第 33 卷第 12 期	环	境	科	学	学	报	Vol. 33, No. 12
2013 年 12 月	Act	a Scie	entiae	Circu	ımsta	ntiae	Dec. , 2013

刘峰,刘锐平,刘会娟,等.2013. 铁锰复合氧化物同时吸附锑镉性能研究[J]. 环境科学学报,33(12):3189-3196 Liu F, Liu R P, Liu H J, *et al.* 2013. The adsorptive behaviors of Fe-Mn binary oxides towards antimony and cadmium [J]. Acta Scientiae Circumstantiae,33(12):3189-3196

铁锰复合氧化物同时吸附锑镉性能研究

刘峰1,2,刘锐平1,*,刘会娟1,曲久辉1

1. 中国科学院生态环境研究中心 环境水质学国家重点实验室,北京 100085

收稿日期:2013-03-28 修回日期:2013-05-06 录用日期:2013-05-24

摘要:以五价锑(Sb(V))和镉(Cd²⁺)为对象,考察了二者单独存在和共存体系下铁锰复合氧化物(FMBO)对其吸附性能,探讨了Sb(V)(或Cd²⁺)的吸附对Cd²⁺(或Sb(V))吸附的影响.研究发现,单独存在体系下Sb(V)和Cd²⁺的吸附常数K_F分别为0.48和1.13L·mg⁻¹,而共存体系下则分别提高至1.88和1.51L·mg⁻¹;Elovich动力学模型可较好地描述共存条件下Cd²⁺与Sb(V)在FMBO表面的吸附,表明该体系的吸附为多层吸附且为非均相扩散过程;吸附48h后Sb(V)和Cd²⁺的最大吸附量分别达到0.32和1.43mmol·g⁻¹;Sb(V)在偏酸性而Cd²⁺在偏碱性 pH范围具有较好的吸附效果.Sb(V)(或Cd²⁺)通过改变FMBO表面ζ电位和反应平衡 pH等机制影响Cd²⁺(或Sb(V))的吸附.此外,XPS和吸附后水相铁锰浓度结果显示,Cd²⁺可能与FMBO体相中Mn²⁺进行晶格置换并促进Mn²⁺的溶出,进而促进了Sb(V)的吸附.**关键词**:铁锰复合氧化物;五价锑;二价镉;吸附;相互影响

文章编号:0253-2468(2013)12-3189-08 中图分类号:X703.1 文献标识码:A

The adsorptive behaviors of Fe-Mn binary oxides towards antimony and cadmium

LIU Feng^{1,2}, LIU Ruiping^{1,*}, LIU Huijuan¹, QU Jiuhui¹

- 1. State Key Laboratory of Environment Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
- 2. University of Chinese Academy of Sciences, Beijing 100049

Received 28 March 2013; received in revised form 6 May 2013; accepted 24 May 2013

Abstract: The adsorption behaviors of Fe-Mn binary oxides (FMBO) towards antimony (Sb(V)) and cadmium (Cd^{2+}) in single and co-existed systems were investigated, and the mutual effects between Sb(V) and Cd^{2+} were analyzed. Results indicated that the K_F constants of Sb(V) and Cd^{2+} in Freundlich isotherm were 0.48 and 1.13 L·mg⁻¹ in single system, and increased significantly to 1.88 and 1.51 L·mg⁻¹ in the co-existed system. The Elovich dynamic model can well describe the adsorption of Cd^{2+} and Sb(V) on FMBO in the co-existed system, indicating the multi-layer adsorption with heterogeneous diffusion. After 48 h, the maximum adsorption capacities towards Sb(V) and Cd^{2+} were 0.32 and 1.43 mmol·g⁻¹, respectively. The adsorption of Sb(V) was favored at acidic pH range. By contrast, Cd^{2+} adsorption was favored at alkaline condition. After the adsorption of Cd^{2+} (Sb(V)), the ζ -potential of FMBO and equilibrium pH changed, which affected the adsorption of the Cd^{2+} (Sb(V)). The concentrations of Fe and Mn increased significantly in the presence of Cd^{2+} . Accordingly, the elevated ratio of Fe to Mn was confirmed by the XPS analysis. It was concluded that Cd^{2+} facilitated the dissolution of Mn^{2+} from FMBO and therefore increased the adsorption of Sb(V).

Keywords: Fe-Mn binary oxide; antimony (Sb(V)); cadmium (Cd^{2+}) ; adsorption; mutual effects

锑(Sb)广泛应用于塑料催化剂、阻燃剂和半导体生产等领域.我国锑矿探明储量居世界首位,锑

开采量占全世界 84.0% (Filella *et al.*, 2002; He *et al.*, 2012). 锑矿的大量开发与应用使得我国广东、湖南等地区存在较为严重的锑污染, 矿区尾矿库以及周边土壤、农田、地表水、地下水、沉积物等

^{2.} 中国科学院大学,北京 100049

基金项目:国家高新技术研究发展计划项目(No. 2012AA062604)

Supported by the National High Technology Research and Development Program of China (No. 2012AA062604)

