    | 0.00129   | 1086                                 | 18        | 1080                                | 10        | 1077       | 7         | 100 |
| 125               | 155  | 265    | 0.58 | 0.18898                              | 0.00161   | 12.54532                            | 0.07958   | 0.48146    | 0.00273   | 2733                                 | 14        | 2646                                | 6         | 2534       | 12        | 104 |
| 126               | 200  | 375    | 0.53 | 0.05887                              | 0.00123   | 0.60291                             | 0.01135   | 0.07428    | 0.00054   | 835                                  | 45        | 479                                 | 7         | 462        | 4         | 96  |
| 127               | 105  | 181    | 0.58 | 0.18050                              | 0.00215   | 12.67319                            | 0.10942   | 0.50919    | 0.00343   | 2657                                 | 7         | 2656                                | 8         | 2653       | 15        | 100 |
| 128               | 95   | 308    | 0.31 | 0.15416                              | 0.00384   | 9.53248                             | 0.22893   | 0.44843    | 0.00619   | 2393                                 | 23        | 2391                                | 22        | 2388       | 28        | 100 |
| 129               | 224  | 462    | 0.48 | 0.23891                              | 0.00257   | 20.42811                            | 0.14196   | 0.62011    | 0.00386   | 3113                                 | 5         | 3112                                | 7         | 3110       | 15        | 100 |
| 130               | 110  | 100    | 1.10 | 0.32758                              | 0.00374   | 33.86259                            | 0.27663   | 0.74966    | 0.00537   | 3606                                 | 6         | 3606                                | 8         | 3606       | 20        | 100 |
| 131               | 12   | 37     | 0.34 | 0.30414                              | 0.00374   | 29.19289                            | 0.27609   | 0.69611    | 0.00548   | 3491                                 | 7         | 3460                                | 9         | 3406       | 21        | 102 |
| 132               | 134  | 199    | 0.67 | 0.15485                              | 0.00174   | 10.03890                            | 0.07591   | 0.47016    | 0.00292   | 2400                                 | 6         | 2438                                | 7         | 2484       | 13        | 98  |
| 133               | 22   | 897    | 0.02 | 0.07073                              | 0.00098   | 1.45519                             | 0.01597   | 0.14920    | 0.00094   | 950                                  | 13        | 912                                 | 7         | 896        | 5         | 98  |
| 134               | 104  | 461    | 0.23 | 0.07284                              | 0.00122   | 1.70007                             | 0.02435   | 0.16926    | 0.00114   | 1010                                 | 18        | 1009                                | 9         | 1008       | 6         | 100 |
| 135               | 132  | 302    | 0.44 | 0.15976                              | 0.00171   | 10.54255                            | 0.07187   | 0.47857    | 0.00286   | 2453                                 | 5         | 2484                                | 6         | 2521       | 12        | 99  |
| 136               | 49   | 822    | 0.06 | 0.19061                              | 0.01077   | 13.67491                            | 0.81706   | 0.52030    | 0.01932   | 2747                                 | 52        | 2727                                | 57        | 2700       | 82        | 101 |
| 137               | 111  | 171    | 0.65 | 0.08234                              | 0.00313   | 2.35788                             | 0.08590   | 0.20768    | 0.00281   | 1254                                 | 50        | 1230                                | 26        | 1216       | 15        | 101 |
| 138               | 59   | 284    | 0.21 | 0.43660                              | 0.00477   | 53.35828                            | 0.40365   | 0.88634    | 0.00621   | 4040                                 | 5         | 4057                                | 8         | 4091       | 21        | 99  |
| 139               | 328  | 272    | 1.20 | 0.07334                              | 0.00103   | 1.84776                             | 0.02062   | 0.18273    | 0.00117   | 1023                                 | 13        | 1063                                | 7         | 1082       | 6         | 98  |
| 140               | 115  | 168    | 0.69 | 0.16067                              | 0.00225   | 10.34825                            | 0.11731   | 0.46710    | 0.00359   | 2463                                 | 10        | 2466                                | 10        | 2471       | 16        | 100 |
| 141               | 45   | 76     | 0.59 | 0.13419                              | 0.00818   | 6.77089                             | 0.40558   | 0.36595    | 0.01051   | 2154                                 | 65        | 2082                                | 53        | 2010       | 50        | 104 |
| 142               | 138  | 174    | 0.80 | 0.05646                              | 0.00133   | 0.62640                             | 0.01356   | 0.08046    | 0.00062   | 471                                  | 34        | 494                                 | 8         | 499        | 4         | 101 |
| 143               | 184  | 355    | 0.52 | 0.06945                              | 0.00097   | 1.58320                             | 0.01763   | 0.16533    | 0.00105   | 912                                  | 13        | 964                                 | 7         | 986        | 6         | 98  |
