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1 Introduction

Wireless Sensor Networks (WSNs) consist low power sensor nodes aim to collect various types
of data from the vicinity and send it to the sink node [1]. Numerous transport protocols specifi-
cally designed for WSN applications, requiring particularly reliable delivery and congestion control
(e.g., multimedia sensor networks) have been proposed [15]. One of the latest protocols are the
Distributed Transport for Sensor Networks (DTSN) [12, 14], and its secured version, the SDTP
protocol [4]. In DTSN and SDTP the intermediate nodes can cache the packets with some proba-
bility and retransmit them upon request, providing a reliable transmission, energy efficiency and
distributed functionality.

Unfortunately, existing transport protocols for WSNs (include DTSN) do not include sufficient
security mechanisms or totally ignore the security issue. Hence, many attacks have been found
against existing WSN transport protocols [3]. Broadly speaking, these attacks can be classified
into two groups: attacks against reliability and energy depleting. Reliability attacks aim to mislead
the nodes so that loss of a data packet remains undetected. In the case of energy depleting attacks,
the goal of the attacker is to perform energy-intensive operations in order to deplete the nodes’
batteries [3]. In [3] the authors mentioned that the main vulnerabilities of reliable transport
protocols for wireless sensor networks include the possibility for an attacker to replay, as well as
inject fake or modified, control packets. These can lead to unrecoverable data loss; moreover, any
recovery mechanism opens the doors for energy depleting attacks. In particular, using a forged
or altered ACK packet, an attacker can give the sender the impression that data packets arrived
safely when they may actually have been lost. This can cause the sender and the destination to
become out-of-sync with respect to the status of the session. Similarly, forging or altering NACK
packets to trigger unnecessary retransmission can lead to denial of service or at least to faster
draining of the node’s batteries. While futile retransmissions do not directly harm the reliability
of service, it is still undesirable.

In this paper, we address the problem of formal and automated security verification of WSN
transport protocols, which typically consist of the following behavioral characteristics: (1) storing
data packets in the buffer of sensor nodes; (2) probabilistic and real-time behavior; (3) performing
cryptographic operations such as one-way hashing, digital signature, computing message authen-
tication codes (MACs), and so on. Our main goal is to give a general method for analyse the
security of WSN transport protocols, which includes either a (manual) mathematical proof tech-
nique based on formal language or an automatic model-checking technique. Moreover, we believe
that our proposed methods in this paper can be used not only for verifying WSN transport pro-
tocols, but also other kind of real-time systems/protocols that perform a probabilistic behavior,
and may include cryptographic primitives and operations.

We propose a probabilistic timed calculus for cryptographic protocols, and demonstrate how
to use this formal language for proving security or vulnerability of protocols. The main advan-
tage of this proposed language is that it supports an expressive syntax and semantics, including
bisimilarities that supports real-time, probabilistic, and cryptographic issues at the same time.
Hence, it can be used to verify the systems that involve these three property in a more convenient
way. Furthermore, we propose an automatic verification method for this class of protocols based
on a well-known model-checking framework. For demonstration purposes, we apply the proposed
methods for specifying and verifying the security of the DTSN and the SDTP protocols, which are
representative in the sense that DTSN involve the first two points of the behavioral characteristics
given before, while SDTP covers all of the three points.

Specifically, the main contributions of this paper are the following:

• We propose a probabilistic timed calculus, cryptprobtime, for cryptographic protocols. To the
best of our knowledge, this is the first of its kind in the sense that it combines the following
three features, all at once: (i.) it supports formal syntax and semantics for cryptographic
primitives and operations; (ii.) it supports time constructs similar to the concept of timed
automata that enables us to verify real time systems; (iii.) it also includes the syntax and
semantics of probabilistic constructs for analysing the systems that perform probabilistic
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behavior. The basic concept of cryptprobtime is inspired by the previous works [7, 8, 5] proposing

solutions for each of the three discussed point, separately. In particular, cryptprobtime is a
modified and combination of the well-known concepts of the applied π-calculus [7], which
defines an expressive syntax and semantics supporting cryptographic primitives to analyse
security protocols; the probabilistic extension of the applied π-calculus [8]; and the process
calculus for timed automata proposed in [5].

We note that although in this paper the proposed cryptprobtime calculus is used for analysing
WSN transport protocols, it is also suitable for reasoning of other systems that include
cryptographic operations, real-time and probabilistic behavior.

• Using cryptprobtime we specify the behavior of the DTSN and SDTP protocols. We proposed
the novel definition of probabilistic timed bisimilarity and used it to prove the weaknesses of
DTSN and SDTP, as well as the security of SDTP against some attacks.

• We provide the automatic security verification of the DTSN and SDTP protocols with the
PAT process analysis toolkit [6], which is a powerful general-purpose model checking frame-
work. To the best of our knowledge PAT has not been used for this purpose before, however,
in this paper we show that the power of PAT can be used to check some interesting security
properties defined for these systems/protocols.

The structure of the paper is as follows: Due to its complexity, we will introduce cryptprobtime

in three steps. In Section 2 we start with the introduction of the base calculus, cryptcal, which
is the modified variant of the well-known applied π-calculus [7], designed for analysing security
protocols. The extension of cryptcal, called crypt time, with real-time modelling elements is given
in Section 3, while in Section 4 we provide the description of cryptprobtime, the probabilistic extension

of crypt time. The specifications of the DTSN and SDTP protocols in cryptprobtime can be found in

Section 5 and 6, respectively. The security analysis of DTSN and SDTP, based on cryptprobtime, is
provided in Section 7. The well-known model-checking framework PAT and automatic verification
of DTSN and SDTP are described in Section 8. Finally, we conclude the paper and talking about
future works in Section 9.

2 cryptcal: The calculus for cryptographic protocols

cryptcal is the base calculus for specifying and analysing cryptographic protocols, without sup-
porting real-time and probabilistic systems. cryptcal can be seen as a modified variant of the
well-known applied π-calculus [7], designed for analysing security protocols, and proving security
properties of the protocols in a convenient way. Our goal is to extend cryptcal with time and
probabilistic modelling elements adopting the well-defined concept of timed and probabilistic au-
tomata, and to do this, we need to modify the applied π-calculus in some points. For instance,
we have to replace the process replication construct by the recursive process invocation construct,
and adding the non-deterministic choice and various comparion constructs.

2.1 Syntax and informal semantics

We assume an infinite set of names N and variables V , where N ∩ V = ∅. Further, we define a
set of distinguished variables E that model the cache entries for specifying the systems including
entities that store data in their cache entries. In the set N , we distinguish channel names, and
other kind of data. We let the channel names range over ci with different indices such that ci �= cj ,
i �= j. The set of non-negative integers is denoted by I, and its elements range over inti with
different indices that are corresponding to the numbers 0, 1, 2, etc.

Further, we let the remaining data names range over mi, ni, ki. The variables range over
xi, yi, zi, and the cache entries range over ei with different indices. The names and variables
with different indices are different. We let

∑
be the set of function symbols. To verify security
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protocols, in our case the function symbols capture the cryptographic primitives such as hash,
digital signature, encryption, MAC function. Finally, we assume the well-defined type system of
the terms as in the applied π-calculus.

We define a set of terms as

t ::= ci | inti | ni,mi, ki | xi, yi, zi | ei | f(t1, . . . , tk).

• ci models communication channel between honest parties

• ni, mi, ki are names and are used to model some data;

• xi, yi, zi are variables that can represent any term, that is, any term can be bound to
variables. Similarly as in case of the applied π-calculus, we assume that the binding of terms
to variables is always circle free;

• ei is a cache entry;

• Finally, f is a constructor function with arity k and is used to construct terms and to model
cryptographic primitives, and messages. For instance, digital signature is modelled by the
function sign(t1, t2), where t1 models the message to be signed and t2 models the secret key.
Complex messages are modelled by the function tuple of k terms: tuple(t1,. . . ,tk), which we
abbreviate as (t1,. . . ,tk). The function symbol with arity 0 is a constant.

• inti is the special name for modelling non-negative integers. Formally, let 0, the base element
of set I, be the name that models the zero number. Let the function inc(inti) be the function
that increases the integer inti by one. Numbers 1, 2, . . . are modelled by inc(0), inc(1), . . . ,
respectively. The relation between these intergers is defined by inti < inc(inti) and inti =
inti.

The internal operation of communication entities in the system is modelled by processes. Pro-
cesses can be specified with the following syntax, and inductive definition:

P , Q, R ::= Processes
c〈t〉.P send
c(x).P receive
P |Q parallel composition
P +Q non-deterministic choice
P [ ]Q enabled-action choice
νn.P restriction
I(y1, . . . , yn) recursive definition
[ti = tj ]P else Q if-else equal
[inti ≥ intj ]P else Q if-else larger or equal
[inti > intj ]P else Q if-else larger
[ti = tj ]P if equal
[inti ≥ intj ]P if larger or equal
[inti > intj ]P if larger
nil nil
let (x = t) in P let 1
let (e = t) in P let 2

• The processes c〈t〉.P represents the sending of message t on channel c, followed by the
execution of P . Process c(x).P represents the receiving of some message and binds it to x
in P .

• A composition P | Q behaves as processes P and Q running in parallel. Each may interact
with the other on channels known to both, or with the outside world, independently of the
other. For example, the communication between the sending process c〈t〉.P and receiving
process c(x).P can be described as the parallel composition c〈t〉.P | c(x).Q.
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• A non-deterministic choice P + Q can behave either as P or Q in a non-deterministic way,
independently from the first visible/invisible action of P and Q.

• A choice P [ ] Q can behave either as P or Q depending on the first visible/invisible action
of P and Q. If the first action of P is enabled but the Q’s is not then P is chosen, and
vice versa. In case both actions are enabled the behavior is the same as a non-deterministic
choice.

• A restriction νn.P is a process that makes a new, private (restricted) name n, and then
behaves as P . The scope of n is P , and a restricted name is available only for the process
within its scope.

• An another typical way of specifying infinite behavior is by using parametric recursive def-
initions, like in the π-calculus [13]. Here I(y1, . . . , yn) is an identifier (or invocation) of
arity n. We assume that every such identifier has a unique, possibly recursive, definition

I(x1, . . . , xn)
def
= P where the xi’s are pairwise distinct. The intuition is that I(y1, . . . , yn)

behaves as P with each xi replaced by yi, respectively. It is assumed that there are finitely

many such definitions. Moreover, for each I(x1, . . . , xn)
def
= P we require that fn(P ) ⊆

{x1, . . . , xn}. Formally we have I(y1, . . . , yn) ≡ P{y1/x1, . . . , yn/xn} if I(x1, . . . , xn)
def
= P .

We include the definition of process with parameters because we want to model the state of
cache entries by specifying the value of each cache entry ei as a process parameter, namely,
I(e1, . . . , en). When the value of a cache has changed, we recursively invoke the process with
the parameter given a new value.

• Processes [ti = tj ]P else Q, [inti ≥ intj]P else Q, and [inti > intj]P else Q that if ti = tj ,
inti ≥ intj , and inti > intj, respectively, then process P is ”activated”, else they behave
as Q. Processes [ti = tj ]P , [inti ≥ intj ]P , and [inti > intj ]P are syntax sugar for shorten
the process specification. They are the same as the previous three processes but Q is the nil
process.

• The process nil does nothing, and is used to model the termination of a process behavior.