作者简介:刘峰(1987—),女,E-mail:liufeng412@126.com; *通讯作者(责任作者),E-mail: liuruiping@rcees.ac.cn

Biography: LIU Feng(1987-), female, E-mail; liufeng412@126.com; * Corresponding author, E-mail; liuruiping@rcees.ac.cn

均可检测出不同浓度的锑(Mok et al., 1990;吴丰 昌等,2008;李航彬等,2011;何孟常等,2002).锑具 有急慢性毒性和致癌性,持续接触可破坏心脏及肝 脏功能,吸入高含量的锑会导致呕吐、头痛、呼吸困 难等锑中毒症状(何孟常等,2004;宁增平等, 2007).更为严重的是,锑常与砷(As)、镉(Cd)等重 金属共存并可能进一步加大生态与健康风险.为了 控制锑通过饮用水途径暴露对人体健康的影响,我 国饮用水标准(GB5749)规定锑的浓度限值为 0.005 mg·L⁻¹.

国内外报道的除锑方法主要有混凝(Leyva et al., 2001; Fan et al., 2013; Leng et al., 2012) 吸附(Pawlak et al., 2006; 2010)、膜分离(Kang et al., 2003; Guo et al., 2009; Wu et al., 2010) 等. 研究显示,三价锑(Sb(III))较五价锑(Sb(V))在更 广谱的 pH 范围内更容易被混凝去除(Kang et al., 2003; Wu et al., 2010; Guo et al., 2009),这可能 是由于在较宽 pH 范围(如 pH = 2.0~10.0)内三价 锑主要以中性分子(Sb(OH)₃、SbO(OH)和 HSbO₂) 形式存在,而五价锑的存在形式则是带负电的 Sb(OH)⁻₆或SbO⁻₃. 徐伟(2011)研究发现,相对于 Sb(V),铁锰复合氧化物(FMBO)通过"氧化-吸附" 机制而对 Sb(III)表现出更强的去除性能;pH 升高 不利于 FMBO 对 Sb(III)(Sb(OH)⁺)和 Sb(V) (Sb(OH);))的吸附.另一方面,研究显示 FMBO 对 Cd²⁺、Pb²⁺、Cu²⁺等阳离子型重金属也具有良好的 吸附性能,且随着 pH 升高吸附能力增强,这主要是 由于 FMBO 在高 pH 条件下表面电位下降,从而促 进阳离子型重金属的吸附.表面电位可能是影响 FMBO 吸附重金属的重要因素. 当体系同时存在阴 离子型 Sb(V)和 Cd²⁺等阳离子型重金属时,可能由 于某一组分吸附在 FMBO 表面对其表面性质产生 影响,进而对另一组分的吸附产生影响,但国内外 对此研究较少.

本研究选择阴离子型 Sb(V)和阳离子型 Cd²⁺, 研究单独存在和共存体系下 FMBO 对 Sb(V)和 Cd²⁺的吸附性能,进而探讨某一组分与 FMBO 表面 的相互作用对另一组分吸附的影响.本研究对于多 种重金属共存体系下的重金属去除与污染控制具 有较好的应用价值.

2 实验材料与方法(Materials and methods)

2.1 实验试剂

所用化学试剂均为分析纯,采用 KSb(OH)。和

 $Cd(NO_3)_2$ 分别配制 Sb(V)和 Cd²⁺的储备液.Fe、 Mn、Cd²⁺和 Sb(V)的标准溶液购自国家标准物质研 究中心.实验用水为去离子水,背景电解质采用 KNO₃(0.01 mol·L⁻¹),pH 分别采用浓度为 5.0、 1.0、0.1 和 0.01 mol·L⁻¹HNO₃和 KOH 溶液进行精 确调节.

2.2 实验方法

2.2.1 FMBO 的制备 FMBO 采用文献所述的氧 化还原/共沉淀法方法进行制备(Zhang et al., 2007):分别配制 KMnO₄和 FeSO₄·7H₂O 溶液, KMnO₄与 FeSO₄的摩尔比为1:3;在 KMnO₄溶液中 加入适量 NaOH 溶液(物质的量为 KMnO₄的5倍), 并在快速搅拌下加入 FeSO₄溶液,加毕后继续搅拌 30~60 min,在室温下静置陈化4 h;倾出上清液,加 等量去离子水并在搅拌条件下用 0.2 mol·L⁻¹ HNO₃中和至中性,固液分离后再反复用去离子水洗 涤固体物,直至没有 SO₄⁻检出;过滤,室温干燥,研 磨至粉状,再于 105 ℃下烘干4 h. 制得的粉状吸附 材料保存在干燥器中备用.

2.2.2 静态吸附实验 吸附等温线实验:实验在一 系列 50 mL 离心管内进行,分别加入一定浓度的 Sb(V)或/和 Cd²⁺溶液,FMBO 投量为 400 mg·L⁻¹, 调节 pH 值至 5.0;将离心管置于恒温空气浴旋转摇 床中振荡(30 r·min⁻¹),反应温度为(20 ±1)℃,反 应过程中不时调节 pH 使其在 5.0 ±0.3 范围内;反 应 24 h 后取样.