| 144 <sup>a)</sup> | 154  | 624    | 0.25 | 0.09412                              | 0.00110   | 1.68565                             | 0.01408   | 0.12989    | 0.00105   | 1511                                 | 22        | 1003                                | 5         | 787        | 6         | 127 |
| 145               | 20   | 160    | 0.12 | 0.06053                              | 0.00141   | 0.71544                             | 0.01524   | 0.08572    | 0.00067   | 623                                  | 32        | 548                                 | 9         | 530        | 4         | 97  |
| 146               | 148  | 217    | 0.68 | 0.16749                              | 0.00239   | 10.37326                            | 0.11000   | 0.44918    | 0.00428   | 2533                                 | 24        | 2469                                | 10        | 2392       | 19        | 103 |
| 147               | 138  | 149    | 0.92 | 0.15992                              | 0.00210   | 10.22350                            | 0.10522   | 0.46366    | 0.00336   | 2455                                 | 9         | 2455                                | 10        | 2456       | 15        | 100 |
| 148               | 57   | 65     | 0.88 | 0.16082                              | 0.00251   | 10.31866                            | 0.13777   | 0.46533    | 0.00399   | 2464                                 | 12        | 2464                                | 12        | 2463       | 18        | 100 |
| 149               | 85   | 192    | 0.44 | 0.07273                              | 0.00196   | 1.70493                             | 0.04295   | 0.17002    | 0.00162   | 1006                                 | 36        | 1010                                | 16        | 1012       | 9         | 100 |
| 150               | 72   | 484    | 0.15 | 0.07648                              | 0.00110   | 1.96790                             | 0.02277   | 0.18662    | 0.00122   | 1108                                 | 13        | 1105                                | 8         | 1103       | 7         | 100 |
| 151               | 159  | 327    | 0.49 | 0.16049                              | 0.00208   | 10.30074                            | 0.10390   | 0.46548    | 0.00334   | 2461                                 | 8         | 2462                                | 9         | 2464       | 15        | 100 |
| 152               | 77   | 846    | 0.09 | 0.14533                              | 0.00266   | 8.59043                             | 0.14190   | 0.42870    | 0.00415   | 2292                                 | 16        | 2296                                | 15        | 2300       | 19        | 100 |
| 153               | 306  | 764    | 0.40 | 0.08474                              | 0.00265   | 2.61642                             | 0.07769   | 0.22393    | 0.00258   | 1310                                 | 40        | 1305                                | 22        | 1303       | 14        | 100 |
| 154               | 121  | 206    | 0.59 | 0.07282                              | 0.00138   | 1.71574                             | 0.02887   | 0.17088    | 0.00128   | 1009                                 | 22        | 1014                                | 11        | 1017       | 7         | 100 |

a) 表示为本次统计分析未被采用的数据

| 测点编号 | 年龄(Ma) | <sup>176</sup> Yb/ <sup>177</sup> Hf | <sup>176</sup> Lu/ <sup>177</sup> Hf | <sup>176</sup> Hf/ <sup>177</sup> Hf | $2\sigma$ | $^{176}{\rm Hf}/^{177}{\rm Hf_i}$ | $\mathcal{E}_{\mathrm{Hf}}\left(0 ight)$ | $\mathcal{E}_{\mathrm{Hf}}\left(t ight)$ | $T_{\rm DM1}({ m Ma})$ | $T_{\rm DM2}({ m Ma})$ | $f_{ m Lu/Hf}$ |
|------|--------|--------------------------------------|--------------------------------------|--------------------------------------|-----------|-----------------------------------|------------------------------------------|------------------------------------------|------------------------|------------------------|----------------|
| 01   | 463    | 0.016290                             | 0.000644                             | 0.282522                             | 0.000010  | 0.282516                          | -8.8                                     | 1.2                                      | 1023                   | 1366                   | -0.98          |
| 05   | 439    | 0.011286                             | 0.000460                             | 0.282239                             | 0.000011  | 0.282235                          | -18.8                                    | -9.3                                     | 1409                   | 2011                   | -0.99          |
| 11   | 447    | 0.021350                             | 0.000937                             | 0.282320                             | 0.000010  | 0.282312                          | -16.0                                    | -6.4                                     | 1313                   | 1834                   | -0.97          |
| 13   | 960    | 0.019839                             | 0.000770                             | 0.282304                             | 0.000012  | 0.282290                          | -16.6                                    | 4.2                                      | 1330                   | 1555                   | -0.98          |
| 14   | 448    | 0.051446                             | 0.001988                             | 0.282524                             | 0.000012  | 0.282507                          | -8.8                                     | 0.5                                      | 1057                   | 1396                   | -0.94          |
