
Towards Efficient Verifiable SQL Query for
Outsourced Dynamic Databases in Cloud

Jiawei Yuan and Shucheng Yu

University of Arkansas at Little Rock, USA
jxyuan, sxyu1@ualr.edu

Abstract. With the rising trend of outsourcing databases to the cloud,
it is important to allow clients to securely verify that their queries on
the outsourced databases are correctly executed by the cloud. Existing
solutions on this issue either suffer from a high communication cost,
or introduce too much computational cost on the client side. Besides,
so far only four types of SQL queries (i.e., selection query, projection
query, join query and weighted sum query) are supported in existing
solutions. It still remains challenging to design a verifiable SQL query
scheme that introduces affordable storage overhead, communication and
computational cost, and supports more SQL queries used in practice.
This paper investigates this problem and proposes an efficient verifi-
able SQL query scheme for dynamic databases outsourced to the cloud.
Our proposed scheme makes several major progresses: 1) it reduces the
communication complexity (excluding the query results) to a logarith-
mic level (i.e., O(log n), where n is the number of tuples in a table),
while existing schemes all have a linear or quadratic complexity; 2) it
constrains the computational complexity on the client side, in terms of
expensive operations such as exponentiation, to a constant level, which is
of linear level in existing schemes; 3) in addition to the queries supported
by existing schemes, our proposed scheme also supports more practical
query types including polynomial queries of any degrees, variance query
and many other linear queries. Our design exploits techniques such as
Merkle hash tree and constant size polynomial commitment. We shows
the efficiency and scalability of our scheme through extensive numerical
analysis. Based on the Strong Diffie-Hellman assumption, the Bilinear
Strong Diffie-Hellman assumption and the Computational Diffie-Hellman
problem, we show that our scheme is provably secure.

Keywords: Integrity Check, Database Outsourcing, SQL Query, Au-
thenticated Data Structure, Cloud Storage

1 Introduction

Database outsourcing is becoming a trend due to the surge of remote stor-
age techniques such as cloud storage. By outsourcing databases to the cloud,
data owners can enjoy data sharing across geographical boundaries in addi-
tion to other benefits such as cost saving, on-demand self-service, resource elas-

ticity, etc[18]. Commercial cloud infrastructures, including Amazon EC2, Mi-
crosoft Azure, Google Cloud, etc., have become prevalent choices as platforms
for database outsourcing.

Despite the appealing advantages, outsourcing databases to the cloud also
causes security concerns even for non-confidential databases. In particular, clients
need to verify the correct execution of database queries to avoid any deliberate
or inadvertent misbehavior of the cloud. To specify, clients need to verify the in-
tegrity, completeness and freshness of their queries over the outsourced databases
[8]: for any query request, we need to assure that the query is executed by the
cloud on correct data and the returned results have not been modified (integrity);
the results shall include the complete data set (completeness), e.g., if the query
is on range [a, b], the results shall not be on other ranges [a′, b′], where a′ 6= a
and b′ 6= b; and the query must be executed on the database of latest version
considering frequent updates to the database (freshness).

Related Work. To ensure the users’ confidence on the integrity, complete-
ness and freshness of their queries, a series of schemes have been proposed[13, 15,
8, 11, 12, 16, 10, 14, 19] for query verification, which can be roughly categorized
into two branches: the tree-based approaches[13, 8, 10, 14] and the signature-
based ones[15, 11, 12, 16]. In the tree-based approaches, a Merkle hash tree[9]
or its variants[13, 8, 10, 14] are used to assure the integrity of query. In Ref.[8,
10] integrity, completeness and freshness of the query results can be all veri-
fied with simple hash operations. However, their communication complexity is
proportional to the number of tuples and attributes associated with the query
results, which represents a significant overhead in practice, especially for queries
on large ranges. In addition, Ref.[8, 10] only support selection query, projection
query and joint query with pre-defined keyword attributes. The signature-based
approaches[15, 11, 12, 16] utilize the signature aggregation technique[2] and its
variants to aggregate the proof information of the query results. Compared with
the tree-based approaches, signature-based approaches greatly reduce the com-
munication complexity for query verification at the price of more computational
cost, especially for projection queries and joint queries. In the latest signature-
based approach[16], the computational complexity on the client side, in terms of
the number of expensive operations such as exponentiation, is proportional to
the number of tuples and attributes associated with the query results. Moreover,
this approach only supports the same queries as Ref.[8, 10]. To improve the pre-
vious approaches, Zheng et. al.[19] proposed a SQL query integrity check scheme
based on the Merkle hash tree and homomorphic linear tag (HLT). Compared
with previous schemes[8, 16], Ref.[19] supports flexible joint query and weighted
sum query. However, their scheme requires the transmission of authentication
tags, the number of which is proportional to the number of tuples associated
with the query results, and such number can be even larger in their weighted
sum query. Moreover, in Ref.[19] the client has to perform expensive exponentia-
tion operations, the number of which is also proportional to the number of tuples
associated with the result. In practice, such a linear (or quadratic) communica-
tion and/or computational complexity can cause a significant communication

and/or computational overhead especially for queries on large ranges. Moreover,
to better fulfill the requirements of many practical systems, more SQL queries
shall be supported.

Our Scheme. In this paper, we design an efficient verifiable SQL query
scheme for outsourced dynamic databases. By uniquely incorporating our pro-
posed polynomial based authentication tag and the Merkle hash tree[9], our
scheme can efficiently and simultaneously check the integrity, completeness and
freshness of SQL queries in cloud. The communication cost for query verification
is constrained to O(logn), where n is the number of tuples in a table. On the
client side, expensive operations, i.e., exponentiation and pairing, are limited to
a constant number. Moreover, our scheme supports more SQL queries including
polynomial queries of any degree, variance query and many other linear queries,
in addition to the queries supported by existing work. The main idea of our
proposed scheme can be summarized as follows: a database owner first gener-
ates a Merkle hash tree for the database and an authentication tag σi for each
tuple ri, 1 ≤ i ≤ n, in the database. Then, the database, the tags {σi} and the
auxiliary information AU of the Merkle hash tree are outsourced to the cloud
server and root state information StateR of the tree is published. When a client
queries the databases in cloud, the cloud replies with the query result and the
corresponding auxiliary information. The client then checks the completeness
and freshness of the result based on AU and StateR. After that, the client gen-
erates a challenge message and sends it to the cloud for integrity check. Based on
the received message, the cloud server produces the proof information to show
that it actually executed the query correctly and sends the proof to the client.
On receiving the proof information, the client verify the proof with our verifi-
cation algorithm. In our proposed scheme, we tailor a constant size polynomial
commitment technique[7] and allow the cloud server to aggregate all the proof
information into three elements to reduce communication cost. In addition, our
unique design enables the client to offload most computational tasks to the cloud
server to keep the computational cost on the client side minimal. With our pro-
posed scheme any client can perform query verification without the help of the
database owner, who is only responsible for database update after outsourcing.
Extensive analysis shows that our proposed scheme is efficient and scalable. Our
proposed scheme is provably secure based on the Computational Diffie-Hellman
(CDH) problem, the Strong Diffie-Hellman (SDH) assumption and the Bilinear
Strong DiDiffiee-Hellman (BSDH) assumption.