吸附动力学:在1000 mL 烧杯中加入 Sb(V)与 Cd²⁺储备液使其初始浓度分别为 0.5 和 0.2 mmol·L⁻¹,FMBO 投量为 200 mg·L⁻¹,调节溶液 pH 值至5并不时调节 pH 使其在5.0±0.3范围内;在 磁力搅拌器搅拌条件下反应并在不同时间间隔 取样.

pH影响实验:往一系列 50 mL 离心管加入 Sb(V)与 Cd²⁺储备液使其初始浓度分别为 0.5 和 0.2 mmol·L⁻¹,FMBO 投量为 200 mg·L⁻¹;分别调节 溶液 pH 至 2、3、4、5、6、7、8、9 和 10;在恒温空气浴 旋转摇床中振荡(30 r·min⁻¹),反应温度为(20 ± 1)℃,反应过程中不调节 pH 值;反应 24 h 后取样.

Sb(V)和 Cd²⁺吸附顺序影响的实验:先引入 Cd²⁺(或 Sb(V))溶液,反应 4 h 后再引入 Sb(V) (或 Cd²⁺)或者二者同时引入;取一系列 50 mL 离心 管,Cd²⁺初始浓度均为 0.32 mmol·L⁻¹,Sb(V)的初 始浓度分别为 0、0.06、0.12、0.25、0.58、1.17、1.45 和 2.92 mmol·L⁻¹,分别按照不同投加顺序进行实验,实验进行 24 h 后取样.

2.3 分析仪器与方法

pH 值测定采用 Orion420A 型便携式 pH 计, ζ 电位采用 Zetasizer 2000 电位测定仪(Malvern Co., 英国)进行测定;样品测定前未经前处理.

Sb(V)、Cd²⁺、Fe²⁺和 Mn²⁺等浓度采用 Perkin Elmer Elan 5000 型电感耦合等离子体发射光谱仪 (ICP – OES)进行分析,样品测定前采用 0.45 μm 微孔滤膜过滤.

固体样品表面元素比例与价态分析采用 ESCA-Lab-220i-XL 型 X 射线光电子能谱仪(VG 公司,英 国),样品测定前经去离子水洗涤多次并冷冻干燥, 采用所制备的铁锰复合氧化物进行空白吸附实验 后的样品冷冻干燥后进行空白对照.

3 结果与讨论(Results and discussion)

3.1 FMBO 对 Cd²⁺与 Sb(V) 的吸附行为

3.1.1 吸附等温线 图 1 中给出了锑单独存在以 及与镉共存时在铁锰复合氧化物上的吸附等温线, 并且分别采用 Langmuir 和 Freundlich 吸附等温线模 型对其进行拟合,结果如表 1 所示. 参考徐伟之前研 究(徐伟,2011)发现, Langmuir 模型可以较好地描 述 FMBO 对 Cd^{2+} 吸附过程 ($R^2 = 0.91$), 但对于 Cd^{2+} 与 Sb(V) 共存时 FMBO 对 Cd^{2+} 的吸附过程, 采用 Freundlich 模型拟合具有较高的 R^2 值 ($R^2 =$ 0.99); Freundlich 模型对于 Sb(V)单独存在和 Sb(V)与 Cd²⁺ 共存体系均可较好地描述 Sb(V)的 吸附过程. Langmuir 模型拟合 Cd²⁺ 吸附在 FMBO 表面等温线最佳,这表明 Cd²⁺ 吸附在 FMBO 表面接近 单层吸附,而当体系中存在 Sb(V)时则可能表现为 多层吸附.此外,表1 还显示,Sb(V)和 Cd²⁺ 共存时 能够相互促进彼此在 FMBO 表面上的吸附.吸附常 数 $K_{\rm F}$ 值为与吸附能力正相关的常数, $K_{\rm F}$ 值增大表明 其吸附容量提高.表1表明,Sb(V)与 Cd²⁺ 单独存 在时,采用 Freundlich 模型拟合获得的 $K_{\rm F}$ 值分别为 1.13 和 0.48 L·mg⁻¹,而 Sb(V)和 Cd²⁺ 共存体系下 Sb(V)与 Cd²⁺ 对应的 $K_{\rm F}$ 值分别提高至 1.51 和 1.88 L·mg⁻¹.

图 1 Sb(V)单独存在以及与 Cd²⁺ 共存时分别在 FMBO 表面 上的吸附等温线

Fig. 1 Adsorption isotherms for Sb(V) by FMBO with and without the coexistence of Cd²⁺

表1	Sb(V) 单独存在或与 Cd ²⁺	⁺共存时分别在 FMBO	表面上的吸附等温线拟合结果
----	-------------------------------	--------------	---------------

fable 1	Langmuir and Freundlic	h isotherm constants for Sb(V) a	nd Cd ²⁺ adsorption	on FMBO in single and	co-existed systems