• Finally, let (x = t) in P (or let (e = t) in P ) means that every occurrence of x (or e) in P
is bound to t.

We adopt the notion and notation of the extended process and active substitution in the applied
π-calculus [7] for modelling the information the attacker (or the environment) getting to know
during the system run. The definition of the extended process is as follows:

A,B,C ::=extended network
P plain network
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{t/x} active substitution

• P is a plain network we already discussed above.

• A|B is a parallel composition of two extended networks.

• νn.A is a restriction of the name n to A.

• νx.A is a restriction of the variable x to A.

• {t/x} means that the substitution {t/x} is applied to any process that is in parallel compo-
sition with {t/x}. Intuitively,the substitution applies to any process that comes into contact
with it. To restrict the process to which the substitution can be applied we use the variable
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restriction νx. ({t/x} |P ). Process P becomes P ′ | {t/x} if P ′ is resulted from P after the
term t has been sent to the environment. In the result process, the variable x is used to refer
to term t. Active substitutions are always assumed to be cycle-free.

We write fv(A), bv(A), fn(A), and bn(A) for the sets of free and bound variables and free and
bound names of A, respectively. These sets are defined as follow:

fv({t/x}) def
= fv(t) ∪ {x}, fn({t/x}) def

= fn(t)

bv({t/x}) def
= ∅, bn({t/x}) def

= bn(t)

The concept of bound and free values is similar to local and global scope in programming
languages. The scope of names and variables are delimited by binders c(x) (i.e., input) and
νn or νx (i.e., restriction). The set of bound names bn(A) contains every name n which is under
restriction νn inside A. The set of bound variables bv(A) consists of all those variables x occurring
in A that are bound by restriction νx or input c(x). Further, we define the set of free names and
the set of free variables. The set of free names in A, denoted by fn(A), consists of those names
n occurring in A that are not a restricted name. The set of free variables fv(A) contains the
variables x occurring in A which are not a restricted variable (νx) or input variable (c(x)). A
plain process P is closed if it contains no free variable. An extended process is closed when every
variable x is either bound or defined by an active substitution.

As in the applied π-calculus, a frame (ϕ) is an extended process built up from the nil process
and active substitutions of the form {t/x} by parallel composition and restrictions. Formally, the
frame of the extended process A, A = νn1 . . . nk({t1/x1} | . . . | {tn/xn} | P ), denoted by ϕ(A),
is νn1 . . . nk({t1/x1} | . . . | {tn/xn}). The domain of the frame ϕ(A) is the set {x1, . . . , xn}.

Intuitively, the frame ϕ(A) accounts for the static knowledge exposed by A to its environment,
but not for dynamic behavior. The frame allows access to terms which the environment cannot
construct. For instance, after the term t (not available for the environment) is output in P resulting
P ′ | {t/x}, t becomes available for the enviroment. Finally, let σ ranges over substitutions, we
write σt for the result of applying σ to the variables of t.

2.1.1 The structural equivalence (≡)

Structural equivalence relation is defined as the least equivalence relation satisfying bound name,
bound variable conversion (also called as α-conversion) and the following rules:

(Rules for Plain Processes:)
(Struct P-α) P ≡x←y Q; P ≡n1←n2 Q
(Struct P-Par1) P |nil ≡ P
(Struct P-Par2) P1|P2 ≡ P2|P1

(Struct P-Par3) (P1|P2)|P3 ≡ P1|(P2|P3)
(Struct P-Switch) νn1.νn2.P ≡ νn2.νn1.P

(Struct P-Rec) I(y1, . . . , yn) ≡ P{y1/x1, . . . , yn/xn} if I(x1, . . . , xn)
def
= P

(Struct P-Drop) νn.nil ≡ nil
(Struct P-Extr) νn.(P |Q)≡ P |νn.Q if n /∈ fn(P )
(Struct P-Let1) let x = t in P ≡ P{t/x}
(Struct P-Let2) let e = t in P ≡ P{t/e}
(Struct P-IfElse1) [t = t]P else Q ≡ P
(Struct P-IfElse2) [ti = tj ]P else Q ≡Q (if ti �= tj)
(Struct P-IfElse3) [inti > intj]P else Q ≡ P (if inti > intj)
(Struct P-IfElse4) [inti > intj]P else Q ≡Q (if inti ≤ intj)
(Struct P-IfElse5) [inti ≥ intj]P else Q ≡ P (if inti ≥ intj)
(Struct P-IfElse6) [inti ≥ intj]P else Q ≡Q (if inti < intj)
(Struct P-If1) [t = t]P ≡ P
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(Struct P-If2) [ti = tj ]P ≡ nil (if ti �= tj)
(Struct P-If3) [inti > intj]P ≡ P (if inti > intj)
(Struct P-If4) [inti > intj]P ≡ nil (if inti ≤ intj)
(Struct P-If5) [inti ≥ intj]P ≡ P (if inti ≥ intj)
(Struct P-If6) [inti ≥ intj]P ≡ nil (if inti < intj)

The meaning of each rule is the following:

• Struct P-α: P and Q are stuctural equivalent if Q can be obtained from P by renaming one
or more bound names/variables in P , or vice versa. For instance, processes (x).P and (y).P
are structural equivalent by renaming y to x. This is denoted by ≡x←y.

• Struct P-Par1: The parallel composition with the nil process does not change anything, the
result is the same as the original parallel composition.

• Struct P-Par2: The parallel composition is commutative.

• Struct P-Par3: The parallel composition is associative.

• Struct P-Switch: The restriction is commutative.

• Struct P-Rec: This rule is resulted directly from the definition I(x1, . . . , xn)
def
= P .

• Struct P-Drop: Restriction does not affect the nil process, thus, we can drop it.

• Struct P-Extrusion: We can drop the restriction from process P when P does not contain
the restricted name as free name, that is, the restricted name does not occur in P .

• Struct P-Let1 and P-Let2: Both sides represent the binding of the term t to variable x (or
to e) in P .

• Struct P-If1, P-If2: if the two terms are the same then the execution of P begins, while if
they are distinct then the process gets stuck.

• Struct P-If3, P-If4, P-If5, P-If6: If the integer inti is larger (or equal) than intj then the
execution of P begins, otherwise the process P gets stuck and stays idle.

Similarly as in [7], structural equivalence in closed under restriction, parallel composition, and
transitivity. The structural equivalence rules for extended processes are the same as in case of the
applied π- calculus [7].

2.1.2 Labeled transition system (
α−→)

The operational semantics for processes is defined as a labeled transition system (P ,G,−→) where
P represents a set of extended processes, G is a set of labels, and −→ ⊆ P × G × P .

Specifically, the labeled semantics defines a ternary relation written, A
α−→B, where α is a label

of the form τ , c(t), c〈x〉, νx.c〈x〉 where x is a variable of base type and t is a term. The transition

A
τ−→B represents a silent move that are used to model the internal operation/computation of

communication entities. These internal operations, for instance, the verification steps made on

the received data, are not visible for the outside world. The transition A
c(t)−→B means that the

process A performs an input of the term t from the environment on the channel c, and the
resulting process is B. The label c〈x〉 is for output action of a free variable x. Finally, if the item
is a general term t, then the label νx.c〈x〉 is used, after replacing the occurrence of the term t by
x and wrapping the process in νx.({t/x}| ).
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(Silent transition rules for processes:)

(Let1) let x = t in P
τ−→ P{t/x}

(Let2) let e = t in P
τ−→ P{t/e}

(IfElse1) [ti = tj ]P else Q
τ−→ P (if ti = tj)

(IfElse2) [ti = tj ]P else Q
τ−→ nil (if ti �= tj)

(IfElse3) [inti > intj ]P else Q
τ−→ P (if inti > intj)

(IfElse4) [inti > intj ]P else Q
τ−→ nil (if inti ≤ intj)

(IfElse5) [inti ≥ intj ]P else Q
τ−→ P (if inti ≥ intj)

(IfElse6) [inti ≥ intj ]P else Q
τ−→ nil (if inti < intj)

(If1) [ti = tj ]P
τ−→ P (if ti = tj)

(If2) [ti = tj ]P
τ−→ nil (if ti �= tj)

(If3) [inti > intj ]P
τ−→ P (if inti > intj)

(If4) [inti > intj ]P
τ−→ nil (if inti ≤ intj)

(If5) [inti ≥ intj ]P
τ−→ P (if inti ≥ intj)

(If6) [inti ≥ intj ]P
τ−→ nil (if inti < intj)

(Com) c〈t〉.P | c(x).Q τ−→ P | Q{t/x}

The silent rules Let1 and Let2 binding a variable to a term in a process; rules If1, . . . , If6 check
the relation of two terms or intergers. Besides these internal computations, the reduction relation
usually is used to model communication between a sender and a receiver process. This is specified
by the rules (Com). Next, we review the rules for output/input actions borrowed from the applied
π-calculus.

(Action transition rules for processes:)

(In) c(x).P
c(t)−→ P{t/x}

(Out) c〈u〉.P c〈u〉−→ P

(Open) A
c〈u〉−→A′,u�=c

νu.A
νu.c〈u〉−→ A′

(Scope) A
α−→A′, u/∈α

νu.A
α−→νu.A′

(Par) A
α−→A′, bv(α)∩fv(B)=bn(α)∩fn(B)=∅

A|B α−→A′|B

(Struct)
A≡B,B

α−→B′,B≡B′

A
α−→A′

For instance, based on the labeled transition system we have the following transitions:

c〈t1〉.c〈t2〉.P
νx1.c〈x1〉−→ {t1/x1} | c〈t2〉.P

νx2.c〈x2〉−→ {t1/x1} | {t2/x2} | P

After sending the terms t1 and t2 on channel public c (modeled by action transition
νx1.c〈x1〉−→

and
νx2.c〈x2〉−→ respectively), t1 and t2 become available for the environment (attacker), which is

specified by the active substitutions {t1/x1} and {t2/x2}.
Similarly as in [7], the set of function symbols

∑
is equipped with an equational theory Eq, that

is, a set of equations of the form t1 = t2, where terms t1, t2 are defined over
∑

. This allows us to
define cryptographic primitives and operations, such as one-way hash function, MAC computation,
encryption, decryption, and digital signature generation/verification, etc. For instance,
tuple : The constructor function tuple models a tuple of n terms t1, t2,. . . , tn. We write the
function as
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tuple(t1, t2, . . . , tn)

We abbreviate it simply as (t1, t2, . . . , tn) in the rest of the paper.
We introduce the destructor functions i that returns the i-th element of a tuple of n elements,

where i ∈ {1, . . . , n}:

i(t1, t2, . . . , tn) = ti

We model the keyed hash or MAC function with symmetric key k with the binary function
mac. The

mac(t, k).

function that computes the message authentication code of message t using secret key k. The
shared key between node li and lj is modelled by function k(li, lj).

We model the one-way hash function with the function hash with one attribute. The

hash(t).

function that computes the hash value of message t. Note that the hash and mac functions do
not have any inverse counterparts because they are one-way functions.

2.2 Labeled bisimilarity

In this subsection we give the definition of labeled bisimilarity, also known in [7], that says if
two extended processes are equivalent, meaning that their behavior cannot be distinguished by an
observer which can eavesdrop on communications.