We summarize the main contributions of this paper as below.
– We proposed an efficient verifiable SQL query scheme for outsourced dy-

namic databases in cloud. For the first time, we achieve not only a logarith-
mic communication complexity but also a constant computational cost in
terms of the number of expensive operations, e.g., exponentiation.

– Our proposed scheme allows verification of polynomial queries of any degree,
variance query and many other linear queries, in additional to all the queries
supported by existing schemes.

– Our proposed scheme is provably secure under standard assumptions. Its
performance advantages are validated via extensive numerical analysis.

– Our proposed polynomial based authentication tag can be used as an in-
dependent solution for other related application, such as database auditing,
encrypted key word search, etc.

The rest of this paper is organized as follows: Section 2 describes the models and
assumptions of our scheme. In Section 3, we introduce the technique preliminaries
of this work, which is followed by our scheme description in Section4. In Section
5, we analyze our proposed scheme in terms of security and performance. We
conclude our paper in Section 6.

2 Model and Assumption

2.1 System Model

In this work, we consider a system consists of three major entities:Database Owner,
Cloud Server and Client. The database owner has a relational database with
multiple tables, each of which consists of multiple tuples and multiples attributes.
The owner outsources his databases to the cloud server together with the cor-
responding authentication tags as well as the auxiliary information of Merkle
hash tree, and publishes the root state information of the tree. The client who
shares the database with the owner can perform verifiable SQL query on it with-
out help of the owner. To check the integrity, completeness and freshness of the
query result, the client requests the proper tags and auxiliary information from
the cloud server, and then challenges it with a random message. On receiving
the message, the cloud server generates the proof information and returns it to
the client. Based on the proof information, the client verifies the query results
with the verification algorithm.

2.2 Security Model

We consider the cloud server as untrusted and potentially malicious, which is
consistent with previous schemes[10, 16, 19]. In our model, we need to assure
that our construction is sound and correct. With regard to the soundness, if any
malicious cloud server can generate the proof information and pass the verifica-
tion of our construction, it must execute the query correctly on the right query
range and up-to-date database. For the correctness, we require our construction
to accept any valid proof information produced from all key pairs (PK,SK), all
up-to-date database, all authentication tag σ, all auxiliary information AU and
root state information StateR. W.l.o.g, we define the following security game for
the soundness of our proposed scheme.

Definition 1. Let ∇ = (KeyGen, Setup, Update, Prove,QueryV erify) be a
verifiable SQL query scheme and Adv be a probabilistic polynomial-time adver-
sary. Consider the following security game among an Adv, a trust authority
(TA), a challenger (C).

– TA runs KeyGen(1λ)→ (PK,SK) and sends the public key PK to Adv.

– Adv chooses a database (DTB) and gives it to TA. TA runs Setup(DTB,
SK,PK)→ (σ,AU, StateR) to produce σ, AU and sends them back to Adv.
TA also publishes StateR.

– Adv chooses some data D in DTB and modifies it to D′. Adv sends D′ to
TA. TA runs Update algorithm to generate the updated state information
StateupR with verification and outputs result as URst.

– With regard to DTB, the challenger C sends a query request Qry to Adv.
Adv returns the query result Rst together with the corresponding number of
AU . C then challenges Adv with a random message Chall. Adv responses C
with the proof information Prf generated by running an arbitrary algorithm
instead of the Prove algorithm.

– C checks Prf by runningQueryV erify(Rst, Prf, PK, StateR, Au)→ (V Rst).
– Adv wins the game if and only if it can produce AU,Prf without executing

the Update algorithm and query correctly, but make TA and C output both
URst and V Rst as accept.

We can consider ∇ is sound if any probabilistic polynomial-time adversary Adv
has at most negligible probability to win the above game.

2.3 Assumption

Definition 2. Computational Diffie-Hellman (CDH) Problem[4]

Let a, b
R← Z∗p . Given input as (g, ga, gb), it is computationally hard to calcu-

late the value gab, where g is a generator of a cyclic group G of order p.

Definition 3. t-Strong Diffie-Hellman (t-SDH) Assumption[1]

Let α
R← Z∗p . For any probabilistic polynomial time adversary(Adv), given in-

put as a (t+1)−tuple (g, gα, · · · , gαt) ∈ Gt+1, the probability Prob[Adv(g, gα, · · · ,
gα

t

) = (c, g
1

α+c)] is negligible for any value of c ∈ Z∗p/−α, where G is a cyclic
group of order p and g is the generator of G.

Definition 4. t-Bilinear Strong Diffie-Hellman (t-BSDH) Assumption[5]

Let α
R← Z∗p . For any probabilistic polynomial time adversary(Adv), given

input as a (t + 1) − tuple (g, gα, · · · , gαt) ∈ Gt+1, the probability Prob[Adv

(g, gα, · · · , gαt) = (c, e(g, g)
1

α+c)] is negligible for any value of c ∈ Z∗p/−α,where
G is a multiplicative cyclic group of order p and g is the generator of G.

3 Technique Preliminaries

3.1 Bilinear Map

For a Bilinear Map[3]: e : G × G → GT , where G and GT are multiplicative
cyclic groups of the same prime order p, the following properties hold:

– Bilinear: for any a, b
R← Z∗p and g1, g2 ∈ G, e(ga1 , g

b
2) = e(g1, g2)ab.

– Non-Degenerate: for any g ∈ G, e(g, g) 6= 1.
– Computable: a Bilinear Map e can always be computed efficiently with a

computable algorithm.

3.2 Merkle Hash Tree

Merkle hash tree was first proposed in Ref.[9] to prove that a set of elements has
not been modified. In a Merkle hash tree, each leaf node contains the hash value
of the corresponding data and each non-leaf node contains the hash value of
the concatenation of its children’s values. Specially, for two leaf nodes leaf1 and
leaf2, whose values are hash(data1) and hash(data2), the value of their father
node is hash(hash(data1)||hash(data2)). For verification purpose, the hash value
of the root of a Merkle hash tree is published. To check the integrity of data
associated with a leaf node, a verifier first generates the hash value of the data.
Then, by combining the generated hash value and the siblings of nodes on the
path to the root, the verifier can calculate the value of the root. If the calculated
root hash value is equal to the published value, the checking data are valid;
otherwise, the data has been modified. For more details, please refer to Ref.[9].

3.3 Constant Size Polynomial Commitment

A secure polynomial commitment scheme allows a committer to commit a poly-
nomial with a short string. Based on the algebraic property that polynomials

f(x) ∈ Z[x]: f(x) − f(r) can be perfectly divided by (x − r), where r
R← Z∗p ,

Kate et.al.[7] proposed a polynomial commitment scheme with a constant size
communication cost. In their construction, to verify the correctness of a polyno-
mial evaluation f(r), the committer can aggregate all the proof information into
a single element. Specifically, the construction of the constant size polynomial
commitment scheme [7] can be summarized as follows.

– Setup: Given a security parameter λ and a fixed number s, a trust authority
outputs the public key and private key as:

PK = (G,GT , g, g
α, · · · , gαs−1

), SK = α
R← Z∗p

where G and GT are two multiplicative cyclic groups with the same prime
order p, g is the generator of G and e : G×G→ GT .

– Commit: Given a polynomial fm(x) ∈ Zp[x], wherem = (m0,m1, · · · ,ms−1)
R← Z∗p is the coefficient vector, a committer generates the commitment C =

gfm(α) ∈ G and publishes C.