			Langmuir 模型		Freundlich 模型		
物质	存在条件	$q_{ m m}$	$K_{\rm L}$	D ²	$K_{\rm F}$	n	\mathbf{p}^2
		$/(\text{mmol} \cdot \text{g}^{-1})$	$/(L \cdot mg^{-1})$	Λ	$/(L \cdot mg^{-1})$	п	Λ
Cd^{2} +	单独存在	0.21	13.61	0.91	0.48	2.70	0.80
	与锑共存	0.02	0.03	0.27	1.88	6.86	0.99
Sb(V)	单独存在	1.02	0.03	0.85	1.13	4.06	0.96
	与镉共存	1.31	0.01	0.88	1.51	5.24	0.95

3.1.2 吸附动力学 图 2 给出了 Cd²⁺ 与 Sb(V)共 存条件下 FMBO 对二者的吸附动力学过程.可以看 出,随着反应时间的延长,Cd²⁺ 与Sb(V)的吸附量均 表现出先快速增加之后缓慢增加的规律.在反应 5 h 时,Cd²⁺ 与 Sb(V)的吸附量分别为 0.2 和 1.1 mmol·g⁻¹,而反应 48 h 时,二者的最终吸附量分别 为 0.32 和 1.43 mmol·g⁻¹,前 5 h 的吸附量占最终 吸附量的 62.5% 和 76.9%. 对比而言, FMBO 对 Sb(V)的吸附能力远高于 Cd²⁺,反应终止时 Sb(V) 的最大吸附容量约为后者的 4.47 倍. 进一步分别采 用假一级动力学模型、Elovich 模型和假二级动力学 模型对上述吸附过程进行拟合,结果如表 2 所示.可 以看出, Elovich 模型可以最好地描述 Cd²⁺与Sb(V) 共存条件下 FMBO 对二者的吸附动力学过程, *R*²值 分别达到 0.99 和 0.99. Elovich 模型表示 Cd²⁺与 Sb(V)共存时二者吸附在 FMBO 表面为非均相扩散;上述结果表明 Cd²⁺与 Sb(V)共存时的吸附为多 层吸附,且二者吸附到 FMBO 表面是非均相扩散 过程.

徐伟研究了 Cd^{2+} 与 Sb(V)单独存在条件下 FMBO 对二者的吸附动力学过程(徐伟,2011),发现 反应 24 h之后,FMBO 对 Sb(V)与 Cd^{2+} 的最大吸附 容量为 1.12 和 0.21 mmol·g⁻¹.图 2 显示,Sb(V)与 Cd^{2+} 共存体系下反应平衡时二者最大吸附容量分 别达到 1.43 和 0.32 mmol·g⁻¹,证实二者能够促进 彼此在 FMBO 表面的吸附.此外,单独存在体系下 假二级动力学可以很好地描述 Sb(V)和 Cd^{2+} 在 FMBO 表面的吸附过程, R^2 分别为 0.93 和 0.97.对 比而言,Sb(V)与 Cd^{2+} 共存时 Elovich 模型可以较 好地拟合二者的吸附过程,并说明二者共存时表现 为非均相扩散吸附过程,并说明二者共存时的吸附 机理与单独存在时有显著区别.

- 图 2 Cd²⁺与Sb(V)共存时 FMBO 对 Sb(V)和 Cd²⁺的吸附 动力学(FMBO 投量 200 mg·L⁻¹,初始浓度 Sb(V),Cd²⁺ 分别为0.5和0.2 mmol·L⁻¹;pH = 5.0±0.3,48 h,实验 重复次数 n = 4)
- Fig. 2 Kinetics of Sb(V) and Cd²⁺ removal by FMBO(FMBO 200 mg·L⁻¹, initial Sb(V), Cd²⁺ were 0.5, 0.2 mmol·L⁻¹, respectively, pH = 5.0 ± 0.3, 48 h, experiment repeated times n = 4)

表 2 单独存在或共存时 Sb(V)与 Cd²⁺在 FMBO 表面吸附动力学拟合结果

Table 2 The kinetic model parameters for the adsorption of Sb(V) and Cd ²⁺ on FMBO in single and co-existed systems										
		假一级动力学模型			Elovich		假二级动力学模型			
ちナタル	运油地	$q = q_{\text{max}}$	$q = q_{\max} - \exp(\ln(q_{\max}) - kt)$		$y = a + k \ln t$		$q = q_{\max} - q_{\max} / (kq_{\max}t + 1)$			
行任示门	门来彻	$q_{ m max}$	k	D ²	k	D ²	$q_{\rm max}$	k	D ²	
		$/(\text{mmol} \cdot \text{g}^{-1})$	$/(\operatorname{mmol} \cdot g^{-1} \cdot h^{-1})$	Λ	$/(\operatorname{mmol} \boldsymbol{\cdot} g^{-1}\boldsymbol{\cdot} h^{-1})$	Λ	$/(mmol \cdot g^{-1})$	$) / (\text{mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1})$	Λ	
单独存在	Cd^{2} +	0.89	0.46	0.95	0.15	0.93	0.21	0.65	0.97	
	$\mathrm{Sb}(\mathrm{V})$	1.04	3.40	0.73	0.13	0.88	1.12	4.50	0.93	
锑镉共存	Cd^{2} +	0.26	0.82	0.56	0.05	0.99	0.29	2.85	0.06	
	Sb(V)	1.07	3.46	0.72	0.15	0.99	0.19	8.86	0.06	