Let the extended process A be {t1 /x1} | . . . | {tn /xn} | P1 | . . . | Pn. The frame ϕ of A is the
parallel composition {t1 /x1} | . . . | {tn /xn} that models all the information that is outputs so far
by the process A, which are t1,. . . , tn in this case.

Definition 1. (Static equivalence for extended processes) Two extended processes A1 and
A2 are statically equivalent, denoted as A1≈sA2, if their frames are statically equivalent. Two
frames ϕ1 and ϕ2 are statically equivalent if they includes the same number of active substitutions
and same domain; and any two terms that are equal in ϕ1 are equal in ϕ2 as well. Intuitively, this
means that the outputs of the two processes cannot be distinguished by the environment.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on closed extended
networks, such that A1RA2 implies

• A1≈sA2;

• if A1 −→ A′1, then A2 −→∗ A′2 and A′1RA′2 for some A′2;

• if A1
α−→ A′1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ A′2 such that A2 −→∗

α−→ −→∗ A′2 and A′1 R A′2, where dom(A1) denotes the domain of A1.

Intuitively, this means that the outputs of the two extended processes cannot be distinguished
by the environment. In particular, the first point means that at first A1 and A2 are statically
equivalent; the second point says that A1 and A2 remains statically equivalent after internal
reduction steps. Finally, the third point says that if process A1 outputs/inputs something then
process A2 ables to output/input the same thing, and the “target states” A′1 and A′2 they reach
after that remain statically equivalent. Here, −→∗ models the sequential execution of some internal
reduction steps.
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3 crypt time: Extending cryptcal with timed syntax and se-

mantics

In this subsection we propose a time extension to cryptcal, denoted by crypt time. Our calculus is
tailored for the the verification of security protocols, especially for verifying protocols that need to
cache data, such as the transport protocols for wireless sensor networks. The design methodology
of crypt time is based on the terminology proposed in the previous works [11], [5] in timed calculus,
and based on the syntax and semantics of the well-known timed automata.

The concept of crypt time is based on the basic concept of timed automata, hence, the correct-
ness of crypt time is comes from the correctness of the timed automata because the semantic of
crypt time is equivalent to the semantic of the timed automata, and we show that each process in
crypt time has an associated timed automaton.

3.1 Basic time concepts

First of all, we provide some notations and notions related to clocks and time construct, borrowed
from the well-known concept of timed automata. Assume a set C of nonnegative real valued
variable called clocks. A valuation over C is a mapping v : C�→R

≥0 assigning nonnegative real
values to clocks. For a time value d∈R≥0 let v+t denote the valuation such that (v+t)(xc) =
v(xc)+t, for each clock xc ∈ C.

The set Φ(C) of clock constraints is generated by the following grammar:

φ ::= true | false | xc ∼ N | φ1 ∧ φ2 | ¬φ

where φ ranges over Φ(C), xc ∈ C, N is a natural, ∼ ∈ {<,≤,≥, >}. We write v � φ when the
valuation v satisfies the constraint φ. Formally, v � true; v � xc ∼ N iff v(xc) ∼ N ; v � φ1 ∧ φ2

iff v � φ1 ∧ v � φ2.
In the following we turn to define the following timed-process for crypt time

At ::= A | α∗ ≺ At | φ ↪→ At | φ 
 At | ‖CR‖At | A1
t +A2

t | A1
t [ ] A2

t |
(A1

t |A2
t ) | X

We will discuss the meaning of crypt time processes by showing the connection between the
modelling elements of timed automata and crypt time. For this purpose, we recall the definition
of timed automaton: A timed automaton Aut is defined by the tuple (L, l0,

∑
, C, Inv, κ, −→),

where

• L is a finite set of locations and l0 is the initial location;

•
∑

is a set of actions that range over act ;

• C is a finite set of clocks;

• Inv:L �→ Φ(C) is a function that assigns location to a formula, called a location invariant,
that must hold at a given location;

• κ: L �→ 2C is the set of clock resets to be performed at the given locations;

• −→ ⊆ L ×
∑

× Φ(C) × L is the set of edges. We write l
act,φ−→ l′ when (l, act, φ, l′) ∈ −→,

where act, φ are the action and the time constraint defined on the edge.

Let us denote the set of processes in crypt time by Atime, and we let At range over processes in
Atime. In crypt time, each timed-process At corresponds to a location l in timed automaton, such
that there is an initial process A0

t for location l0. The set of actions
∑

corresponds to the set of
actions known in cryptcal. The set of clocks to be reset at a given location l, κ(l), is defined by
construct ‖CR‖Al

t, where CR is the set of clocks to be reset at Al
t. The location invariant at the

location l corresponds to construct φ 
 Al
t, and the edge guard can be defined by φ ↪→ At. More

specifically,

11



• At can be an extended process A without any time construct.

• α∗ ≺ At represents the process At of which α∗ is the first (not timed) action. Note that
α∗ can be νx.c〈x〉, c〈u〉, c(t), and the silent action τ that models internal computation of A
or communication via the same channel. For instance, if At is c(t).P , where P is the plain
process in crypt, then α∗ is c(t). In case of c(x).P | c〈t〉.P α∗ is τ , while in case c(x).P +
c〈t〉.P α∗ can be either νx.c〈x〉 or c(t).

• φ ↪→ At represents the time guard, and says that the first action α∗ of At is performed in

case the guard (time constraint) φ holds. This process intends to model the edge l
α,φ−→ l′

in the automaton syntax, where At corresponds to l, while the explicit appearance of the
target location l′ is omitted in the process.

• φ 
 At represents time invariant over At. Like in timed automaton this means that the
system cannot “stay” in process At once time constraint φ becomes invalid. If it cannot
move from this process via any transition, then it is a deadlock situation. Invariant can be
used to model timeout.

• in the timed process ‖CR‖At, the clocks in ‖CR‖ are reset within At. We move the clock
resetting from edge to the target state like in [5].

• A1
t + A2

t , A
1
t [ ] A2

t , and A1
t | A2

t describe the non-deterministic choice, first-action choice,
and the parallel composition of two processes, respectively.

• X is a process variable to which one of the processes φ ↪→ At, φ
At, ‖CR‖At can be bound.
Note that differ from [13], for our problem we restrict process variables to be only those
processes that have time constructs defined on it. The reason we do this is that we want
to avoid the recursive process invocation for extended processes, which may lead to infinite
invocation cycle (e.g., A = {t/x} | A, where the process variable is abound by A), hence
it is not well-defined. We allow recursive invocation for only plain processes (P ) because
(i) they describe the behavior of the system which should include recursive behavior, and
(ii) process variables (X) in them are guarded by an action (input, output, comparison)
which prevents from infinite invocation. Finally, for our problem restricting X to one of the
processes φ ↪→ At, φ 
 At, ‖CR‖At is sufficient.

The formal semantics of crypt time also follows the semantics of the timed automata. Namely,
a state s is defined by the pair (At, v), where v is the clock valuation at the location of label At

with the time issues defined at the location. The initial state s0 consists of the initial process and
initial clock valuation, (A0

t , v0). Note that the initial process A0
t is the initial status of a system

behavior, while v0 typically contains the clocks in the reset state. The operational semantics of
crypt time is defined by a timed transition system (TTS).

A timed transition system can be seen as the labeled transition system extended with time
constructs. In our model we adopt the concept of [5].

Definition 3. Let
∑

be the set of actions. A time transition system is defined as the tuple TTS
= (S,

∑
× R

≥, s0, −→TTS, U) where

• S is a set of states, and s0 is an initial state.

• −→TTS ⊆ S × (
∑

× R
≥0) × S is the set of timed labeled transition. Intuitively, a transition

is defined between the source and target state, and the label of the transition composed of the
actions and the time stamp (duration) of the action. When (α∗, d) ∈

∑
× R

≥0 we denote

the transition from s to s′ by s
α∗,d−→TTS s′.

• U ⊆ R
≥0 × S is the until predicate, and is defined at a state s with a time duration d.

Whenever (d, s) ∈ U we use the notation Ud.

12



The timed transition system TTS should satisfy the two axioms Until and Delay (in both cases
=⇒ denotes logical implication):

Until ∀ d, d′ ∈ R
≥0, Ud(s) ∧ (d′ < d) =⇒ Ud′(s)

Delay ∀ d ∈ R
≥0, s

α∗,d−→TTS s′ for some s′ =⇒ Ud(s)

These two axioms define formally the meaning of the notion delay and until. Basically, axiom
Until says that if the system stays at state s until d time unit then it also stays at this state before
d. While the axiom Delay says that if the system performs an action α at time d then it must
wait until d. Note that the meaning of until differs from time invariant in that in case of until, the
system waits (stay idled) at least d time at a state (location, if talking about automata), whilst
invariant says that the system must leave the state (location) upon d time units have elapsed (if
it cannot move from the state then we get deadlock).

We define the satisfaction predicate |= on clock constraints, |= ⊆ φ(C). For each φ ∈ φ(C)
we use the shorthand |= φ iff v satisfies φ, |= v(φ), for all valuation v. The set of past closed
constraint, Φ(C) ⊆ Φ(C), is used for defining semantics of location invariant, ∀ v ∈ V , d ∈ R

≥0:
|= (v + d)(φ) =⇒ |= (v)(φ). Intuitively, this says that if the valuation v + d, which is defined as
v(xc) + d for all clocks xc, satisfies the constraint φ then so does v.

We adopt the variant of time automata used in [5], where location invariant and clock resets
are defined as functions ∂ and κ assigning a set of clocks constraint Φ(C) and a set of clocks to be
reset R(C) to a crypt time process, respectively.

The interpretation (semantics) of crypt time is composed of the rule describing action moves
and the rule defining the time passage only at the same state.

(T-pass)
|= (v[rst : κ(At)] + d)(∂(At))

Ud(At, v)
; (T-Act)

(φ ↪→ At)
α∗
−→ A′t, |= (v[rst : κ(At)] + d)(∂(At) ∧ φ)

(φ ↪→ At, v)
α∗,d−→TTS (A′t, v[rst : κ(At)] + d)

The rule (T-pass) describes the time passage at the same location. It says that if the system
stays at process At until d time, then the valuation v + d, after resetting the clocks in κ(At),
satisfies the invariant ∂(At). Rule (T-Act) is concerning with the timed action move of a system
from process φ ↪→ At to process A′t via action α∗. It says that there is a timed transition from

state (φ ↪→ At, v) to state (A′t, v′) with v′ = v[rst : κ(At)] + d, if there is an edge (φ ↪→ At)
α∗
−→

A′t, such that v′ satisfies the invariant at process At and the guard on the edge. Note v′ is the
valuation v in which clocks in κ(At) are set to 0, and increased by d time units.

Definition 4. We extend the definition of free and bound variable to the set of clock variables in
processes At. The set of free variable and bound variable of At, fvc(At) and bvc(At), respectively,
is the least set satisfying

• fvc(A) = ∅: The pure extended process contains no clock variables.

• fvc(α∗ ≺ At) = fvc(At): The set of free clock variables is not affected by action.

• fvc(φ ↪→ At) = clock(φ) ∪ fvc(At): Edge guards contains free clock variables.

• fvc(φ 
 At) = clock(φ) ∪ fvc(At): Invariant contains free clock variables.

• fvc(‖CR‖At) = fvc(At)\CR: Clocks to be reset are bound clock variables.

• fvc(A1
t +A2

t ) = fvc(A1
t ) ∪ fvc(A2

t ): Union of free clock variables.