| 15   | 430    | 0.035498                             | 0.001325                             | 0.282535                             | 0.000012  | 0.282524                          | -8.4                                     | 0.7                                      | 1023                   | 1370                   | -0.96          |
| 16   | 452    | 0.010976                             | 0.000412                             | 0.282436                             | 0.000010  | 0.282433                          | -11.9                                    | -2.1                                     | 1136                   | 1562                   | -0.99          |
| 18   | 442    | 0.014175                             | 0.000697                             | 0.282425                             | 0.000014  | 0.282419                          | -12.3                                    | -2.7                                     | 1159                   | 1598                   | -0.98          |
| 19   | 1846   | 0.011751                             | 0.000420                             | 0.281642                             | 0.000010  | 0.281627                          | -40.0                                    | 0.7                                      | 2221                   | 2455                   | -0.99          |
| 20   | 2375   | 0.019902                             | 0.000748                             | 0.281104                             | 0.000018  | 0.281070                          | -59.0                                    | -7.0                                     | 2969                   | 3331                   | -0.98          |
| 24   | 1137   | 0.025021                             | 0.000967                             | 0.282219                             | 0.000012  | 0.282198                          | -19.6                                    | 4.9                                      | 1455                   | 1646                   | -0.97          |
| 25   | 450    | 0.012537                             | 0.000487                             | 0.282444                             | 0.000010  | 0.282440                          | -11.6                                    | -1.8                                     | 1127                   | 1546                   | -0.99          |
| 27   | 446    | 0.011233                             | 0.000529                             | 0.282543                             | 0.000012  | 0.282539                          | -8.1                                     | 1.6                                      | 991                    | 1328                   | -0.98          |
| 30   | 1084   | 0.060137                             | 0.002272                             | 0.282247                             | 0.000018  | 0.282201                          | -18.6                                    | 3.8                                      | 1467                   | 1675                   | -0.93          |
| 32   | 4043   | 0.018943                             | 0.000758                             | 0.280084                             | 0.000012  | 0.280025                          | -95.1                                    | -5.2                                     | 4326                   | 4497                   | -0.98          |
| 33   | 1075   | 0.028497                             | 0.001054                             | 0.282003                             | 0.000013  | 0.281982                          | -27.2                                    | -4.2                                     | 1759                   | 2167                   | -0.97          |
| 34   | 452    | 0.015606                             | 0.000700                             | 0.282398                             | 0.000015  | 0.282392                          | -13.2                                    | -3.5                                     | 1197                   | 1652                   | -0.98          |
| 39   | 960    | 0.037159                             | 0.001303                             | 0.281721                             | 0.000028  | 0.281697                          | -37.2                                    | -16.8                                    | 2163                   | 2868                   | -0.96          |
| 40   | 890    | 0.018719                             | 0.000697                             | 0.281941                             | 0.000012  | 0.281929                          | -29.4                                    | -10.1                                    | 1828                   | 2401                   | -0.98          |
| 41   | 448    | 0.016600                             | 0.000592                             | 0.282697                             | 0.000018  | 0.282692                          | -2.7                                     | 7.0                                      | 778                    | 981                    | -0.98          |
| 43   | 459    | 0.015262                             | 0.000630                             | 0.282787                             | 0.000010  | 0.282782                          | 0.5                                      | 10.5                                     | 653                    | 771                    | -0.98          |
| 44   | 2530   | 0.022147                             | 0.000802                             | 0.281093                             | 0.000014  | 0.281054                          | -59.4                                    | -4.0                                     | 2988                   | 3266                   | -0.98          |