图 3 不同 pH条件下 FMBO 对 Sb(V)和 Cd²⁺ 的平衡吸附量 变化及 FMBO 的 pH-Zeta 曲线(FMBO 投量 200 mg·L⁻¹,初始浓度 Sb(V), Cd²⁺ 分别为 0.5 和 0.2 mmol·L⁻¹,反应时间 24 h)

Fig. 3 Adsorption differences at different pHs for FMBO towards Sb (V) and Cd²⁺ (FMBO: 200 mg·L⁻¹, initial concentration for Sb(V) and Cd²⁺ was 0.5 and 0.2 mmol·L⁻¹, 24 h) 3.1.3 不同 pH 条件下 FMBO 对 Cd 与 Sb(V) 吸附 性能 对于 Cd 与 Sb(V) 共存体系, FMBO 在不同 pH 范围内(pH = 2 ~ 10) 对 Cd²⁺ 与 Sb(V) 的吸附容 量以及二者吸附容量之和($q_{Sb(V)} + q_{Cd^{2+}}$) 如图 3 所 示,其中反应时间为 24 h. 需要指出的是,在 pH 为 2 ~ 10 范围内, Sb(V) 均以 Sb(OH)⁶ 的形式, 而 Cd²⁺在 pH 为 2 ~ 9 范围内以水合 Cd²⁺的形式存在, 当 pH > 9.18 时则开始出现 Cd(OH)². 图 3 表明, FMBO 对 Cd²⁺ 的吸附容量 $q_{Cd^{2+}}$ 随着 pH 的升高而增 大,而对 Sb(V) 的吸附容量 $q_{Sb(V)}$ 则相应地表现出逐 渐降低的变化规律. $q_{Sb(V)} + q_{Cd^{2+}}$ 在不同 pH 值范围 内有不同变化趋势:在 pH <5 的强酸性 pH 范围内, $q_{Sb(V)} + q_{Cd^{2+}}$ 随着 pH 降低而升高,并在 pH = 2 时表 现出最高值 2.11 mmol·g⁻¹;在弱酸性到碱性 pH 范 围内(pH 为 5 ~ 10), $q_{Sb(V)} + q_{Cd^{2+}}$ 在 pH = 8 时具有 最高值 1.94 mmol·g⁻¹. 上述结果表明,对于 Cd^{2+} 与 Sb(V)共存的体系,以 Cd^{2+} 和 Sb(V)的浓度比例为 依据,通过调整优化体系 pH 值可以获得同时去除 Cd^{2+} 与 Sb(V)的效果.

Zhang 等的研究表明, FMBO 表面 ζ 电位随着 pH 值的升高而降低, 表面零电荷点(pH_{ZPC})为5.9 左右(Zhang *et al.*, 2007), 这与图 3 结果是一致的. 当 pH < pH_{ZPC}时, FMBO 表面会发生质子化反应而 表现出正电性(式(1)), 而当 pH > pH_{ZPC}时则发生 脱质子反应而表现出电负性(式(2)).

$$\equiv \text{Fe-Mn-OH} + \text{H}_2 \text{O} \rightarrow \equiv \text{Fe-Mn-OH}_2^+ + \text{OH}^-$$

$$(\text{pH} < \text{pH}_{\text{ZPC}}) \qquad (1)$$

$$\equiv \text{Fe-Mn-OH} \rightarrow \equiv \text{Fe-Mn-O}^- + \text{H}^+$$

$$(\text{pH} > \text{pH}_{\text{ZPC}}) \qquad (2)$$

正电性表面有利于电负性 Sb(V) 与 FMBO 表面的接触与吸附,而电负性表面则利于正电性 Cd²⁺ 的吸附.图 3 结果显示,静电作用可能是决定 Cd²⁺ 与 Sb(V) 在 FMBO 表面吸附的重要因素.进一步地,Cd²⁺可与 FMBO 表面羟基发生表面络合作用而吸附在 FMBO 表面(式(3)、(4)),而电负性 Sb(V)则可能通过与 FMBO 表面羟基反应生成表面络合物得以去除(式(5)、(6)).

 $\equiv \text{Fe-Mn-OH} + \text{Cd}^{2+} \rightarrow \equiv \text{Fe-Mn-O-Cd}^{+} + \text{H}^{+} (3)$ 2[= Fe-Mn-OH] + Cd²⁺ \rightarrow = Fe-Mn-O-Cd-O-Mn-Fe = + 2H⁺ (4)

 \equiv Fe-Mn-OH + Sb(OH) $_6^- \rightarrow$

 $\equiv \text{Fe-Mn-O-Sb-(OH)}_{5}^{-} + \text{H}_{2}\text{O}$ (5)

 $2[=Fe-Mn-OH] + Sb(OH)_6 \rightarrow$

 $\equiv \text{Fe-Mn-O-Sb}(\text{OH})_{4}^{-} \text{-O-Mn-Fe} \equiv + 2\text{H}_{2}\text{O}$ (6)