• fvc(A1
t [ ] A2

t ) = fvc(A1
t ) ∪ fvc(A2

t )

• fvc(A1
t | A2

t ) = fvc(A1
t ) ∪ fvc(A2

t )
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and for bound clock variables we have

• bvc(A) = ∅: The pure extended process contains no clock variables.

• bvc(α∗ ≺ At) = bvc(At): The set of bound clock variables is not affected by action.

• bvc(φ ↪→ At) = bvc(At): Edge guards contains no bound clock variables.

• bvc(φ 
 At) = bvc(At): Invariant contains no bound clock variables.

• bvc(‖CR‖At) = bvc(At) ∪ CR: Clocks to be reset are bound clock variables.

• bvc(A1
t +A2

t ) = bvc(A1
t ) ∪ bvc(A2

t ): Union of bound clock variables.

• bvc(A1
t [ ] A2

t ) = bvc(A1
t ) ∪ bvc(A2

t )

• bvc(A1
t | A2

t ) = bvc(A1
t ) ∪ bvc(A2

t )

Recall that X is a process variable, defined as X
def
= P (x1, x2, . . . , xn), for a plain process P , and

describing recursive process invocation. Since X only binds plain processes it does not contain
any free/bound clock variables. The reason that the set of clock variables is divided to bound and
free parts is to avoid conflict of clock valuations. For instance, let us consider the process xc ≤ 8 

(‖xc‖ At), in which the clock xc is reset wich affects the invariant xc ≤ 8. Further, in the parallel
composition ‖xc‖ At | xc ≤ 8 
 A′t the clock variable xc is the shared variable of the two processes,
however, the reset of xc affects the behavior of process (xc ≤ 8) 
 A′t, which is undesirable since
the operation semantics of a process depends on the behavior of the environment.

Hence, we define the notion of process with non-conflict of clock variables, using the following
inductive definition and the predicate ncv

1. ncv(A); 2. ncv(X); 3. ncv(α∗ ≺ At) iff ncv(At); 4. ncv(‖CR‖ At) iff ncv(At);

5. ncv(φ ↪→ At); 6. ncv(φ 
 At): in both cases, iff ncv(At) ∧ (clock(φ) ∩ κ(At) = ∅)

7. ncv(A1
t + A2

t ) iff ncv(A1
t ) ∧ ncv(A2

t ) ∧ (κ(A1
t ) ∩ fvc(A2

t ) = ∅) ∧ (κ(A2
t ) ∩ fvc(A1

t ) = ∅)

8. ncv(A1
t [ ] A2

t ) iff ncv(A1
t ) ∧ ncv(A2

t ) ∧ (κ(A1
t ) ∩ fvc(A2

t ) = ∅) ∧ (κ(A2
t ) ∩ fvc(A1

t ) = ∅)

9. ncv(A1
t | A2

t ) iff ncv(A1
t ) ∧ ncv(A2

t ) ∧ (κ(A1
t ) ∩ fvc(A2

t ) = ∅) ∧ (κ(A2
t ) ∩ fvc(A1

t ) = ∅)

Rule 1 is because extended process A does not include clock variables; rule 2 says that the
recursive process invocation of plain processes is non-conflict because plain process does not contain
clock variables; rule 3 comes from the fact that action α∗ is clock variable free; rule 3 says that if
clock resettings are placed outside (outermost) all invariant and guard constructs then it does not
cause conflict. Rules 5 and 6 says that if guard and invariant construct are placed outside then
their clock variables cannot be reset within At, to avoid conflict. Finally, rules 7-9 are concerning
with the cases of choices and parallel composition.

In the following, for each crypt time process we add rules that associate each process to the
invariant and resetting function ∂ and κ, respectively. For the function κ we have:

k1. κ(A) = ∅; k2. κ(α∗ ≺ At) = ∅; k3. κ(‖CR‖ At) = CR ∪ κ(At);

k4. κ(φ ↪→ At) = κ(At); k5. κ(φ 
 At) = κ(At); k6. κ(A1
t + A2

t ) = κ(A1
t ) ∪ κ(A2

t );

k7. κ(A1
t [ ] A2

t ) = κ(A1
t ) ∪ κ(A2

t ); k8. κ(A1
t | A2

t ) = κ(A1
t ) ∪ κ(A2

t ).
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Rule k1 is because extended process does not contain any clock; rule k2 the set of clocks to be
reset for α∗ ≺ At is empty because there is no clock reset construct defined on it; the set of clocks
to be reset in κ(‖CR‖ At is CR and the clock resets in At; the clock resets of choices and parallel
composition is the union of the clock resets. For the invariant function ∂ we have:

i1. ∂(A) = true; i2. ∂ (α∗ ≺ At) = true; i3. ∂(‖CR‖ At) = ∂(At);

i4. ∂ (φ ↪→ At) = ∂ (At); i5. ∂ (φ 
 At) = ∂ (At) ∧ φ; i6. ∂ (A1
t + A2

t ) = ∂ (A1
t ) ∨ ∂ (A2

t );

i7. ∂ (A1
t [ ] A2

t ) = ∂(A1
t ) ∨ ∂(A2

t ); i8. ∂ (A1
t | A2

t ) = ∂(A1
t ) ∨ ∂(A2

t ).

Rule i1 says that the invariant predicate of a extended process is true because it does not
include clocks; Rules i2, i3 and i4 is because there is no invariant construct defined on these
processes; Rule i5 says that the invariant of process φ 
 At is predicate the intersection of φ and
the invariant predicate in At. The invariant predicate of choices and parallel composition is the
disjunction of the predicates. In addition, we give the rules for processes that can be connected
to automata edges:

t1. α∗ ≺ At
α∗, true−→ At; t2. φ ↪→ (α∗ ≺ At)

α∗, φ−→ At; i3. φ ↪→ (φ′ ↪→ (α∗ ≺ At))
α∗,φ∧φ′
−→ At

t4. (φ ↪→ (α∗ ≺ (φ′ 
 A1
t ) )) + A2

t
α∗, φ∧φ′
−→ A1

t ; i5. (φ ↪→ (α∗ ≺ (φ′ 
 A1
t ) )) [ ] A

2
t

α∗, φ∧φ′
−→ A1

t

t6. (φ ↪→ (α∗ ≺ (φ′ 
 A1
t ) )) | A2

t
α∗, φ∧φ′
−→ A1

t ; t7. ‖CR‖(φ ↪→ (α∗ ≺ At ))
α∗, φ−→ At;

t8. φ′ 
 (φ ↪→ (α∗ ≺ At ))
α∗, φ∧φ′
−→ At.

It is very important to note that the edge
α∗, φ−→ does not change the validity of the ncv property

to be invalid. The following theorem says that the notion of associated timed automata to each
At is well-defined

Theorem 1. For each process At such that ncv(At), the associated timed automata, denoted by
T (At), is indeed a timed automata.

Proof. We have to prove that for all At time constructs ∂ and κ are functions, and ∂(At) ∈ Φ(C).
To do this we consider that φ1 ∧ φ2 ∈ Φ(C), and φ1 ∨ φ2 ∈ Φ(C), if φ1, φ2 ∈ Φ(C).

Now we turn to discuss the operational semantics of crypt time, in terms of the semantics of
timed automata. The TTS of a crypt time process At with the initial clock valuation v0, denoted
by TTS (At, v0), is defined by the tuple (At × v,

∑
× R

≥0, (At, v0), −→TTS , U) where −→TTS

and U are the least set satisfying the following rules

u1. Ud(A, v); u2. Ud(α
∗ ≺ At, v); u3. Ud(φ ↪→ At, v) if Ud(At, v);

u4. Ud(‖CR‖ At, v) if Ud(At, v[rst : CR]); u5. Ud(φ 
 At, v) if Ud(At, v) ∧ |= (v + d)(φ);

u6. Ud(A
1
t + A2

t , v) if Ud(A
1
t , v); u7. Ud(A

1
t [ ] A2

t , v) if Ud(A
1
t , v);

u8. Ud(A
1
t | A2

t , v) if Ud(A
1
t , v); u9. Ud(X , v) if Ud(P [P/X ], v);

Note that in rules (u6-u8) we need to consider the commutative property of choices and parallel
composition constructs to and obtaining the commutative version of these rules. For the sake of
brevity we omit to give them explicitly. Next, we provide the rules concerning the timed action
transitions. Rule u9 is concerning with the until predicate for (recursive) process variable X ,
which comes directly from the definition of recursive process invocation.
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a1. (α∗ ≺ At, v)
α∗,d−→TTS (At, v + d);

a2. (‖CR‖ At, v)
α∗,d−→TTS (A′t, v

′) if (At, v[rst : CR])
α∗,d−→TTS (A′t, v

′);

a3. (φ ↪→ At, v)
α∗,d−→TTS (A′t, v

′) if (At, v)
α∗,d−→TTS (A′t, v

′) ∧ (v + d)(φ);

a4. (φ 
 At, v)
α∗,d−→TTS (A′t, v

′) if (At, v)
α∗,d−→TTS (A′t, v

′) ∧ (v + d)(φ);

a5. (A1
t + A2

t , v)
α∗,d−→TTS (A′1t , v

′) if (A1
t , v)

α∗,d−→TTS (A′1t , v
′);

a6. (A1
t [ ] A2

t , v)
α∗,d−→TTS (A′1t , v′) if (A1

t , v)
α∗,d−→TTS (A′1t , v′);

a7. (A1
t | A2

t , v)
α∗,d−→TTS (A′1t | norst(A2

t ), v
′) if (A1

t , v)
α∗,d−→TTS (A′1t , v′);

a8. (X , v)
α∗,d−→TTS (P ′, v′) if (P [P/X ], v)

α∗,d−→TTS (P ′, v′).

The last rule is the action rules for recursive process variable X . It can be proven, based on
the rules u1-u9 and a1-a8, that TTS (At, v0) satisfies axioms Until and Delay, hence, it is well
defined.

Theorem 2. For all crypttime process At and for all closed valuation v0, TTS(At, v0) is indeed
the times transition system defined in timed automata.

3.2 Renaming of clock variables

We show that the process with ncv property is preserved by clock renaming, hence, the restriction
to process without conflict of clock variables is harmless [5]. Let predicate rn represents clock
renaming, we have

n1. rn(A) = A; n2. rn( α∗ ≺ At) = rn(At); n3. rn(φ ↪→ At) = rn(φ) ↪→ rn(At);

n4. rn(‖CR‖ At) = ‖F(CR)‖ rn[F ](At); n5. rn(φ 
 At) = rn(φ) 
 rn(At) ;

n6. rn(A1
t + A2

t ) = rn(A1
t ) ∪ rn(A2

t ); n7. rn(A1
t [ ] A2

t ) = rn(A1
t ) ∪ rn(A2

t );

n8. rn(A1
t | A2

t ) = rn(A1
t ) ∪ rn(A2

t );

where F : CR �→ V is bijective function mapping a set of clock CR to an another set of clocks
V ∈ C (i.e., renaming), such that the resulted clock set V does not contain the renamed clocks
in invariant and guard within At, formally, V ∩ rn(fcv(At)\CR). Note that the traditional
renaming of names and variables defines renaming of bound variables and names in processes, we
allow renaming of free clock variables in rules n3 and n5, since the clocks in invariant and guard
are free by definition.