| 45   | 1902   | 0.034392                             | 0.001280                             | 0.281737                             | 0.000012  | 0.281691                          | -36.6                                    | 4.2                                      | 2140                   | 2279                   | -0.96          |
| 51   | 2468   | 0.009154                             | 0.000402                             | 0.281210                             | 0.000010  | 0.281191                          | -55.2                                    | -0.5                                     | 2801                   | 3009                   | -0.99          |
| 52   | 432    | 0.027166                             | 0.001061                             | 0.282302                             | 0.000014  | 0.282293                          | -16.6                                    | -7.4                                     | 1343                   | 1886                   | -0.97          |
| 53   | 1079   | 0.020877                             | 0.000834                             | 0.282300                             | 0.000010  | 0.282283                          | -16.7                                    | 6.6                                      | 1338                   | 1494                   | -0.97          |
| 55   | 2492   | 0.004332                             | 0.000168                             | 0.281106                             | 0.000010  | 0.281098                          | -58.9                                    | -3.3                                     | 2922                   | 3195                   | -0.99          |
| 56   | 1665   | 0.024861                             | 0.001125                             | 0.281917                             | 0.000012  | 0.281882                          | -30.2                                    | 5.6                                      | 1882                   | 2011                   | -0.97          |
| 58   | 503    | 0.025402                             | 0.001003                             | 0.282280                             | 0.000011  | 0.282271                          | -17.4                                    | -6.7                                     | 1372                   | 1891                   | -0.97          |

表 S2 阿尔曼泰蛇绿混杂带中长石杂砂岩碎屑锆石 LA-MC-ICPMS Lu-Hf 同位素分析结果

| 测点编号 | 年龄(Ma) | <sup>176</sup> Yb/ <sup>177</sup> Hf | <sup>176</sup> Lu/ <sup>177</sup> Hf | <sup>176</sup> Hf/ <sup>177</sup> Hf | $2\sigma$ | $^{176}{\rm Hf}/^{177}{\rm Hf_i}$ | $\mathcal{E}_{\mathrm{Hf}}(0)$ | $\mathcal{E}_{\mathrm{Hf}}\left(t ight)$ | $T_{\rm DM1}({ m Ma})$ | $T_{\rm DM2}({ m Ma})$ | $f_{ m Lu/Hf}$ |
|------|--------|--------------------------------------|--------------------------------------|--------------------------------------|-----------|-----------------------------------|--------------------------------|------------------------------------------|------------------------|------------------------|----------------|
| 59   | 474    | 0.013981                             | 0.000574                             | 0.282777                             | 0.000010  | 0.282772                          | 0.2                            | 10.4                                     | 666                    | 784                    | -0.98          |
| 66   | 2220   | 0.004843                             | 0.000191                             | 0.281105                             | 0.000008  | 0.281097                          | -59.0                          | -9.6                                     | 2926                   | 3372                   | -0.99          |
| 67   | 475    | 0.021502                             | 0.000871                             | 0.282450                             | 0.000017  | 0.282442                          | -11.4                          | -1.2                                     | 1130                   | 1525                   | -0.97          |
| 68   | 1042   | 0.016679                             | 0.000642                             | 0.282163                             | 0.000012  | 0.282150                          | -21.5                          | 1.1                                      | 1520                   | 1814                   | -0.98          |
| 69   | 2399   | 0.012587                             | 0.000490                             | 0.281176                             | 0.000010  | 0.281154                          | -56.4                          | -3.5                                     | 2853                   | 3134                   | -0.99          |
| 74   | 1036   | 0.021580                             | 0.000819                             | 0.282292                             | 0.000012  | 0.282276                          | -17.0                          | 5.4                                      | 1348                   | 1538                   | -0.98          |
| 76   | 457    | 0.013186                             | 0.000566                             | 0.282797                             | 0.000012  | 0.282792                          | 0.9                            | 10.8                                     | 638                    | 749                    | -0.98          |
| 77   | 1146   | 0.039358                             | 0.001468                             | 0.282305                             | 0.000012  | 0.282273                          | -16.5                          | 7.8                                      | 1353                   | 1473                   | -0.96          |