3.1.4 Cd^{2+} 与 Sb(V)吸附顺序对 FMBO 吸附 Cd²⁺ 和 Sb(V)性能的影响 为了进一步探讨 FMBO 对 Cd²⁺与 Sb(V)的吸附行为,图 4a 对比了单独吸附 Sb(V)、先吸附 Cd²⁺再吸附 Sb(V)、先吸附 Sb(V) 再吸附 Cd²⁺、同时吸附 Cd²⁺与 Sb(V)等4 种条件 下 FMBO 对 Sb(V)的吸附行为.可以看出,无论何 时引入 Cd²⁺,Cd²⁺的存在均促进了 FMBO 对 Sb(V) 的吸附,吸附容量均高于单独吸附 Sb(V)时的情 况;先引入 Cd²⁺抑或后引入 Cd²⁺对 Sb(V)吸附容 量的影响不大,但均低于同时吸附 Cd²⁺与 Sb(V)时 的吸附容量.图 4b 进一步对比了上述不同体系下 FMBO 对 Cd²⁺的吸附行为,同样发现同时吸附 Cd²⁺ 与 Sb(V)条件下 FMBO 对 Cd²⁺ 表现出最大的吸附 容量.上述结果显示,Cd²⁺或 Sb(V)吸附在 FMBO 表面之后,将对后续另一组分的吸附产生一定影 响,而二者同时存在时最有利于二者的吸附.

上述现象一方面可能是由于 Cd2+ 与 Sb(V) 在 水相发生相互作用,从而导致其在 FMBO 表面的吸 附表现出与各自单独存在时完全不同的吸附特性, 另一方面可能由于 Cd²⁺ 或 Sb(V) 的存在导致 FMBO 表面特性发生变化,进而对后续 Sb(V)或 Cd²⁺的吸附产生不同的影响.为此,采用 Minteg 软 件计算了在本实验的最大浓度条件下(Cd²⁺与 Sb(V)浓度为2 mmol·L⁻¹), Cd²⁺与 Sb(V)并不会 发生络合或共沉淀等相互作用.因此,关于图3中 Cd²⁺与Sb(V)吸附对另一组分吸附的影响,可能主 要是由于其吸附在 FMBO 表面导致其表面性质发 生变化所致.事实上.Peter 等研究了正磷酸盐、硫酸 盐、氟化物等对氢氧化铝吸附水中腐殖酸的影响, 发现正磷酸根使得氢氧化铝等电点从9降低至8, 导致在高 pH 条件下氢氧化铝表面能够吸附更多的 负电荷,进而提高其对有机物的去除能力(Peter et al., 2005).

图 4 不同吸附顺序时 Sb(V)与 Cd²⁺ 在 FMBO 上的吸附量 情况

Fig. 4 $$\rm Adsorption \ of \ Sb(V)$ and $\rm Cd^{2+}$ on FMBO with different adsorption orders $$$

3.2 FMBO 对 Cd²⁺ 与 Sb(V) 的吸附机理探讨

上述结果显示,FMBO 对 Cd^{2+} 和 Sb(V)均具有 良好的去除效果,且 Cd^{2+} 的存在可有效促进 FMBO 对 Sb(V)的吸附.对于 Cd^{2+} 或 Sb(V)单独存在的体 系,FMBO 对 Cd^{2+} 和 Sb(V)的吸附可通过静电吸 引、表面络合等作用得以实现(式(3)~式(6)).对 于 Cd^{2+} 和 Sb(V)共存体系,FMBO 对二者吸附机理 可能更为复杂.

Zhang 等(2007) 研究发现, FMBO 表面 ζ 电位

随着 pH 升高而降低,且零电荷点(pH_{ZPC})在 pH5.9 附近.本研究进一步发现,在 pH 为 6.0~6.5 范围 内,引入 0.25 和 2.5 mmol·L⁻¹ Cd²⁺可使得 FMBO 表面 pH_{ZPC} 由 5.9 分别提高到 7.0 mV 和 8.6 mV(图 5).这主要由于 Cd²⁺与 FMBO 表面羟基生成外核络 合物(式(3)~式(4)),提高 FMBO 表面 ζ 电位,进 而促进 Sb(V)在 FMBO 表面的吸附.另一方面,研 究还发现,FMBO 吸附 0.5 mmol·L⁻¹ Sb(V)平衡后 表面 ζ 电位降低至 – 22 mV,FMBO 表面电负性增 强,这对于阳离子 Cd²⁺的吸附是有利的.