Now based on the rules of renaming we add new rules for structural equivalent resulted from
renaming, denoted by ≡rn. Two process A1

t and A2
t are structurally equivalent by renaming of

clock variables, A1
t ≡rn A2

t if they are (stuctural equivalent to) the left and right side of the rules
n1-n8, respectively.

s1. if A1
t ≡rn A2

t then (i) α∗ ≺ A1
t ≡rn α∗ ≺ A2

t ; (ii) φ ↪→ A1
t ≡rn φ ↪→ A2

t

(iii) φ 
 A1
t ≡rn φ 
 A2

t ;

s2. if A1
t ≡rn A2

t and A′1t ≡rn A′2t then (i) A1
t + A′1t ≡rn A2

t + A′2t ;
(ii) A1

t [ ] A′1t ≡rn A2
t [ ] A′2t ;
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(iii) A1
t | A′1t ≡rn A2

t | A′2t ;

s3. ‖C1
R‖A1

t ≡rn ‖C2
R‖A2

t if clocks in C1
R are renamed to C2

R (F : C1
R �→C2

R) that
the ncv property is preserved: C2

R ∩ fcv(‖C1
R‖ A1

t ) = ∅ and A1
t ≡rn A2

t ;

In addition to the rules for renaming we can define the next structural equivalent rules for At

s4. A1
t + A2

t ≡ A2
t + A1

t

s5. (A1
t + A2

t ) + A3
t ≡ A3

t + (A1
t + A2

t )

s6. (φ1 ↪→ A1
t ) + (φ2 ↪→ A2

t ) ≡ (φ1 ∨ φ2) ↪→ (A1
t + A2

t )

s7. (φ1 
 A1
t ) + (φ2 
 A2

t ) ≡ (φ1 ∨ φ2) 
 (A1
t + A2

t )

s8. false ↪→ (α∗ ≺ At) ≡ nil

s9. φ ↪→ nil ≡ nil

s10. φ1 
( φ2 
 At) ≡ (φ1 ∧ φ2) 
 At

s11. φ1 ↪→( φ2 
 At) ≡ φ2 
( φ1 ↪→ At)

s12. φ ↪→( ‖CR‖ At) ≡ ‖CR‖( φ ↪→ At), if clock(φ) ∩ CR = ∅

s13. φ ↪→ (A1
t + A2

t ) ≡ (φ ↪→ A1
t ) + (φ ↪→ A2

t )

s14. φ ↪→ (A1
t [ ] A2

t ) ≡ (φ ↪→ A1
t ) [ ] (φ ↪→ A2

t )

s15. true ↪→ At ≡ At

s16. true 
 At ≡ At

s17. φ1 
( φ2 
 At) ≡ (φ1 ∧ φ2) 
 At

s18. φ 
( ‖CR‖ At) ≡ ‖CR‖( φ 
 At), if clock(φ) ∩ CR = ∅

s19. φ 
 (A1
t + A2

t ) ≡ (φ 
 A1
t ) + (φ 
 A2

t )

s20. φ 
 (A1
t [ ] A2

t ) ≡ (φ 
 A1
t ) [ ] (φ 
 A2

t )

s21. ‖CR‖ At ≡ At, if fcv(At) ∩ CR = ∅

s22. ‖CR‖ ‖C′R‖ At ≡ ‖CR ∪ C′R‖ At

s23. ‖CR‖ (A1
t + A2

t ) ≡ ‖CR‖ A1
t + ‖CR‖ A2

t

s24. ‖CR‖ (A1
t [ ] A2

t ) ≡ ‖CR‖ A1
t [ ] ‖CR‖ A2

t .

In the following we consider the parallel composition of two crypt time processes, A1
t | A2

t . We
discuss the bound (bcv) and free clock variables (fvc), the non-conflict of variable predicate (ncv),
along with the axioms. First, we specifies the bound and free variables:
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Definition 5. We extend the definition of free and bound variables of At, such that the set of free
and bound variables of At is the least set satisfying the following rules (with the previous given
definitions)

• fvc(A1
t | A2

t ) = fvc(A1
t ) ∪ fvc(A2

t ): The free clock variables is the union of the parallel
processes.

• fvc(norst(At)) = κ(At) ∪ fvc(At): The free clock variables of a the process norst(At) is
the union of the clock resets at At and its free clock variables.

• bvc(A1
t | A2

t ) = bvc(A1
t ) ∪ bvc(A2

t ): The bound clock variables is the union of the parallel
processes.

• bvc(norst(At)) = bvc(At): The free clock variables of a the process norst(At) is the same as
At.

and the rules for non-conflict of variable (ncv) predicate:

Definition 6. We extend the definition of predicatee ncv as follows

• ncv(norst(At)) if ncv(At) holds.

• ncv(A1
t | A2

t ) if ncv(A1
t ) ∧ ncv(A2

t ), bvc(A
1
t ) ∩ var(A2

t ) = ∅ ∧ bvc(A2
t ) ∩ var(A1

t ) = ∅.

The time constructs in case of parallel composition are defined as follows:

k8. κ(A1
t | A2

t ) = κ(A1
t ) ∪ κ(A2

t ); k9. κ(norst(At)) = ∅; k10. κ(norst(‖CR‖ At)) = ∅ ∪ κ(At);

i8. ∂(A1
t | A2

t ) = ∂(A1
t ) ∧ ∂(A2

t ); i9. ∂(At) = ∂(norst(At)).

The action transition for parallel composition are

a9. (A1
t | A2

t )
α∗,φ−→ (A′1t | norst(A2

t )) if A
1
t

α∗,φ−→ A′1t ; a10. norst(A1
t )

α∗,φ−→ A′1t if A1
t

α∗,φ−→ A′1t .

Finally, we give the structural equivalence for the parallel composition, and name and variable
restrictions.

s25. A1
t | A2

t ≡ A2
t | A1

t

s26. φ ↪→ A1
t | A2

t ≡ φ ↪→ (A1
t | A2

t )
s27. (A1

t + A2
t ) | A3

t ≡ A1
t | A3

t + A2
t | A3

t

s28. (‖C‖ A1
t ) | A2

t ≡ ‖C‖ (A1
t | A2

t ) if C ∩ fvc(A2
t ) = ∅

s29. (∂ 
 A1
t ) | A2

t ≡ ∂ 
 (A1
t | A2

t )
s30. (νk.φ 
 At) ≡ φ 
 (νk.At)
s31. (νx.φ 
 At) ≡ φ 
 (νx.At)
s32. (νk.‖C‖ At) ≡ (‖C‖νk.At)
s33. (νx.‖C‖ At) ≡ (‖C‖νx.At)
s34. (νk.φ ↪→ At) ≡ (φ ↪→ νk.At)
s35. (νx.φ ↪→ At) ≡ (φ ↪→ νx.At)

Any process defined in crypt time can be expressed in a corresponding timed automata. To show
this, first we adopt the notion image-finite and finitely sorted (borrowed from transition system
theory into timed automata theory). A timed automaton is image-finite if the set of outgoing
edges of each state with the same action act. Formally, for each l and act the size of the set {l
act, φ−→ l′ | l ∈ L} is finite. A timed automaton is finitely-sorted if the set of outgoing edges with

the same action act of every state, {act | ∃ l′ ∈ L: l act, φ−→ l′}, is finite.
The associated timed automaton for a (initial) process A0

t can be constructed by associating

the process A0
t to the initial location l0, then each transition made by A0

t
α∗, φ−→ A1

t can be defined
in terms of timed automaton, T = (S,

∑
, C, l0, −→, κ, ∂), as follows:
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A0
t = ‖κ(l0)‖ ∂(l0) 
 (φ ↪→ (α∗ ≺ A1

t ))

In this process definition, A0
t corresponds to location l0 of the timed automata at which the

set of clocks to be reset is κ(l0), and on which the invariant ∂(l0) is defined. The edge from l0 to

l1, l0
α∗, φ−→ l1, corresponds to the time construct φ ↪→ (α∗ ≺ A1

t ). Generally, for every subsequent
process Ai

t after some transition steps from A0
t we have

Ai
t = ‖κ(li)‖ ∂(li) 
 (φ ↪→ (α∗ ≺ Ai+1

t ))

which corresponds to the edge li
α∗, φ−→ li+1 in T . For the more complex target process such as

A
(i+1)1
t + . . . + A

(i+1)n
t , we have the following process definition

Ai
t = ‖κ(li)‖ ∂(li) 


∑n
j=1(φj ↪→ (α∗j ≺ A

(i+1)j
t ))

in which Ai
t corresponds to location li (with the appropriate resets and invariant) and the

sub-process
∑n

j=1(φj ↪→ (α∗j ≺ A
(i+1)j
t )) corresponds to the n edges from li to locations l(i+1)j

with labels (α∗j , φj), 1 ≤ j ≤ n.

Similarly, for the target process A
(i+1)1
t [ ] . . . [ ] A

(i+1)n
t we have

Ai
t = ‖κ(li)‖ ∂(li) 
 [ ]nj=1(φj ↪→ (α∗j ≺ A

(i+1)j
t ))

where Ai
t corresponds to location li (with the appropriate resets and invariant) and the sub-

process [ ]nj=1(φj ↪→ (α∗j ≺ A
(i+1)j
t )) corresponds to the edge from li to the location l(i+1)j with

label (α∗j , φj), such that α∗j is the first enabled action (due to the valid condition at li) among the
n processes. In case there are more than one enabled action at the same time, it can be treated
in the same way as the non-deterministic choices.

In case there is not any outgoing edge from li we have the following process definitions for each
type of target process:

Ai
t = ‖κ(li)‖ ∂(li) 
 nil

We omit the case where the target process is the parallel composition of other processes.
Finally, we provide the notion of timed labeled bisimilarity that can be seen as a combination of a
timed bisimilarity defined for timed automata [5], and the labeled bisimilarity defined in applied
π-calculus.

The Definition 7 describes the timed labeled bisimulation for crypt time processes.

Definition 7. (Timed labeled bisimulation for crypttime processes)
Let TTSi(A

i
t, v0) = (Si,

∑
× R

≥0, si0, −→TTSi, U i), i ∈ {1, 2} be two timed transition systems
for crypttime processes. Timed labeled bisimilarity (≈T ) is the largest symmetric relation R, R ⊆
S1 × S2 with s10 R s20, where each si is the pair of a closed crypttime process and a same initial
valuation v0 ∈ Vc, (Ai

t, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
(τ,d)−→TTS1 s′1, then ∃ s′2 such that s2

(τ,
∑

di)
=⇒ TTS2 s′2 and s′1 R s′2, and d = f(

∑
di) for

some function f ;

3. if s1
(α,d)−→TTS1 s′1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ s′2 such that s2

(α,
∑

dj)
=⇒ TTS2 s′2 and s′1 R s′2, and d = f(

∑
dj) for some function f .

Where the extended processes A1 and A2 are the untimed version of the processes A1
t and A2

t ,
respectively, by removing all time constructs in them.

19



From the second and third point and the axiom Delay for Ud(s), we have the following consequence:
Assume that the sequence of transitions from s2 to s′2 includes k intermediate states {s12, . . . , sk2},
and

∑
di = d0 + . . . + dk+1, where d0 and dk+1 are the time that the protocol spends at states

s2 and s′2, respectively, while each remaining di belongs to the state si2. Then we have U1
d (s1) and

U2
d0
(s2), . . . , U2

dk+1
(s′2).