– CreateWitness: Given a random index r
R← Z∗p , the committer computes

fw(x) ≡ fm(x)−fm(r)
(x−r) using polynomial long division, and denote the coeffi-

cients vector of the resulting quotient polynomial as w = (w0, w1, · · · , ws−1).
Based on the public key PK, the witness ψ can be computed as ψ = gfw(α).

– VerifyEval: Given the witness ψ, a verifier checks whether or not fm(r) is
the evaluation at index r of the polynomial committed by C as:

e(C, g)
?
= e(ψ, gα/gr) · e(g, g)fm(r)

For the detailed analysis on security and correctness of this polynomial commit-
ment scheme, please refer to Ref.[7].

root

B

D C

A

H(E1) H(E2) H(E3) H(E6) H(E7) H(E8)H(E5)H(E4)

Fig. 1. Merkle Hash Tree: the auxiliary information AU for element E3 is: the node
value of Nodes A,B and C.

4 Our Construction

In this section, we first design two building blocks for our efficient verifiable
SQL query scheme on outsourced database: Authenticated outsourced ordered
data set (AORDS) and Polynomial based authentication tag (PAT). Then, we
describe how to construct different type of verifiable SQL query based on these
two blocks.

4.1 Authenticated Outsourced Ordered Data Set

Authenticated Outsourced ordered data set (AORDS) is constructed based on
the Merkle hash tree[9]. Let E be an ordered set of elements and Sign() be a
signature scheme[1], we describe our construction of AORDS as below.

– KeyGen(1λ)→ (PK,SK): Given a selected security parameter λ, the ran-
domized KeyGen algorithm produces the public-private key pairs (PK,SK)
of Sign().

– SetUp(E,SK) → (AU, StateR): Given SK and an ordered data set E =
{E1, E2, · · · , En}, the SetUp algorithm generates a Merkle hash tree. In the
generated tree, each node stores the hash value of one element in E and
the value of each internal node is the hash value of the concatenation of its
children’s values. The state information of the root is StateR = Sign(Root)
and the auxiliary information AU for each leaf node leafi is node values on
paths from leafi to the root and the values of these nodes’ siblings’ as shown
in Fig.1.

– Update(SK,E) → (E′, AU ′, State′R): Modification : To modify an ele-
ment Ei to E′i, the owner sends E′i to the server. The server replaces Ei with
E′i and recomputes the root value and auxiliary information as Root′, AU ′

based on E′i. The owner computes the new root value Root′′ and compares it
with Root′. The owner accepts the update on the server and publishes new
root state information Sign(Root′) if Root′ = Root′′. Insertion : Given an
element Ei, which need to be inserted between Ek and Ek+1, the cloud sets
node for Ek as the farther node of two new leaf nodes leaf ′, leaf ′′, where
leaf ′ = H(Ek), leaf ′′ = H(Ei) and father = H(H(Ek)||H(Ei)). Then the
server recomputes Root′, AU ′ and the owner verifies them same as the step
Modification. Deletion : To delete an element Ei, the cloud replaces the
father node of leafi with its sibling node. Then the cloud and owner check
the update with Root′, AU ′, Root′′ same as Modification.

– QueryVerify(PK,StateR) → (V Rst): Given a range query Qry(a, b) re-
quest, the cloud server gives the query result Rst and corresponding AU to
the client.
Case 1: Rst = {Ec, Ec+1, · · · , Ec+k−1} is not empty, the cloud server sends
AU of nodes Ec−1 and Ec+k to the client. The client recomputes the root
value Root′ based on the AU and Rst. After running signature verification
with PK, the client accepts Rst if Root = Root′.
Case 2: Rst is empty. In this case, there must have a Ec that Ec < a, b <
Ec+1. The cloud server sends AU of Ec and Ec+1 to the client. Same to
Case 1, the client produces Root′. V Rst = accpet if Root = Root′; otherwise
V Rst = reject.

4.2 Polynomial Based Authentication Tag

Construction Description In this section, we propose a polynomial based
authentication tag (PAT), which can be used to verify the integrity of the query
result. We consider a database DTB consisting of n tuples {r1, r2, · · · , rn}, each
of which has s attributes {a0, a1, · · · , as−1}. For an attribute in a tuple, we denote
it as ri.aj . Let e : G×G→ GT and H be the one-way hash function, where G is a
multiplicative cyclic group of prime order p and u, g be two random generators of
G. We define fc(x) as a polynomial with coefficient vector c = (c0, c1, · · · , cs−1)
and describe our PAT construction as follows.

– KeyGen(1λ) → (PK,SK): The database owner chooses a random prime
p (λ bits security) and generates a signing keypair (spk, ssk) using BLS

signature[1]. The owner then chooses two random numbers α, ε
R← Z∗p and

computes v ← gε, κ← gαε as well as {gαj}s−1
j=0. The public and private keys

are

PK = {p, v, κ, spk, u, {gα
j

}s−1
j=0}, SK = {ε, ssk, α}

– Setup(PK,SK) → (σ, τ): The database owner randomly choose a random
table name (index) name ∈ Z∗p . Let τ0 be “name||n”; the table tag τ is τ0
together with a signature on τ0 signed by ssk: τ ← τ0||Sign(τ0). For each
tuple ri, 1 ≤ i ≤ n, its authentication tag is computed as:

σi = (uH(name||i) ·
s−1∏
j=0

g(ri.aj)α
j

)ε = (uH(name||i) · gfβi (α))ε (1)

where βi = {βi,0, βi,1, · · · , βi,s−1} and βi,j = ri.aj .
– QueryVerify Phase1(PK, τ)→ Chall:

The client verifies the signature on τ : if the signature is not valid, it rejects
and halts; otherwise, the client parses τ to recover name, n. W.o.l.g, to check
the integrity of any k query results form {ri.aj , 1 ≤ i ≤ n, 0 ≤ j ≤ s − 1},
the client randomly chooses k numbers vi

R← Z∗p for these tuples and gets
a k−elements set K = {(i, vi)}. The client chooses another random number

q
R← Z∗p and challenges the server with the challenge message Chall = {q,K}.

– Prove(PK,Chall, τ) → (ψ, y, σ): On receiving Chall, the server first com-
putes σ =

∏
(i,vi)∈K σ

vi
i and y = fA(q), whereA = (

∑
(i,vi)∈K vi ∗ (ri.a0), · · · ,∑

(i,vi)∈K vi ∗ (ri.as−1)). Since polynomials f(x) ∈ Z[x] have the algebraic

property that (x− q) perfectly divides the polynomial f(x)− f(q), q
R← Z∗p .

The server divides the polynomial fA(x) − fA(q) with (x − q) and de-
notes the coefficients vector of the resulting quotient polynomial as w =

(w0, w1, · · · , ws−1), i.e., fw(x) ≡ fA(x)−fA(q)
x−q . Then, the server produces

ψ =
∏s−1
j=0(gα

j

)wj = gfw(α) and responds to the client with Prf = {ψ, y, σ}.
– QueryVerify Phase2(PK,Prf)→ V Rst:

On receiving the proof response Prf, the client first computes ηi = uH(name||i)vi ,
(i, vi) ∈ K and η =

∏
(i,vi)∈K ηi. Then, the client parses Prf as {ψ, y, σ} and

checks

e(η, v) · e(ψ, κ · v−q) ?
= e(σ, g) · e(g−y, v) (2)

The QueryV erify algorithm outputs V Rst = accept if Eq.2 holds; other-
wise, V Rst = reject.