图 5 FMBO 吸附不同浓度 Cd²⁺前后ζ电位随 pH 的变化 Fig. 5 Variation of ζ potential of FMBO at different pH ranges before and after adsorbing Cd²⁺

另一方面,与 Sb(V)单独存在时比较,Cd²⁺的 引入使得 FMBO 与 Sb(V)反应后的平衡 pH 值升高 程度明显降低.具体而言,初始 Sb(V)浓度范围为 $0 \sim 3.0 \text{ mmol·L}^{-1}$,当初始 pH 值为 5.0 ± 0.1 时, 反应48h之后在最大平衡吸附容量下的平衡 pH值 为7.4;而分别引入0.025、0.25和2.5mmol·L⁻¹ Cd²⁺,相应的平衡 pH值分别为7.2、6.6和6.1(图 6).事实上,式(3)和(4)表明,Cd²⁺与FMBO表面 羟基的置换使得 H⁺浓度升高,pH值下降.随着 Cd²⁺浓度升高和 H⁺释放量增大,平衡 pH值朝着*ζ* 电位升高的方向变化,进而促进 Sb(V)在FMBO表 面的吸附(图3).

另外,FMBO 单独吸附 Sb(V)时,溶液 pH 增加 幅度最大.而图 3 显示, Cd²⁺吸附量随着 pH 升高而 增大,因此,Sb(V)在 FMBO 表面的吸附对 Cd²⁺ 的 吸附是有利的.

图 6 Sb(V) 与不同浓度 Cd²⁺ 共存时在 FMBO 吸附平衡溶液 中的 pH 值

Fig. 6 Equilibrium pH of solution after adsorption on FMBO in the system including Sb(V) and different Cd²⁺ concentrations

表 3 FMBO 吸附 Sb(V)与 Cd ²⁺ 前后水中铁锰浓度以及吸附剂表面元素组
--

Table 3	Table 3 Equilibrium concentrations of Fe and Mn and elemental composition of FMBO surfaces after adsorbing $Sb(V)$ and/or Cd^{2+}									
休衣	水相浓度/($(\mu mol \cdot L^{-1})$		FMBO 表面主要元素质量百分比						
评示	Fe	Mn	Fe	Mn	$R_{ m Fe:Mn}$	\mathbf{Sb}	Cd			
FMBO	0	9.20	22.79%	6.15%	3.71	/	/			
FMBO-Sb	0.37	9.50	24.57%	6.41%	3.83	2.15%	/			
FMBO-Cd	0.41	18.10	22.96%	5.83%	3.94	Ν	0.11%			
FMBO-Cd-Sb	8.01	140.10	20.72%	4.63%	4.48	3.99%	0.74%			

进一步地,本研究还发现 Cd^{2+} 的引入使得 FMBO 表面铁和锰的溶出加大.对于不存在 Cd^{2+} 或 Sb(V)的对照体系,反应 48 h 后水相中 Fe 与 Mn 元 素的平衡浓度分别为 0 和 9.20 μ mol·L⁻¹;当存在 0.2 mmol·L⁻¹ Sb(V)时,Fe 与 Mn 平衡浓度略微增 大至 0.37 和 9.50 μ mol·L⁻¹;引入 0.2 mmol·L⁻¹ Cd^{2+} 使得 Fe 与 Mn 平衡浓度增大至 0.41 和 18.10 μ mol·L⁻¹;进一步对于 Cd^{2+} 与 Sb(V)共存体系,Fe 与 Mn 平衡浓度达到 8.01 和 140.10 μ mol·L⁻¹,为 对照体系的 15 倍以上.因此,Cd²⁺可显著促进 FMBO 中 Mn²⁺的溶出,这可能是由于 Cd²⁺可与 FMBO 表面或体相中 Mn²⁺进行晶格置换所致.事实 上,XPS 分析结果显示,FMBO 表面锰元素的键合能 为 624.5 eV,而锰元素在 MnO、Mn₃O₄、Mn₂O₃和 MnO₂中的键合能分别为 641.0、641.5、641.9 和 642.6 eV(Nesbitt *et al.*, 1998),上述结果暗示,实 2

验所用 FMBO 中的 Mn 元素可能存在一定量的 Mn(Ⅱ), 进一步地, XPS 分析证实 FMBO 表面铁锰 元素比(R_{FeiMn})随着 Cd²⁺的引入而升高, Cd²⁺与 Sb(V)共存体系 R_{Fa:Ma}值高于二者单独存在体系.

R_{FeiMn}增大与表3中锰元素浓度升高是一致的,证实 确实可能有部分 Mn²⁺ 溶出释放至水中. Cd²⁺ 与 FMBO 体相中 Mn²⁺晶格置换的反应如式(7)所示.

$$xMn(V) - OH + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + yMn(\Pi) - OH + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + yMn(\Pi) - OH + yMn(\Pi) - OH + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + yMn(\Pi) - OH + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) + (x + y)Cd(\Pi) \longrightarrow = Fe(\Pi) + (x + y)Sb(V) - OH = Fe(\Pi) + (x + y)Sb(V) - OH + (x + y)Sb(V) - OH = Fe(\Pi) + (x + y)Sb(V) - OH + (x + y)Sb(V) - OH = Fe(\Pi) + (x + y)Sb($$

4 结论(Conclusions)

FMBO对Sb(V)和Cd²⁺均具有良好吸附性能, 且二者共存时 Sb(V) 与 Cd²⁺ 的吸附容量均高于单 独存在下相应的吸附容量:Sb(V)在偏酸性而 Cd²⁺ 在偏碱性 pH 范围具有较好的吸附效果. 一方面, Sb(V)(或 Cd²⁺)的吸附改变了 FMBO 表面 ζ 电位, 从而促进相应 Cd^{2+} (或 Sb(V))的吸附;另一方面, Sb(V)(或 Cd²⁺)的吸附使得平衡 pH 值朝着利于 Cd²⁺(或 Sb(V))吸附的方向变化.进一步地,Cd²⁺ 可能与 FMBO 体相中 Mn²⁺进行晶格置换并促进 Mn^{2+} 的溶出,进而促进了 Sb(V)的吸附. FMBO 在 吸附去除 Sb(V)、Cd²⁺等多种重金属共存的受污染 水具有良好的应用前景.