| 78   | 585    | 0.029492                             | 0.001086                             | 0.282156                             | 0.000012  | 0.282144                          | -21.8                          | -9.3                                     | 1548                   | 2120                   | -0.97          |
| 79   | 470    | 0.015309                             | 0.000640                             | 0.282461                             | 0.000010  | 0.282455                          | -11.0                          | -0.9                                     | 1108                   | 1499                   | -0.98          |
| 83   | 2309   | 0.009402                             | 0.000391                             | 0.281181                             | 0.000010  | 0.281164                          | -56.3                          | -5.2                                     | 2839                   | 3170                   | -0.99          |
| 84   | 445    | 0.011363                             | 0.000422                             | 0.282278                             | 0.000012  | 0.282274                          | -17.5                          | -7.8                                     | 1354                   | 1920                   | -0.99          |
| 85   | 2527   | 0.018452                             | 0.000702                             | 0.281062                             | 0.000012  | 0.281028                          | -60.5                          | -5.0                                     | 3022                   | 3324                   | -0.98          |
| 92   | 446    | 0.020796                             | 0.000834                             | 0.282632                             | 0.000014  | 0.282625                          | -5.0                           | 4.6                                      | 874                    | 1133                   | -0.97          |
| 92   | 446    | 0.012574                             | 0.000531                             | 0.282382                             | 0.000010  | 0.282378                          | -13.8                          | -4.1                                     | 1214                   | 1689                   | -0.98          |
| 95   | 451    | 0.011542                             | 0.000528                             | 0.282791                             | 0.000009  | 0.282787                          | 0.7                            | 10.5                                     | 645                    | 765                    | -0.98          |
| 98   | 2421   | 0.015720                             | 0.000580                             | 0.280999                             | 0.000008  | 0.280972                          | -62.7                          | -9.4                                     | 3097                   | 3513                   | -0.98          |
| 100  | 439    | 0.029437                             | 0.001221                             | 0.282444                             | 0.000011  | 0.282434                          | -11.6                          | -2.3                                     | 1149                   | 1567                   | -0.96          |
| 110  | 437    | 0.017607                             | 0.000798                             | 0.282516                             | 0.000016  | 0.282509                          | -9.1                           | 0.3                                      | 1035                   | 1399                   | -0.98          |
| 112  | 427    | 0.014330                             | 0.000498                             | 0.282850                             | 0.000009  | 0.282846                          | 2.8                            | 12.0                                     | 562                    | 646                    | -0.99          |
| 133  | 950    | 0.016500                             | 0.000667                             | 0.282365                             | 0.000010  | 0.282353                          | -14.4                          | 6.2                                      | 1242                   | 1420                   | -0.98          |
| 137  | 1254   | 0.023008                             | 0.000823                             | 0.281911                             | 0.000010  | 0.281892                          | -30.4                          | -3.3                                     | 1875                   | 2252                   | -0.98          |
| 142  | 499    | 0.024117                             | 0.000957                             | 0.282817                             | 0.000014  | 0.282808                          | 1.6                            | 12.3                                     | 616                    | 686                    | -0.97          |
| 143  | 986    | 0.016912                             | 0.000617                             | 0.282087                             | 0.000010  | 0.282076                          | -24.2                          | -2.8                                     | 1624                   | 2016                   | -0.98          |
| 152  | 2292   | 0.014986                             | 0.000542                             | 0.281201                             | 0.000010  | 0.281177                          | -55.6                          | -5.1                                     | 2823                   | 3151                   | -0.98          |
| 153  | 2453   | 0.016301                             | 0.000627                             | 0.281146                             | 0.000012  | 0.281117                          | -57.5                          | -3.5                                     | 2903                   | 3180                   | -0.98          |