Correctness of PAT For the cloud server that correctly executes the query
request on the right data and generates proof information Prf = {ψ, y, σ}, we
analyze the correctness of our proposed PAT as follows.

e(η, v) · e(ψ, κ · v−q) (3)

= e(u, g)
ε(
∑

(i,vi)∈K
H(name||i)vi) · e(gfw(α), gε(α−q))

= e(u, g)
ε(
∑

(i,vi)∈K
H(name||i)vi) · e(g, g)

fA(α)−fA(q)

α−q ·ε(α−q)

= e(u, g)
ε(
∑

(i,vi)∈K
H(name||i)vi) · e(g, g)ε(fA(α)−fA(q))

= e(u
ε(
∑

(i,vi)∈K
H(name||i)vi)

, g) · e(gεfA(α), g) · e(g, g)−εfA(q)

= e(u
ε(
∑

(i,vi)∈K
H(name||i)vi) · gεfA(α), g) · e(g−y, v)

= e(σ, g) · e(g−y, v)

Based on Eq.3, it is easy to verify that our construction of PAT is correct if the
cloud server honestly produces the Prf .

Properties of PAT We first show that our PAT supports homomorphic ad-
dition. Specifically, considering any kattributes, 1 ≤ k ≤ n, in the same position
of different tuples (e.g., {rc.aj , rc+1.aj , · · · , rc+k−1.aj}) and their corresponding
tags, we can calculate the tag for the sum of these k attributes as:

σ =

c+k−1∏
i=c

σi = (u
∑c+k−1

i=c
H(name||i) ·

c+k−1∏
i=c

s−1∏
j=0

g(ri.aj)α
j

)ε (4)

root0 root1
roots-

2

root
s-1

...

...

...

...

...

...

...

...

root

...

H(r0.a0) H(r(n+1).a0) H(r0.a1) H(r(n+1).a1) H(r0.a(s-2)) H(r(n+1).a(s-2)) H(r0.a(s-1)) H(r(n+1).a(s-1))

Fig. 2. Hash Tree for TB.

= (u
∑c+k−1

i=c
H(name||i) ·

s−1∏
j=0

g
∑c+k−1

i=c
(ri.aj)α

j

)ε

= (u
∑c+k−1

i=c
H(name||i) · gf=(α))ε

where = = {
∑c+k−1
i=c βi,0,

∑c+k−1
i=c βi,1, · · · ,

∑c+k−1
i=c βi,s−1}.

4.3 Construction of Efficient Verifiable SQL Query Scheme for
Outsourced Dynamic Database

Considering a table TB consists of n tuples {r1, r2, · · · , rn}, each of which has s
attributes {a0, a1, · · · , as−1}. ri.aj denotes attribute j in tuple i. For simplicity,
TB is ordered by attribute a0 (it can also be ordered by any other attributes).
We set L and U as the lower and upper bounds of the search key attribute a0. Let
e : G×G→ GT and H be the one-way hash function, where G is a multiplicative
cyclic group of prime order p and g, u be two random generators of G. Based on
our two building blocks AORDS and PAT , we describe our efficient verifiable
SQL query scheme as below.

KeyGen(1λ) → (PK,SK): Given a security parameter λ, the database
owner runsAORDS.KeyGen→ (AORDS.PK,AORDS.SK) and PAT.KeyGen
→ (PAT.PK,PAT.SK). Get the public key and private key as:

PK = {p, v, κ, spk, u, {gα
j

}s−1
j=0}, SK = {ε, ssk, α}

where v ← gε, κ← gαε and α, ε
R← Z∗p .

SetUp(PK,SK, TB) → (σ, τ, StateR, AU): Generate two additional tuples
r0 and rn+1 for the table, where r0.a0 = L and rn+1.a0 = U . For each attribute
aj , 0 ≤ j ≤ s−1, we build a Merkle hash tree for it with rootj , and these Merkle
hash trees will be combined as a hash tree TreeT (with root) for TB as shown
in Fig.2. The state information and auxiliary information of TreeT are denoted
as StateR and AU . Run PAT.SetUp to generate authentication tags σi for each
tuple ri, 0 ≤ i ≤ n + 1. Outsource TB, AU and σi to the cloud server. Make
StateR as public information.

Update(PK,SK, TB)→ (TB′, σ′, State′R, AU
′): Modification: Suppose the

database owner modifies the tuple ri to r′i. The owner first generates the au-
thentication tag σ′i for r′i and sends it to the cloud server. Then, the owner
runs AORDS.Update and updates the ri, AU and StateR. Insertion: Suppose

the database owner inserts the tuple ri between rc and rc+1. The owner first
generates the authentication tag σi for ri and outsources it to the cloud server
together with ri. Then, the owner runs AORDS.Update to adds ri and updates
the AU and StateR. Deletion: Suppose the database owner deletes the tuple ri.
The owner runs AORDS.Update and updates AU and StateR.

Since the Prove and QueryV erify algorithms for different types of SQL
queries have some difference, we describe them according to query types.

Selection Query: Suppose a selection query Qry = “select * from TB
where b ≤ a0 ≤ d”. The client first runs AORDS.QueryV erify with the range
query Qry(b, d) to check the freshness and completeness. If the output is reject,
the client aborts. Otherwise, if the query result Rst is empty, the client accepts
the result as null. If Rst consists of k tuples {rt, rt+1, · · · , rt+k−1}, the client
runs PAT.QueryV erify.Phase1 to generate the challenge message Chall =
{q,K} and sends it the cloud server. The cloud server then produces the proof
information Prf = {ψ, y, σ} by running PAT.Prove. On receiving Prf , the
client runs PAT.QueryV erify.Phase2 to verify the integrity of these k tuples.
If the output V Rst is accept, accept Rst as the query result; otherwise, reject.

Projection Query: Suppose a projection query Qry =“select a0, · · · , ak
from TB”, where 1 ≤ k ≤ s − 1. The cloud sends Rst = {ri.a0, · · · , ri.ak}, 1 ≤
i ≤ n to the client. The client first runs AORDS.QueryV erify with the range
query Qry(L,U) to check the freshness and completeness. If the output is reject,
the client aborts. Otherwise the client runs PAT.QueryV erify.Phase1 to gen-
erate the challenge message Chall = {q,K} and sends it the cloud server. The
cloud server then produces the proof information Prf = {ψ, y, σ} by running
PAT.Prove. On receiving Prf , the client runs PAT.QueryV erify. Phase2 to
verify the integrity of Rst. If the output V Rst = accept, accept Rst as the query
result; otherwise, reject.