Recall that Ud(s) before the action transition s
(α∪τ,d)−→ TTS1 s′ is interpreted such that per-

forming the action takes d time unit. Not like the interpretation of Ud(s) in [5], we assume that
there is no time for idling, only computation steps (such as verification, message composition, etc.)
consuming time.

The arrow
α

=⇒TTS is the same as
τ−→
∗
TTS

α−→TTS
τ−→
∗
TTS , where

τ−→
∗
TTS represents a series

(formally, a transitive closure) of sequential transitions
τ−→TTS .

∑
di on =⇒TTS is the sum of

the time elapsed at each transition, representing the total time elapsed during the sequence of
transitions. Note that fn(A2

t ) and dom(A1
t ) is the same as fn(A2) and dom(A1). Moreover, a

process At is closed if its untimed counterpart A is closed.
Intuitively, in case A1

t and A2
t represent two protocols (or two variants of a protocol), then

this means that (i) the outputs of the two processes cannot be distinguished by the environment
during their behaviors; (ii) the time that the protocols spend on the performed operations until
they reach the corresponding points is in some relationship defined by a function f . Here f depends
on the specific definition of the security property, for instance, it can return d itself, hence, the
requirement for time consumption would be d =

∑
di. In particular, the first point means that at

first A1
t and A2

t are statically equivalent, that is, the environment cannot distinguish the behavior
of the two protocols based on their outputs; the second point says that A1

t and A2
t remain statically

equivalent after silent transition (internal reduction) steps. Finally, the third point says that the
behavior of the two protocols matches in transition with the action α.

4 cryptprobtime: The probabilistic timed calculus for crypto-

graphic protocols

cryptprobtime is the extension of crypt time with probabilistic syntax and semantics, allowing the de-
scription of timed systems equipped with a probabilistic behavior, in an intuitive and straightfor-
ward way. The definition of cryptprobtime is inspired by the syntax and semantics of the proposed
probabilistic extension of the applied π-calculus in [8], and the probabilistic automata in [5].

We extend the set of processes At defined in crypt time (Section 3) with the probabilistic choice.
Let us denote the probabilistic timed process Apt is an extended process in cryptcal with time
constructs and probabilistic choice: A1

pt⊕pA
2
pt. Formally we have the following probabilistic timed

process for cryptprobtime:

Apt ::= A | α∗ ≺ Apt | φ ↪→ Apt | ‖CR‖Apt | A1
pt +A2

pt | A1
pt [ ] A

2
pt | A1

pt ⊕p A
2
pt

| (A1
pt|A2

pt) | Xpt

Definition 8. We extend the definition of predicates fvc and bvc with free and bound clock variables
in the probabilistic choice: fvc(A1

pt ⊕p A2
pt), bvc(A

1
pt ⊕p A2

pt). The other rules are similar as in
case of timed processes but At is replaces by Apt.

• fvc(A) = ∅: The pure extended process contains no clock variables.

• fvc(α∗ ≺ Apt) = fvc(Apt): The set of free clock variables is not affected by action.

• fvc(φ ↪→ Apt) = clock(φ) ∪ fvc(Apt): Edge guards contains free clock variables.

• fvc(φ 
 Apt) = clock(φ) ∪ fvc(Apt): Invariant contains free clock variables.

• fvc(‖CR‖At) = fvc(At)\CR: Clocks to be reset are bound clock variables.
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• fvc(A1
pt +A2

pt) = fvc(A1
pt) ∪ fvc(A2

pt): Union of free clock variables.

• fvc(A1
pt [ ] A

2
pt) = fvc(A1

pt) ∪ fvc(A2
pt)

• fvc(A1
pt ⊕p A

2
pt) = fvc(A1

pt) ∪ fvc(A2
pt)

• fvc(A1
pt | A2

pt) = fvc(A1
pt) ∪ fvc(A2

pt)

and for bound clock variables

• bvc(A) = ∅: The pure extended process contains no clock variables.

• bvc(α∗ ≺ Apt) = bvc(Apt): The set of bound clock variables is not affected by action.

• bvc(φ ↪→ Apt) = bvc(Apt): Edge guards contains no bound clock variables.

• bvc(φ 
 Apt) = bvc(Apt): Invariant contains no bound clock variables.

• bvc(‖CR‖Apt) = bvc(Apt) ∪ CR: Clocks to be reset are bound clock variables.

• bvc(A1
pt +A2

pt) = bvc(A1
pt) ∪ bvc(A2

pt): Union of bound clock variables.

• bvc(A1
pt [ ] A

2
pt) = bvc(A1

pt) ∪ bvc(A2
pt)

• bvc(A1
pt ⊕p A

2
pt) = bvc(A1

pt) ∪ bvc(A2
pt)

• bvc(A1
pt | A2

pt) = bvc(A1
pt) ∪ bvc(A2

pt)

Xpt is a process variable, defined as Xpt
def
= P (x1, x2, . . . , xn), for a plain process P , and describing

recursive process invocation. Since Xpt only binds plain processes it does not have any free/bound
clock variables.

For cryptprobtime the following rule is added the definition of the predicate ncv (non-conflict of
variables):

ncv(A1
pt ⊕p A2

pt) iff ncv(A1
pt) ∧ ncv(A2

pt) ∧ (κ(A1
pt) ∩ fvc(A2

pt) = ∅) ∧ (κ(A2
pt) ∩ fvc(A1

pt) = ∅)

For the functions κ and ∂ we have the following two additional rules:

k9. κ(A1
pt ⊕p A2

pt) = κ(A1
pt) ∪ κ(A2

pt); i9. ∂ (A1
pt ⊕p A2

pt) = ∂(A1
pt) ∨ ∂(A2

pt);

In addition, we give transition rules for cryptprobtime processes that are corresponding to the edges
in probabilistic timed automata:

t8. Apt
α∗
−→π A′pt if Apt

α∗
−→ π and π(A′pt) > 0;

t9. α∗ ≺ Apt

α∗, tt, 1

−−−−−→π Apt if α∗ ≺ Apt
α∗
−→ π and π(Apt) = 1;

t10. φ ↪→ (α∗ ≺ Apt)
α∗, φ, 1

−−−−−→π Apt; if φ ↪→ (α∗ ≺ Apt)
α∗
−→ π and π(Apt) = 1;

t11. φ ↪→ (φ′ ↪→ (α∗ ≺ Apt))
α∗,φ∧φ′, 1

−−−−−−→π Apt; if φ ↪→ (φ′ ↪→ (α∗ ≺ Apt))
α∗
−→ π and π(Apt) = 1;

t12. (φ ↪→ (α∗ ≺ A1
pt )) + A2

pt

α∗, φ, 1

−−−−−→π A1
pt; if φ ↪→ (α∗ ≺ A1

pt )
α∗
−→ π and π(A1

pt) = 1;

t13. (φ ↪→ (α∗ ≺ A1
pt )) [ ] A

2
pt

α∗, φ, 1

−−−−−→π A1
pt; if φ ↪→ (α∗ ≺ A1

pt )
α∗
−→ π and π(A1

pt) = 1;
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t14. (φ ↪→ (α∗ ≺ A1
pt )) | A2

pt

α∗, φ, 1

−−−−−→π A1
pt; if φ ↪→ (α∗ ≺ A1

pt )
α∗
−→ π and π(A1

pt) = 1;

t15. ‖CR‖(φ ↪→ (α∗ ≺ Apt ))
α∗, φ, 1

−−−−−→π Apt; if ‖CR‖(φ ↪→ (α∗ ≺ Apt ))
α∗
−→ π and π(Apt) = 1;

t16. φ′ 
 (φ ↪→ (α∗ ≺ Apt ))
α∗, φ, 1

−−−−−→π Apt; if φ′ 
 (φ ↪→ (α∗ ≺ Apt ))
α∗
−→ π and π(Apt) = 1;

t17/a. A1
pt ⊕p A2

pt

α∗, p

−−−→π1 A1′
pt if A1

pt
α∗
−→π1 A1′

pt and π1(A
1′
pt) = p;

t17/b. A1
pt ⊕p A2

pt

α∗, 1−p
−−−−−→π2 A2′

pt if A2
pt

α∗
−→π2 A2′

pt and π2(A
2′
pt) = 1− p;

t18. (φ ↪→ (α∗ ≺ A1
pt )) ⊕p A2

pt

α∗, φ, p

−−−−−→π1 A1
pt if φ ↪→ (α∗ ≺ A1

pt)
α∗
−→π1 A1

pt and π1(A
1
pt) = p.

The operational semantics of cryptprobtime can be constructed by compounding the semantics of
crypt time and the probabilistic extension of the applied π-calculus [8], making it also respect the
operational semantics of the probabilistic timed automata [11].

Similarly as in probabilistic timed automata, we define a state s in cryptprobtime that is composed
of a probabilistic timed process Apt, a clock valuation v, namely, s = (Apt, v). Performing either
a visible α or invisible (silent) τ action consumes d time for some d ∈ R

≥0. In [5] the time passage
and timed action transitions are modelled with the predicate until Ud(s), and the action transition

with label s
α∗(d)
−−−−→PTTS s′ representing that the action α∗ = α ∪ τ is performed at time d from

state s, which means that the system stays at s until time d. We adopt this concept, however
unlike in [5] where the idling time at s is d and executing an action takes no time, we interpret
Ud(s) as the time for performing action α∗, and there is no idling time at s before making an
action. Moreover, we extend the transition with the distribution π of the probability that is valid

to the action α∗: s
α∗(d), π

−−−−−→PTTS s′.

There are two types of transitions, an action transition with label α∗,
α∗(d), π

−−−−−→PTTS , and

the time passage transition labeled with d′ ∈ R
>0,

d′
−→PTTS . The scheduler F chooses non-

deterministically the distribution of action transition steps or (ii) to let time elapse by performing
a time step, and in case of time step also the amount of time passed is chosen nondeterministically.
The probability of performing a transition step from a state s = (Apt, v) is chosen, among all the
transitions enabled in s, based on the values returned by some distribution π. The probability of
executing a time-step labeled with d′ ∈ R

>0 is set to 1. Formally, the enabled action transition at

time d from s to s′, s
α∗(d), π

−−−−−→PTTS s′ is preceeded by a series of time step transitions via some
intermediate states at which only the valuation (i.e., the 2nd parameter) is increased between two

states. We denote this series of time step transitions as

∑
dj=d

−−−−−→PTTS
∗, where

∑
dj = d means

that the sum of time amounts of the time step transitions is d. Therefore, s
α∗(d), π

−−−−−→PTTS s′ can
be modelled by

s

∑
dj=d

−−−−−→PTTS
∗ α∗, π

−−−−→PTTS s′,

and since the probability of time step transition is 1, the probability of s
α∗(d), π

−−−−−→PTTS s′ is equal

to the probability of transition s
α∗, π

−−−−→PTTS s′, according to the distribution π chosen by a
scheduler F .

For si−1 = (Ai−1
pt , vi−1) and si = (Ai

pt, vi), a transition si−1
α∗

i−1(d), πi−1

−−−−−−−−−−→PTTS si is enabled
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if there is a Ai−1
pt

α∗
i−1, φi−1, p

−−−−−−−−−→πi−1 A
i
pt labeled transition for probabilistic timed processes such that

vi |= φi−1, vi |= inv(Ai−1
pt ) ∧ inv(Ai

pt), where vi = vi−1[κ(Ai−1
pt ) := 0] + d, inv(Ai−1

pt ) and κ(Ai−1
pt )

is the invariant predicate as well as the set of clocks to be reset defined in Ai−1
pt , respectively.