责任作者简介:刘锐平,博士,中国科学院生态环境研究中 心副研究员.研究方向为水质安全转化原理与方法、饮用水 除砷除氟技术、饮用水消毒副产物生成与控制等,致力于推 动新技术开发与技术成果的工程应用. 主持或参加"863"重 点项目、国家自然科学基金、科技支撑、企业横向等项目多 项.发表研究论文30余篇,参与编写专著2部,申请/获授权 国家及国际发明专利11项.

参考文献(References):

- Fan J X, Wang Y J, Cui X D, et al. 2013. Sorption isotherms and kinetics of Sb(V) on several Chinese soils with different physicochemical properties [J]. Journal of Soils and Sediments, 13(2): 344-353
- Filella M, Belzile N, Chen Y W. 2002. Antimony in the environment: a review focused on natural waters: I. Occurrence[J]. Earth-Science Review, 57: 125-176
- Guo X J, Wu Z J, He M C. 2009. Removal of antimony (V) and antimony (III) from drinking water by coagulation-flocculation-sedimentation (CFS) [J]. Water Research, 43(17): 4327-4335
- 何孟常,季海冰,赵承易,等.2002.锑矿区土壤和植物中重金属污染 初探[J]. 北京师范大学学报(自然科学版).38:417-420
- He M C, Wang X Q, Wu F C, et al. 2012. Antimony pollution in China [J]. Science of the Total Environment,41:421-422
- Kang M, Kamei T, Magarab Y. 2003. Comparing polyaluminum chloride and ferric chloride for antimony removal [J]. Water Research, 37 (17):4171-4179
- Leyva A G, Marrero J, Smichowski P, et al. 2001. Sorption of antimony onto hydroxyapatite [J]. Environmental Science Technology, 35: 3669-3675
- Leng Y Q, Guo W L, Su S N, et al. 2012. Removal of antimony(III) from aqueous solution by graphene as an adsorbent [J]. Chemical Engineering Journal, (15):406-411
- 李航彬,杨志辉,袁平夫,等.2011.湘中锑矿区土壤重金属锑的污染 特征[J].环境科学与技术,34:70-74

- Mok W M, Wal C M. 1990. Distribution and mobilization of arsenic and antimony species in the Coeur D' Alene River, Idaho [J]. Environmental Science Technology, 24:102-108
- Nesbitt H W, Canning G W, Bancroft G M. 1998. XPS study of reductive dissolution of 7Å-birnessite by H₃AsO₃ with constraints on reaction mechanism[J]. Geochimica et Cosmochimica Acta,62:2097-2110
- 宁增平,肖唐付.2007.锑的表生地球化学行为与环境危害效应[J]. 地球与环境,35(2):176-182
- Pawlak Z, Cartwright P S, Adekunle O, et al. 2010. Removal of toxic arsenic and antimony from groundwater Spiro Tunnel Bulkhead in Park City Utah using colloidal iron hydroxide: Comparison with reverse osmosis[J]. Advanced Materials Research, 83:553-562
- Pawlak Z, Zak S, Zablocki L. 2006. Removal of hazardous metals from groundwater by reverse osmosis[J]. Polish Journal of Environmental Studies, 15:579-583
- Peter P, Garyc S. 2005. Adsorption of inorganic and organic ligands onto hydrous aluminum oxide: evaluation of surface charge and the impacts on particle and NOM removal during water treatment [J].

Environmental Science & Technology, 39(17):6429-6434

- 吴丰昌,郑建,潘响亮,等.2008.锑的环境生物地球化学循环与效应 研究展望[J].地球科学进展,23:350-355
- Wu Z J, He M C, Guo X J, et al. 2010. Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis[J]. Separation and Purification Technology, 76:184-190
- 徐伟.2011.铁锰复合氧化物表面砷解吸及锑吸附行为研究[D].北 京:中国科学院生态环境研究中心
- 徐伟,刘锐平,曲久辉,等.2012.铁锰复合氧化物吸附去除五价锑性 能研究[J].环境科学学报.32(2):270-275
- Xu W, Wang H J, Liu R P, et al. 2011. The mechanism of antimony (III) removal and its reactions on the surfaces of Fe-Mn Binary Oxide[J]. Journal of Colloid and Interface Science, 363:320-326
- Zhang G S, Qu J H, Liu H J, et al. 2007. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal [J]. Water Research, 41(9):1921-1928