Join Query: Suppose there are two tables {TB1, TB2} processed same as
TB and a projection query Qry =“select R∗1, R

∗
2 from TB1, TB2, where R1.ad =

R2.at”. The cloud sends Rst = {R∗1, R∗2} to the client. The client first runs
Projection Query algorithm for Qry =“select ad from TB1” and Qry =“select
at from TB2”. If either query outputs reject, the client aborts, otherwise, the
client gets r1i.ad, r2i.at, 1 ≤ i ≤ n. The client then identifies the tuples that
fulfills r1i.ad = r2j .at and gets two sets of index I1, I2, where i ∈ I1, j ∈ I2. Then
client checks whether or not the number of elements in I1 and I2 are equal to the
number of tuples in R∗1 and R∗2 respectively. If not, the client aborts; otherwise,
the client runs PAT.QueryV erify.Phase1 to generate the challenge messages
with Chall1 = {q1,K1}, Chall2 = {q2,K2} and sends them the cloud server for
TB1 and TB2 respectively. The cloud server then produces the proof information
Prf1 = {ψ1, y1, σ1}, P rf2 = {ψ2, y2, σ2} by running PAT.Prove. On receiving
Prf1 and Prf2, the client runs PAT.QueryV erify.Phase2 to verify the integrity
of these tuples. If the output V Rst is accept, accept Rst as the query result;
otherwise, reject.

Weighted SUM Query: Suppose a weighted SUM query Qry =“select
SUM(ci∗at) from TB where b ≤ a0 ≤ d”. The cloud sends Rst =

∑k
i=1 ci∗(ri.at)

to the client, where k is the number of tuples satisfying the query condition and
ci is the weight values. The client runs AORDS.QueryV erify with range query
Qry(b, d) to check the freshness and completeness. If the output is reject, the
client aborts. Otherwise, if the output is empty, the client accepts the result as
null. If the output has k elements, the client runs PAT.QueryV erify.Phase1
to generate the challenge message Chall = {q,K} and sends it the cloud server,
in which the k random values vi in set K is replaced with the k weight values
ci for sum computation. The cloud server then produces the proof information
Prf = {ψ, y, σ} by running PAT.Prove. Note that in both proof information ψ

and the aggregated tag σ, the sum value
∑k
i=1 ci ∗ (ri.at) is embedded (i.e.,in ψ,

it has term g
Atα

t−Atqt
α−q , where At =

∑k
i=1 ci ∗ (ri.at); in σ, it has term (gAtα

t

)ε.
On receiving Prf , the client runs PAT.QueryV erify.Phase2 to verify the in-
tegrity of the sum value. If the output V Rst is accept, accept Rst as the query
result; otherwise, reject.

Polynomial Query: Suppose a polynomial query Qry = “select
∑k
i=1 ci ∗

(ri.at)
x from TB where b ≤ a0 ≤ d”. The cloud sends Rst =

∑k
i=1 ci ∗ (ri.at)

x

to the client, where k is the number of tuples satisfying the query condition.
The client performs same as Weighted SUM Query algorithm to generate
Chall = {q,K} and sends it the cloud server. On receiving the challenge mes-
sage, the cloud first produces the tags for (ri.at)

x as σexp.(x,it) = σit
(ri.at)

x

=

(uH(name||i)·(ri.aj)x · gfBi (α))ε, where Bi = {Bi,0, Bi,1, · · · , Bi,s−1} and Bi,j =
(ri.at)

x ∗ βi,j . Note that if all the tags of exponentiation values exp.(x, it) are
generated by the cloud, it can avoid computing the right polynomial to save
computation cost. Specifically, instead of using the values (ri.at)

x and tags
exp.(x, it), the server can use the values ri.a.j and the corresponding tags σi
to compute

∑k
i=1 ci ∗ (ri.at) and pass the verification. To avoid such dishon-

est behavior, we split proof generation on cloud into two parts as follows. The
cloud server runs PAT.Prove to generate the first part of proof information and
sends it to the client as Prf1 = {ψ, y}. The client chooses u random elements
in K as set U and sends it to the cloud (we discuss the selection of U and the
detection probability of cloud’s cheating in Section4.4). The cloud returns the
attributes ri.at as well as their tags σi to the client, where i ∈ U . The client runs
PAT.QueryV erify.Phase2 to verify the integrity of tuples ri, i ∈ U . If the out-
put is reject, aborts; otherwise, the client generates σexp.(x,it), i ∈ U and aggre-

gates them as σ′ =
∏
i∈U σexp.(x,it)

ci , η′ =
∏
i∈U u

H(name||i)ci(ri.at)x . The cloud
generates the second part of proof information Prf2 as {σ′′ =

∏
σexp.(x,it)

ci , η′′ =∏
uH(name||i)ci(ri.at)x , i ∈ K, i /∈ U} and sends it to the client. The client then

computes σ = σ′ ∗ σ′′, η = η′ ∗ η′′ and runs PAT.QueryV erify.Phase2 with
{ψ, y, σ} to verify the integrity of the Rst. If the output V Rst = accept, accept
Rst as the query result; otherwise, reject.

Variance Query: For any k numbers ci, 1 ≤ i ≤ k, their variance is cal-

culated as V ari =

∑k

i=1
(ci−cm)2

k and cm is the mean value of the ci. Suppose

a variance query Qry =“select Vari(at) from TB where b ≤ a0 ≤ d. The cloud
sends Rst = V ari(at) to the client. Assume there are k tuples satisfying the
query condition, the client first runs Weighted SUM Query algorithm to get
the verified mean value of k tuples, denoted as am. Since the tag for −am can
be generated as σ−am = σ−1

am , the clients can run Polynomial Query algorithm
to verify Rst. If the output V Rst is accept, accept Rst; otherwise, reject.

Other Linear Queries: Like variance query, our proposed scheme can also
flexibly supports other linear queries based on weighted sum query and polyno-
mial query (e.g.,

∑k
i=0 ci ∗ ((ri.at)− (r(i+1).at))

x).

4.4 Discussion

In this section, we discuss about how to choose the set U in polynomial query
to faithfully detect the cloud’s cheating and how to move computation tasks to
the cloud side. Suppose there are k tuples that satisfying the query condition,
when generating Prf1 = {ψ, y}, the cloud server can guess the u tuples will be
selected by the client with probability 1/

(
k
u

)
(e.g., k = 100, the client can set

u = 2 to get 99.9899% confidence that the cloud server cannot guess the set
U). In this scenario, if the cloud does not compute ψ rightly according to the
correct exponentiation values and tags, it has only 1/

(
k
u

)
probability to pass the

verification algorithm. Therefore, the client can choose the set U based on the
size of set K. When K’s size is really small (e.g.,k = 5), the client can locally
generate the exponentiation tags and aggregate them with few computational
cost. Similarly, most calculation tasks of η in the PAT.QueryV erify.Phase2 of
other queries can also be outsourced to the cloud server. On receiving the proof
information Prf , the client can randomly compute m ηi locally and aggregate
them as η′. Then, the client lets the cloud calculate the rest ηi and aggregate
them η′′. The client finally gets η = η′ · η′′.

5 Analysis Of Our Proposed Scheme

5.1 Security Analysis

This section sketches the security of our proposed scheme.

Theorem 1. The design our AORDS is secure assuming the hash function is
collision-resistance and the signature is secure.

Proof. The construction of AORDS is purely based on the Merkle hash tree,
which have been proved to be secure if the collision-resistance hash function
and the signature scheme are secure[9]. Therefore, if the our AORDS can be
broken by an existed probabilistic polynomial-time adversary, we can construct
algorithm B that breaks the either collision-resistance hash function or signature
scheme.