In addition, a time passage transition si−1
d′
−→PTTS si is enabled if Ud′(si−1) and vi |= φi−1, vi

|= inv(Ai−1
pt ), where vi = vi−1[κ(Ai−1

pt ) := 0] + d. We denote the set of (time step and action)
transitions enabled at state s by EN (s), and the set of transitions that lead from s to a certain s′

through a given action α̃ = α∗ ∪ R
≥0 by EN (s, α̃, s′). A state s = (Apt, v) is called terminal iff

EN (s′) = ∅ for all s′ = (Apt, v + d′), d′ ∈ R
≥0.

A (probabilistic timed) action execution of s0 = (A0
pt, v0), denoted by Execs0 , is a finite (or

infinite) sequence of steps

e = s0
α∗

0(d0), π0

−−−−−−−→PTTS sn1

α∗
1(d1), π1

−−−−−−−→PTTS . . .
α∗

k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk
. . .

where each transition s
α∗

i (di), πi

−−−−−−→PTTS s′ in Execs is modelled by s

∑
dj=di

−−−−−→PTTS
∗

α∗
i , π

−−−−→PTTS

s′, in which every (time step or action) transition is enabled. In case the execution is finite we
denote with enk , for a finite nk, where

enk = s0
α∗

0(d0), π0

−−−−−−−→PTTS sn1

α∗
1(d1), π1

−−−−−−−→PTTS . . .
α∗

k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk
,

and denote the last state of enk by last(enk) (e.g., last(enk) = snk
).

A scheduler F defined in crytcalprobtime resolves both the non-deterministic and the probabilistic
choices. F is a partial function from execution fragment F : Execs �→ Π ∪ R

>0. Given a scheduler
F and an execution fragment enk we assume that F is defined for enk if and only if there exists a

reachable state s such that last(enk)
α∗, π

−−−−−−→PTTS s, for α∗ ∈ α ∪ {τ}, or last(enk)
d′
−→PTTS s,

for d′∈R>0.
The execution fragments ExecFs0 from s0 according to a scheduler F is defined as the set of

executions

s0
α∗

0(d0), π0

−−−−−−−→PTTS sn1

α∗
1(d1), π1

−−−−−−−→PTTS . . .
α∗

k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk
. . .

such that (i) whenever F (ei−1) = d′, for d′ ∈ R
>0, meaning that a time step has been chosen

at state si−1, and (ii) whenever F returns a distribution πi−1 ∈ Π: F (ei−1) = πi−1, there is an

enabled transition si−1
α∗

i−1, πi−1

−−−−−−−→PTTS si, where πi−1(ei−1)>0.
The probability PF (enk) of the execution fragment

enk = s0
α∗

0(d0), π0

−−−−−−→PTTS sn1

α∗
1(d1), π1

−−−−−−→PTTS . . .
α∗

k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk
,

based on scheduler F is defined as follows:

• if nk = 0 then PF (enk) = 1.

• if nk ≥ 1 then PF (enk) = PF (enk−1) ∗ p.

where the probability of the enabled transition with action α̃nk−1 from the state snk−1 to snk
is

defined as

p =

⎧⎨
⎩

∑
pttr∈EN(snk−1, α̃nk−1, snk

)(F (enk−1))(pttr)
∑

pttr∈EN(snk−1)
(F (enk−1))(pttr)

if α̃nk−1 ∈ α ∪ {τ}
1 if α̃nk−1 ∈ R

>0
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The first point of the formula says that for action transitions the probability p is the ratio of
(i) the total probability of the enabled transitions with action αnk−1 from snk−1 to snk

, based on
the scheduler F , and (ii) the total probability from the enabled transitions from snk−1, based on
F . Note that for action transitions F (enk−1) returns some distribution πnk−1 ∈ Π. The second
point of the formula says that the probability of time passage steps is 1, hence, whenever a time
step is chosen (non-deterministically) it will be performed.

We note that the probability of the action transition going from snk−1 to snk
, labeled with

αnk−1 is re-normalized according to the transitions enabled in snk−1. The reason of re-normalizing
the probability is that the number of enabled transitions in snk−1 varies according to the validity
of edge guards and location invariants.

The operational semantics of cryptprobtime is given by a probabilistic timed transition system
(PTTS). The PTTS of a process Apt with the initial clock valuation v0 and scheduler F , denoted
by PTTS (Apt, v0, F ), is defined by the tuple (Spt,

∑
× R

≥0 × Π, (Apt, v0), −→PTTS , U , F )
where −→PTTS and U are the least set satisfying the following rules

u1. Ud(A, v); u2. Ud(α
∗ ≺ Apt, v); u3. Ud(φ ↪→ Apt, v) if Ud(Apt, v);

u4. Ud(‖CR‖ Apt, v) if Ud(Apt, v[rst : CR]);

u5. Ud(φ 
 Apt, v) if Ud(Apt, v) ∧ |= (v + d)(φ);

u6. Ud(A
1
pt + A2

pt, v) if Ud(A
1
pt, v) ∨ Ud(A

2
pt, v);

u7. Ud(A
1
pt [ ] A

2
pt, v) if Ud(A

1
pt, v) ∨ Ud(A

2
pt, v);

u8. Ud(A
1
pt ⊕p A2

pt, v) if Ud(A
1
pt, v) ∨ Ud(A

2
pt, v);

u9. Ud(A
1
pt | A2

pt, v) if Ud(A
1
pt, v) ∨ Ud(A

2
pt, v);

u10. Ud(Xpt, v) if Ud(P [P/Xpt], v);

Note that in rules (u6-u8) we need to consider the commutative property of choices and par-
allel composition constructs for obtaining the commutative version of these rules. For the sake of
brevity we omit to give them explicitly. Next, we provide the rules concerning the timed action
transitions. Rule u9 is concerning with the until predicate for (recursive) process variable Xpt,
which comes directly from the definition of recursive process invocation.

a1. (α∗ ≺ Apt, v)
α∗(d), π

−−−−−−→PTTS (Apt, v + d) if α∗ ≺ Apt

α∗, tt, 1

−−−−−→π Apt;

a2. (‖CR‖ Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v[rst : CR])

α∗(d), π

−−−−−−→PTTS (A′pt, v
′);

a3. (φ ↪→ Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v)

α∗(d), π

−−−−−−→PTTS (A′pt, v
′) ∧ (v + d)(φ);

a4. (φ 
 Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v)

α∗(d), π

−−−−−−→PTTS (A′pt, v
′) ∧ (v + d)(φ);

a5. (Apt, v)
α∗(d), π

−−−−−−→PTTS (φ 
 A′pt, v′) if (Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v′) ∧ (v + d)(φ);

24



a6. (A1
pt + A2

pt, v)
α∗(d), π

−−−−−−→PTTS (A1′
pt, v

′) if (A1
pt, v)

α∗(d), π

−−−−−−→PTTS (A1′
pt, v

′);

a7. (A1
pt [ ] A

2
pt, v)

α∗(d), π

−−−−−−→PTTS (A1′
pt, v

′) if (A1
pt, v)

α∗(d), π

−−−−−−→PTTS (A1′
pt, v

′);

a8/a. (A1
pt ⊕p A2

pt, v)
α∗(d), π1

−−−−−−→PTTS (A1′
pt, v

′) if A1
pt ⊕p A2

pt

α∗, p

−−−→π1 A1′
pt and

(A1
pt, v)

α∗(d), π1

−−−−−−→PTTS A1′
pt;

a8/b. (A1
pt ⊕p A2

pt, v)
α∗(d), π2

−−−−−−→PTTS (A2′
pt, v

′) if A1
pt ⊕p A2

pt

α∗, (1−p)
−−−−−−−→π2 A2′

pt and

(A2
pt, v)

α∗(d), π2

−−−−−−→PTTS A2′
pt;

a9. (A1
pt | A2

pt, v)
α∗(d), π

−−−−−−→PTTS (A1′
pt | norst(A2

pt), v
′) if (A1

pt, v)
α∗(d), π

−−−−−−→PTTS (A1′
pt, v

′);

a10. (Xpt, v)
α∗(d), π

−−−−−−→PTTS (P ′, v′) if (P [P/Xpt], v)
α∗(d), π

−−−−−−→PTTS (P ′, v′).

The last rule is the action rules for recursive process variable Xpt. It can be proven, based on
the rules u1-u10 and a1-a10, that PTTS (Apt, v0, F ) satisfies axioms Until and Delay, hence, it is
well defined.

Finally, we provide the novel bisimilarity definition, called probabilistic timed labeled bisimilarity
for cryptprobtime which enable us to prove or refute the security of systems. As mentioned before, the

definition, notations and notion of static equivalence and frames are kept unchanged in cryptprobtime.
The definition of probabilistic labeled bisimilarity is based on the well-known static equivalent
from the applied π-calculus [7].

Given a scheduler F , σFieldF is the smallest sigma field on ExecF that contains the basic
cylinders e ↑, where e ∈ ExecF . The probability measure ProbF is the unique measure on σFieldF

such that ProbF (e ↑) = PF (e).

Definition 9. (Probabilistic timed labeled bisimilarity for cryptprobtime) Let PTTSi(A
i
pt, v0, F )

= (Si, α × R
≥0 × Π, si0, −→PTTSi, U i, F ), i ∈ {1, 2} be two probabilistic timed transition systems

for cryptprobtime processes. Probabilistic timed labeled bisimilarity (≈pt) is the largest symmetric

relation R, R ⊆ S1 × S2 with s10 R s20, where each si is the pair of a closed cryptprobtime process and
a same initial valuation v0 ∈ Vc, (Ai

pt, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
τ(d), π

−−−−→PTTS1 s′1 for a scheduler F , then ∃ s′2 such that s2
τ(

∑
di), πi
=⇒ PTTS2 s′2 and

(a) ProbF (s1
τ(d), π

−−−−→PTTS1 s′1) = ProbF
′
(s2

τ(
∑

di), πi
=⇒ PTTS2 s′2);

(b) d = f(
∑

di) for some function f ;

(c) s′1 R s′2.

3. if s1
α(d), π

−−−−→PTTS1 s′1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ s′2 such that s2
α(

∑
dj), πi
=⇒ PTTS2 s′2 and

(a) ProbF (s1
α(d), π

−−−−→PTTS1 s′1) = ProbF
′
(s2

α(
∑

dj), πi
=⇒ PTTS2 s′2);
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(b) d = f(
∑

di) for some function f ;

(c) s′1 R s′2.

Where the extended processes A1 and A2 are the processes A1
pt and A2

pt after removing probabilistic
and time constructs, respectively.

From the second and third point and the axiom Delay for Ud(s), we have the following consequence:
Assume that the sequence of transitions from s2 to s′2 includes k intermediate states {s12, . . . , sk2},
and

∑
di = d0 + . . . + dk+1, where d0 and dk+1 are the time that the protocol spends at states

s2 and s′2, respectively, while each remaining di belongs to the state si2. Then we have U1
d (s1) and

U2
d0
(s2), . . . , U2

dk+1
(s′2).