Theorem 2. If a probabilistic polynomial time adversary A can forge gfc(x), we
can construct a polynomial time algorithm B that outputs the solution to the
t− SDH problem using A.

Proof. Suppose there exists a probabilistic polynomial time adversity A that
can forge fc1(α) such that gfc1 (α) = gfc(α), where c and c1 is the coefficient
vector, he/she obtains gfc2 (α) = gfc(α)/gfc1 (α) = gfc(α)−fc1 (α) ∈ Zp[x]. Since
fc1(α) = fc(α) and fc2(α) = 0, i.e., α is a root of polynomial fc2(x), where
fc2(x) = fc(x)− fc1(x). By factoring fc2(x)[17], B can easily find SK = α and
solve the instance of the t-SDH problem given by the system parameters.

Theorem 3. If the CDH problem is hard, the BLS signature scheme is existen-
tially unforgeable, the t-SDH assumption and the t-BSDH assumption hold. The
proof information Prf = (y, ψ, σ) in PAT is unforgeable.

Proof. Suppose a probabilistic polynomial time adversity A can generate Prf ′ =
(y′, ψ′, σ′) to forge Prf after receiving a challenge message from the client,
(y′, ψ′, σ′) 6= (y, ψ, σ). As both Prf ′ and Prf can be accepted by theQueryV erify
algorithm, we can get the following two equations:

e(η, g) · e(ψ, κ · v−r) = e(σ, g) · e(g−y, v) (5)

e(η, g) · e(ψ′, κ · v−r) = e(σ′, g) · e(g−y
′
, v) (6)

Dividing Eq.5 with Eq.6, we obtain:(
e(ψ, g)

e(ψ′, g)

)ε(α−r)
=

e(σ, g)

e(σ′, g)
· e(g, g)ε(y

′−y) (7)

Now we do a case analysis on whether σ = σ′.

Case 1: σ 6= σ′. As
(
e(ψ,g)
e(ψ′,g)

)ε(α−r)
, e(g, g)ε(y

′−y) and e(σ, g) are known to the

adversary, we rewrite Eq.7 as

e(σ′, g) = e(σ, g) · Υ

e(σ′, g) = e(u
ε(
∑

(i,vi)∈Q
ti)
, g) · e(gεfA(α), g) · Υ (8)

where we denote Υ = e(g, g)ε(y
′−y)/

(
e(ψ,g)
e(ψ′,g)

)
as a known value to the adversary

and ti = H(name||i)vi.
Recall that in this proof, the CDH Problem is hard. If the any probabilistic

polynomial time adversity A can find σ′ with non-negligible probability and
make the Eq.8 hold, we can construct an algorithm B that uses A to solve
the instance of CDH Problem. Specifically, given σ′ 6= σ found by A, which
makes Eq.8 hold, B can easily extract gεfA(α). With the given information, B
can get gε, gfA(α), and thus solve CDH problem for them with solution gεfA(α).
Therefore, no probabilistic polynomial time adversity can find a valid forged
response (y, ψ, σ) 6= (y′, ψ′, σ′) and σ 6= σ′ with non-negligible probability.
Case 2: σ = σ′. In this case, we can rewrite Eq.7 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
= e(g, g)ε(y

′−y) (9)

Now We do a case analysis on whether y = y′.

Case 2.1: y = y′. As (y, ψ, σ) 6= (y′, ψ′, σ′), σ = σ′ and y = y′, we can infer that
ψ 6= ψ′. In this case, since y = y′, we rewrite the Eq.9 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
= 1 (10)

As ψ 6= ψ′, i.e., e(ψ,g)
e(ψ′,g) 6= 1, and ε 6= 0, we can obtain α = q from Eq.10. In PAT ,

q is known to the A(i.e., A can find SK = α). As we proved in Theorem 2, if A
can find SK = α, we can can construction an algorithm B to solve the instance
of the t-SDH problem. Thus, A cannot find a valid forged (y, ψ, σ) 6= (y′, ψ′, σ′)
and y = y′ with non-negligible probability.

Case 2.2: y 6= y′. From Eq.9 and y 6= y′, we can imply that α 6= q. In this
case, we show how to construct an algorithm B, using the A, that can break the

t-BSDH Assumption with a valid solution (−q,
(
e(ψ,v)
e(ψ′,v)

) 1
y′−y

).

We denote ψ as gθ and ψ′ as gθ
′
, and rewrite Eq.9 as :

(
e(ψ, v)

e(ψ′, v)

)(α−q)

=
e(g, v)−y

e(g, v)−y′

θ(α− q) + y = θ′(α− q) + y′

(θ − θ′)
y′ − y

=
1

α− q
(11)

Therefore, algorithm B can compute

(
e(ψ, v)

e(ψ′, v)

) 1
y′−y

= e(g, v)
(θ−θ′)
y′−y = e(g, g)

1
α−q (12)

and returns (−q, e(g, g)
1

α−q) as a solution for t-BSDH instance. It is easy to see
that the success probability of solving the instance is the same as the success
probability of the adversity, and the time required is a small constant larger than
the time required by the adversary.

Therefore, the security of our PAT construction is proved.

Theorem 4. If an existed probabilistic polynomial time adversity A can con-
vince the querier with an invalid query result for Selection Query, Projection
Query, Join Query, Weighted SUM Query, Polynomial Query or Variance Query
in our proposed scheme, we can construct an algorithm B using A to break either
AORDS or PAT .

Proof. With regard to Selection Query, Projection Query, Join Query and Weighted
SUM Query, the querier directly verifies the completeness and freshness of the
query result using AORDS and checks its integrity using PAT . Therefore, if A
can convince the querier with an invalid result with non-negligible probability, it
can break either AORDS or PAT , which have been proved to be secure above.

For Weighted Exponentiation SUM Query and Variance Query, the differ-
ence between them and the other query types is the tag generation outsourcing.
As described in Section 4.4, the querier can outsource some tag generation and
aggregation to A and easily achieve more than 99.99% confidence security. If the
client processes all the tag generation and aggregation locally, the Weighted Ex-
ponentiation SUM Query and Variance Query become purely based on AORDS
or PAT . Therefore, if A can convince the querier with an invalid result with
non-negligible probability, it can break either AORDS or PAT , which have
been proved to be secure above.

5.2 Performance Evaluation

In this section, we numerically evaluate the performance of our proposed scheme
in terms of computational complexity, communication complexity and and stor-
age overhead. For simplicity, we denote the complexity of one multiplication
operation and one exponentiation operation on Group G as MUL and EXP1

respectively. Notably, in our evaluation on computational complexity, both the
cheap Hash operation and expensive operations such as as EXP , MUL and
Pairing are presented for completeness. However, in practice Hash operations
can be very efficiently performed by contemporary devices (its execution time is
usually several magnitudes less than that for EXP , MUL and Pairing opera-
tions operations). Therefore, when evaluating the computational complexity we
mainly focus on comparing the number of EXP , MUL and Pairing operations.
Due to the space limit, this section sketches the performance evaluation.

Database Pre-processing: Before outsourcing the database to the cloud,
the owner needs to generate the authentication tags σ, auxiliary information
AU and root state information StateR for the database. With regard to the tag
generation, the owner performs O(sn)MUL + O(sn)EXP operations, where n
is the number of tuples in the database and s is the attribute number in each
tuple. For the computation of AU and StateR, the owner needs O(n)Hash and
O(1)Sig respectively, where Sig is the signature operation. As all the generated
tags and AU need to be outsourced to the cloud server, the communication
complexity is O(n)|G| + O(n)|Hash| + O(1)|Sig|, where |G|, |Hash| and |Sig|
are the size of a group element, hash value, and signature respectively. The cloud
side storage complexity is O(n)|G|+O(sn)|Hash|+O(1)|Sig|.

Update: To modify or insert a tuple in the outsourced database, our pro-
posed scheme requires O(s)MUL + O(s)EXP operations on the owner side
to generate the new tag and O(log n)Hash and one Sig operation to up-
date the auxiliary information and root state information. For deleting a tuple,

1
When the operation is on the elliptic curve, EXP means scalar multiplication operation and MUL
means one point addition operation.

Ref.[10] Ref.[16] Ref.[19] Our Scheme
Data Comp.C O(sn)Hash O(sn)EXP O(n)Hash O(sn)MUL+O(sn)EXP

+O(1)Sig +O(n)EXP +O(n)Hash
+O(1)Sig

Pre- Comm. O(sn)|Hash| O(sn)|AggSig| O(n)|Hash| O(n)|G|+O(n)|Hash|
Processing +O(1)|Sig| +O(n)|Tag| +O(1)|Sig|

+O(1)|Sig|
Stor.d O(sn)|Hash| O(sn)|AggSig| O(n)|Hash| O(n)|G|+O(sn)|Hash|

Overhead +O(1)|Sig| +O(n)|Tag| +O(1)|Sig|
+O(1)|Sig|

Comp.S O(log n)Hash N/A O(log n)Hash O(log n)Hash
Update Comp.O O(log n)Hash O(s)EXP O(log n)Hash O(log n)Hash

+O(s)EXP O(s)MUL+O(s)EXP
Comm. O(z) O(z) O(z) O(z)
Comp.S N/A O(k)MUL N/A O(s+ k)MUL+O(s+ k)EXP

Selection Comp.C O(sk)Hash O(k)EXP O(k)Hash O(k)Hash+O(1)EXP+
Query +O(k)EXP O(1)MUL+O(1)Pairing

Comm. O(slog n)|Hash| O(k)|Bitmap| O(log n)|Hash| O(log n)|Hash|+O(1)|G|
+O(k)|Tag|

Comp.S N/A O(mn)MUL O(n)MUL O(s+ n)MUL+O(s+ n)EXP
Projection Comp.C O(mn)Hash O(mn)EXP O(n)Hash O(n)Hash+O(1)EXP+

Query +O(n)EXP O(1)MUL+O(1)Pairing
Comm. O(mlog n)|Hash| O(n)|Bitmap| O(log n)|Hash| O(log n)|Hash|+O(1)|G|

+O(n)|Tag|
Comp.S N/A O(n)MUL O(n)MUL O(s+ k)MUL+O(s+ k)EXP

Join Comp.C O(nlog n)Hash O(n)EXP O(n)Hash O(n)Hash+O(1)EXP+
Query +O(n)EXP O(1)MUL+O(1)Pairing

Comm. O(nlog n)|Hash| O(n)Bitmap O(log n)|Hash|+ O(log n)|Hash|+O(1)|G|
+|R̂| +|R̂| O(n)|Tag|+ |R̂| +|R̂|

Weighted Comp.S N/A N/A N/A O(s+ k)MUL+O(s+ k)EXP
SUM Comp.C N/A N/A O(k)Hash O(k)Hash+O(1)EXP+
Query +O(k)EXP O(1)MUL+O(1)Pairing

Comm. N/A N/A O(log n)|Hash| O(log n)|Hash|+O(1)|G|
+O(k)|Tag|

Comp.S N/A N/A N/A O(s+ kx)MUL+O(s+ kx)EXP
Polynomial Comp.C N/A N/A N/A O(n)Hash+O(1)MUL

Query +O(1)EXP+O(1)Pairing
Comm. N/A N/A N/A O(log n)|Hash|+O(1)|G|
Comp.S N/A N/A N/A O(s+ k)MUL+O(s+ k)EXP

Variance Comp.C N/A N/A N/A O(n)Hash+O(1)MUL
Query +O(1)EXP+O(1)Pairing

Comm. N/A N/A N/A O(log n)|Hash|+O(1)|G|

Table 1. Complexity Summary: In this table, n is the number of tuples in the database, s is the
number of attributes in each tuple, Sig is the sign operation for signature function, z is the number of
modified tuples, k is the number of tuples satisfying the query condition, m is the attributes chosen
in projection, |G|, |Hash| and |Sig| are the size of a group element, hash value, and signature

respectively. |Tag| is the size of authentication tag in Ref.[19]. |R̂| denotes the attributes in the
projection query result that does not match the join query condition. |AggSig| and |Bitmap| is the
size of aggregated signature and associated tuple information in Ref.[16].

.O(log n)Hash and one Sig operations are required in our scheme. Since the
data transmitted for update operation are the new root state information, the
new tuples and the new tags, the communication complexity is O(z), where z is
the number of modified tuples. On the cloud server side, O(log n)Hash and one
Sig operations shall be executed to update the database.

Selection Query: For selection query, the client needs O(k)Hash operations
to check the result’s completeness and freshness, where k is the number of tuples
satisfying the query condition. Moreover, 5 Pairing operations and no more than
8 EXP and 8 MUL operations are needed to ensure the integrity of result (e.g.,
for a query result consists of 100 tuples, only 2MUL and 2EXP operations
are required as we discussed in Section 4.4). On the cloud side, it performs

O(s+ k)MUL and O(s+ k)EXP operations to generate the proof information.
The communication complexity is O(log n)|Hash|+O(1)|G| since our proposed
scheme aggregates the proof information for integrity check into 3 elements.

Projection Query: For a projection query, our proposed scheme requires
the client to perform O(n)Hash operations to verify the result’s completeness
and freshness. Since the most integrity checking tasks are moved to the cloud
server, the client performs O(1)MUL, O(1)EXP and O(1)Pairing operations.
On the cloud server side, O(s + k)MUL + O(s + k)MUL operations shall be
performed to produce all the proof information. By aggregating the integrity
checking proof information into 3 elements, our scheme keeps the communication
complexity as O(log n)|Hash|+O(1)|G|.

Join Query: To verify a join query, the our scheme requires the client first
to perform two projection query for freshness checking, each of which causes a
computational complexity of O(n)Hash+O(1)MUL+O(1)EXP+O(1)Pairing
and a communication complexity of O(log n)|Hash| + O(1)|G| + |R̂|, where
|R̂| denotes attributes in the projection query result that does not match the
join query condition. To check the integrity of the join query result, the client
needs to perform additional O(1)MUL+O(1)EXP + O(1)Pairing operations,
and the communication complexity is O(1)|G|. On the cloud server side, the
computational complexity is O(s+ k)MUL+O(s+ k)EXP .

Weighted SUM Query: In our proposed scheme, the only difference be-
tween weighted SUM query and selection query is the random numbers chosen
in the challenge message generation stage: in weighted SUM query, the client
replaces the random numbers with the weight values. As shown in Table 1, the
computational complexity and communication complexity on the client side for
weighted SUM query are O(k)Hash+O(1)MUL+O(1)EXP+O(1)Pairing and
O(log n)|Hash|+O(1)|G| respectively, which are same as the selection query. On
cloud server side, the computational complexity is O(s+k)MUL+O(s+k)EXP .

Polynomial Query and Variance Query: To verify a polynomial query,
our proposed scheme needs the client side to perform u more MUL and EXP
operations than the weighted SUM query (e.g., u = 2 when k = 100 as we
discussed in Section 4.4). Therefore, the computation complexity on the client
side is O(n)Hash+O(1)MUL+O(1)EXP +O(1)Pairing. The communication
complexity is O(log n)|Hash|+O(1)|G|. As our scheme requires the cloud server
to generate the authentication tags for the exponentiation values, the compu-
tational complexity on the cloud side is O(s + kx)MUL + O(s + kx)EXP as
shown in Table 1, where x is the degree of exponentiation value. With regard
to variance query, as it is purely based on weighted SUM query and polyno-
mial query, its computational complexity on the client side and the communi-
cation complexity are O(n)Hash + O(1)MUL+O(1)EXP + O(1)Pairing and
O(log n)|Hash| + O(1)|G| respectively. The cloud server it needs to perform
O(s+ k)MUL+O(s+ k)EXP operations.

Comparison: Now we compare our proposed scheme with existing schemes
[10, 16, 19] and show the result in Table 1. For Pre-process, although our proposed
requires more computational cost and communication cost, they are one-time

cost and will not influence the real-time query performance. For storage over-
head, Table 1 shows that our proposed scheme achieves a comparable complexity
than Ref.[10, 16]. Although Ref.[19] saves some hash values in the server storage
overhead as compared with our scheme, it introduces more computational and
communication cost on the client side. Since the cloud server is always much
more powerful than the client, storing these hash values will not introduces any
burden to the cloud.

For Update, our scheme introduces more MUL operations to the owner side
for the tag update. However, the EXP operations needed in our scheme and
Ref.[16, 19] are comparable, which is about 10 times more expensive than the
MUL operation[6]. Thus, our scheme can achieve a similar cost as compared
to Ref.[16, 19]. For communication cost, our scheme achieves the comparable
complexity than existing schemes[10, 16, 19].

For Selection Query, Projection Query and Join Query, table 1 demon-
strates that our proposed scheme outperforms Ref.[10, 16, 19] in terms of com-
putational complexity and communication complexity. Specifically, Ref.[16, 19]
requires a linear number of expensive EXP operations. Differently, by mov-
ing computation tasks to the cloud, our scheme only requires the client to
perform cheap Hash operations and a constant number of EXP , MUL and
Pairing operations. Instead of transmitting all the tags associated with the
query result in Ref.[19], our scheme aggregates the authentication tags into 3
elements. As compared with Ref.[10], our scheme not only removes the factors
m,s in communication cost and computational cost for Selection Query and
Projection Query respectively, it also reduces the O(nlog n) communication
complexity in Join Query to O(log n).

For Weighted SUM Query, our proposed scheme only introduces a con-
stant number of EXP , MUL and Pairing operations to the client, while mov-
ing other operations to the cloud server side. In comparison, Ref.[19] introduces
O(k) EXP operations to the client. In addition, our scheme enables the aggre-
gation of authentication tags into 3 elements, and thus outperforms Ref.[19] in
communication complexity, which requires the transmission of all the tags.

6 Conclusion

In this work, we present an efficient verifiable SQL query scheme in the setting
of outsourced dynamic databases. Our proposed scheme not only allows the
cloud server to perform most computational tasks for the query verification, but
also aggregates the proof information to reduce communication cost. Compared
with existing schemes, we reduce the expensive computational operations (e.g.,
exponentiation operation) on client side at least from a linear level to O(1) and
constrain the communication cost to logn, where n is the number of tuples in
a table. In addition, our proposed scheme supports more queries than previous
works, including polynomial queries, variance queries and other linear queries.
Moreover, our proposed polynomial based authentication tag can also be used as
an independent solution for other related application, such as database auditing,

encrypted key word search, etc. One interesting future work is to enable more
powerful SQL queries in verifiable ways.

References

1. D. Boneh and X. Boyen. Short signatures without random oracles. pages 56–73.
Springer-Verlag, 2004.

2. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Proceedings of the 22nd interna-
tional conference on Theory and applications of cryptographic techniques, EURO-
CRYPT’03, pages 416–432, Berlin, Heidelberg, 2003. Springer-Verlag.

3. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’01,
pages 514–532, London, UK, UK, 2001. Springer-Verlag.

4. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theor., 22(6):644–654, Sept. 1976.

5. V. Goyal. Reducing trust in the pkg in identity based cryptosystems. In Proceedings
of the 27th annual international cryptology conference on Advances in cryptology,
CRYPTO’07, pages 430–447, Berlin, Heidelberg, 2007. Springer-Verlag.

6. G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao. Efficient implementation
of bilinear pairings on arm processors. IACR Cryptology ePrint Archive, 2012:408,
2012.

7. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In ASIACRYPT, pages 177–194, 2010.

8. F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index
structures for outsourced databases. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 121–132,
New York, NY, USA, 2006. ACM.

9. R. C. Merkle. A certified digital signature. In Proceedings on Advances in cryp-
tology, CRYPTO ’89, pages 218–238, New York, NY, USA, 1989. Springer-Verlag
New York, Inc.

10. K. Mouratidis, D. Sacharidis, and H. Pang. Partially materialized digest scheme:
an efficient verification method for outsourced databases. The VLDB Journal,
18(1):363–381, Jan. 2009.

11. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. Trans. Storage, 2(2):107–138, May 2006.

12. M. Narasimha and G. Tsudik. Authentication of outsourced databases using sig-
nature aggregation and chaining. In Proceedings of the 11th international confer-
ence on Database Systems for Advanced Applications, DASFAA’06, pages 420–436,
Berlin, Heidelberg, 2006. Springer-Verlag.

13. G. Nuckolls. Verified query results from hybrid authentication trees. In Proceedings
of the 19th annual IFIP WG 11.3 working conference on Data and Applications
Security, DBSec’05, pages 84–98, Berlin, Heidelberg, 2005. Springer-Verlag.

14. B. Palazzi, M. Pizzonia, and S. Pucacco. Query racing: Fast completeness certifi-
cation of query results. In S. Foresti and S. Jajodia, editors, Data and Applications
Security and Privacy XXIV, volume 6166 of Lecture Notes in Computer Science,
pages 177–192. Springer Berlin Heidelberg, 2010.

15. H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying completeness of rela-
tional query results in data publishing. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, SIGMOD ’05, pages 407–418,
New York, NY, USA, 2005. ACM.

16. H. Pang, J. Zhang, and K. Mouratidis. Scalable verification for outsourced dynamic
databases. Proc. VLDB Endow., 2(1):802–813, Aug. 2009.

17. V. Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, New York, NY, USA, 2005.

18. G. Timothy and M. M. Peter. The nist definition of cloud computing. NIST SP -
800-145, September 2011.

19. Q. Zheng, S. Xu, and G. Ateniese. Efficient query integrity for outsourced dynamic
databases. In Proceedings of the 2012 ACM Workshop on Cloud computing security
workshop, CCSW ’12, pages 71–82, New York, NY, USA, 2012. ACM.