The arrow
α

=⇒PTTS is the same as
τ−→
∗
PTTS

α−→PTTS
τ−→
∗
PTTS , where

τ−→
∗
PTTS represents a

series (formally, a transitive closure) of sequential transitions
τ−→PTTS .

∑
di on =⇒PTTS is the

sum of the time at each transition, representing the total time elapsed during the whole sequence
of transitions. Note that fn(A2

pt) and dom(A1
pt) is the same as fn(A2) and dom(A1). Moreover,

a process Apt is closed if its untimed and probability free counterpart A is closed.
Intuitively, in case A1

pt and A2
pt represent two protocols (or two variants of a protocol), then

Definition 9 means that (i) the outputs of the two processes cannot be distinguished by the
environment during their behaviors; (ii) the time that the protocols spend on the performed
operations until they reach the corresponding points is in some relationship defined by a function
f . Here f depends on the specific definition of the security property, for instance, it can return d
itself, hence, the requirement for time consumption would be d =

∑
di; (iii) the probability of the

two corresponding executions s1
τ(d), π

−−−−→PTTS1 s′1 and s2
τ(

∑
di), πi
=⇒ PTTS2 s′2, and s1

α(d), π

−−−−→PTTS1

s′1 and s2
α(

∑
dj), πi
=⇒ PTTS2 s′2 are equal.

In particular, the first point means that at first A1
pt and A2

pt are statically equivalent, that is,
the environment cannot distinguish the behavior of the two protocols based on their outputs; the
second point says that A1

pt and A2
pt remain statically equivalent after silent transition (internal

reduction) steps. Finally, the third point says that the behavior of the two protocols matches in
transition with the action α.

5 Modelling the operation of DTSN using cryptprobtime

5.1 DTSN - A Distributed Transport Protocol for Wireless Sensor Net-
works

DTSN [12, 14] is a reliable transport protocol developed for sensor networks where intermediate
nodes between the source and the destination of a data flow cache data packets in a probabilistic
manner such that they can retransmit them upon request. The main advantages of DTSN com-
pared to a transport protocol that uses a fully end-to-end retransmission mechanism are that (i) it
allows intermediate nodes to cache and retransmit data packets, hence, the average number of hops
a retransmitted data packet must travel is smaller than the length of the route between the source
and the destination; (ii) intermediate nodes do not store all packets but only stores with some p
probability, which makes it be more efficient. Note that in the case of a fully end-to-end reliability
mechanism, where only the source is allowed to retransmit lost data packets, retransmitted data
packets always travel through the entire route from the source to the destination. Thus, DTSN
improves the energy efficiency of the network compared to a transport protocol that uses a fully
end-to-end retransmission mechanism. Our secure protocol that we will introduce later preserves
these advantageous features of DTSN.

DTSN uses special packets to control caching and retransmissions. More specifically, there
are three types of such control packets: Explicit Acknowledgement Requests (EARs), Positive
Acknowledgements (ACK s), and Negative Acknowledgements (NACK s). The source sends an
EAR packet after the transmission of a certain number of data packets, or when its output buffer
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Figure 1: (A) DTSN Header. (B) SDTP Header.

becomes full, or when the application has not requested the transmission of any data during a
predefined timeout period or due to the expiration of the EAR timer (EAR timer)[12, 14]. An
EAR may take the form of a bit flag piggybacked on the last data packet or an independent
control packet1. An EAR is also sent by an intermediate node or the source after retransmission
of a series of data packets, piggybacked on the last retransmitted data packet[12, 14]. Upon receipt
of an EAR packet the destination sends an ACK or a NACK packet, depending on the existence
of gaps in the received data packet stream. An ACK refers to a data packet sequence number
n, and it should be interpreted such that all data packets with sequence number smaller than or
equal to n were received by the destination. A NACK refers to a base sequence number n and
it also contains a bitmap, in which each bit represents a different sequence number starting from
the base sequence number n. A NACK should be interpreted such that all data packets with
sequence number smaller than or equal to n were received by the destination and the data packets
corresponding to the set bits in the bitmap are missing.

Within a session, data packets are sequentially numbered (see Fig. 1A). The Acknowledgement
Window (AW ) is defined as the number of data packets that the source transmits before generating
and sending an EAR. The output buffer at the sender works as a sliding window, which can span
more than one AW . Its size depends on the specific scenario, namely on the memory constraints
of individual nodes.

In DTSN, besides the source, intermediate nodes also process ACK and NACK packets. When
an ACK packet with sequence number n is received by an intermediate node, it deletes all data
packets with sequence number smaller than or equal to n from its cache and passes the ACK
packet on to the next node on the route towards the source. When a NACK packet with base
sequence number n is received by an intermediate node, it deletes all data packets with sequence
number smaller than or equal to n from its cache and, in addition, it retransmits those missing
data packets that are indicated in the NACK packet and stored in the cache of the intermediate
node. The bits that correspond to the retransmitted data packets are cleared in the NACK packet,
which is then passed on to the next node on the route towards the source. If all bits are cleared
in the NACK , then the NACK packet essentially becomes an ACK referring to the base sequence
number, and it is processed accordingly. In addition, the intermediate node sets the EAR flag in
the last retransmitted data packet. The source manages its cache and retransmissions in the same
way as the intermediate nodes, without passing on any ACK and NACK packets.

5.2 Security issues in DTSN

Upon receiving an ACK packets, a intermediate node deletes from its cache ”old” stored messages
(sequence number less or equal to the sequence in the ACK packet). Thus, the intermediate node
believe that those data packets have been delivered. Therefore, an attacker may lead to permanent
loss of some data packets by forging or altering ACK packets. This may put the reliability service

1In order to decrease traffic overhead, we assume that EAR is always in the form of a bit flag piggybacked
[12, 14].
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provided by the protocol in danger. Moreover, an attacker can triggers unnecessary retransmission
of the corresponding data packets by either setting bits in the bit map of the NACK packets or
forging/altering NACK packets. Any unnecessary retransmission can lead to energy consumption
and interference. Note that, unnecessary retransmissions do not directly harm, it is clear that
such inefficiency is still undesirable. Moreover, replay ACK has harm because of the MaxSN
while replay NACK may even help the network.

Finally, the destination sends ACK or NACK packets upon reception of an EAR. Therefore,
attacks aiming at replaying or forging EAR information, where the attacker always sets the EAR
flag to 0 or 1, can have harmful effect. Always setting the EAR flag to 0 prevents the destination
from sending an ACK or NACK packet, while always setting to 1 makes the destination send
control packets unnecessarily.

The security issues regarding DTSN is equivalent to any other transport layers for sensor
networks which use ACK , NACK , EAR as control messages. For case of simplicity, we described
above the security issues regardingDTSN. For more information about the security issues in DTSN
please refer to [4]. For the above reasons a secure and reliable transport protocol (SDTP) had to
be developed.

5.3 DTSN in cryptprobtime

We assume the network topology S−I and I−D, where − represents a bi-directional link, while
S, I, D denote the source, an intermediate, and the destination node, respectively. Moreover, we
assume that each node has three cache entries, denoted by esk, e

i
k and edk, 1≤k≤ 3. The DTSN

protocol on this topology can be defined by the following cryptprobtime processes: upLayer, Src, Int,
Dst for specifying the behavior of the upper layer, the source, intermediate, and destination nodes.
The whole DTSN protocol for the given topology is specified by the parallel composition of these
four processes.

In the following, for the sake of brevity we let es1−3 range over es from index 1 to 3, and the
same is true for ei1−3 and ed1−3.

5.3.1 Modelling DTSN with cryptcal

As the first step, we define the pure (containing no time and probabilistic elements) version of each
processes. In the second and third steps, we extend these processes with time and probabilistic
behavior, respectively.

Process that models the (no timing) behavior of the upper layer:

upLayer(cntsq)
def
=

csup(= prvOK).hndlePck(cntsq) [ ] cerror(= ERROR).upLayer(decr(cntsq))
[ ] csessionEND(= sEND).nil [ ] cdup(packet).upLayer(cntsq);

hndlePck(cntsq)
def
=

[cntsq < mxSQ] (csup〈pck, cntsq〉.upLayer(incr(cntsq))) else
[cntsq = mxSQ] (csup〈pck, cntsq〉.0) else upLayer(cntsq);

Process that models the (no timing) behavior of the source:

Src(s, d, apID, es1−3, sID, earAtmp)
def
=

csup(= pck, sq).(
fwdDt(s, d, apID, es1−3, sID, sq)
[ ] rcvACKS (s, d, apID, es1−3, sID, earAtmp)
[ ] rcvNACKS (s, d, apID, es1−3, sID, earAtmp)) [ ] csessionEND(= sEND).nil;

======================================================
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fwdDt(s, d, apID, es1−3, sID, sq)
def
=

[es1 = E] let es1 = (s, d, apID, sID, sq) in nxtStp1 (s, d, apID, es1−3, sID, sq) else
[es2 = E] let es2 = (s, d, apID, sID, sq) in nxtStp2 (s, d, apID, es1−3, sID, sq) else
[es3 = E] let es3 = (s, d, apID, sID, sq) in nxtStp3 (s, d, apID, es1−3, sID, sq) else
cerror〈ERROR〉.Src(s, d, apID, es1−3, sID, earAtmp);

——————————————————————————————————————————

nxtStp1 (s, d, apID, es1−3, sID, sq)
def
=

[es2 = E] checkAW (s, d, apID, es1−3, sID, sq) else
[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
csi〈s, d, apID, sID, sq, ear, rtx〉.Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp2 (s, d, apID, es1−3, sID, sq)
def
=

[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
csi〈s, d, apID, sID, sq, ear, rtx〉.Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp3 (s, d, apID, es1−3, sID, sq)
def
=

let ear=1 in let rtx=0 in let earAtmp=1 in
csi〈s, d, apID, sID, sq, ear, rtx〉.Src(s, d, apID, es1−3, sID, earAtmp);

——————————————————————————————————————————

checkAW (s, d, apID, es1−3, sID, sq)
def
=

[sq = AW ] ( let ear=1 in let rtx=0 in let earAtmp=1 in
csi〈s, d, apID, sID, sq, ear, rtx〉.Src(s, d, apID, es1−3, sID)) else
(let ear=0 in let rtx=0 in csi〈s, d, apID, sID, sq, ear, rtx〉.
Src(s, d, apID, es1−3, sID, earAtmp));

======================================================

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(acknum).hndleACK(s, d, apID, es1−3, sID, acknum);

hndleACK (s, d, apID, es1−3, sID, acknum)
def
=

[5(es1) ≤ acknum] checkE1 (s, d, apID, es1−3, sID, acknum) else
[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else
[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);

——————————————————————————————————————————

checkE1 (s, d, apID, es1−3, sID, acknum)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else
[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);

checkE2 (s, d, apID, es1−3, sID, acknum)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);

checkE3 (s, d, apID, es1−3, sID, acknum)
def
= let (es3 = E) in

let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);
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======================================================

rcvNACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiNACK(acknum,b1).hndleACKNACKS1(s, d, apID, es1−3, sID, acknum, b1)
[ ] csiNACK(acknum,b1,b2).hndleACKNACKS2(s, d, apID, es1−3, sID, acknum, b1, b2)
[ ] csiNACK(acknum,b1,b2,b3).hndleACKNACKS3(s, d, apID, es1−3, sID, acknum, b1, b2, b3);

hndleACKNACKS1 (s, d, apID, es1−3, sID, acknum, b1)
def
=

[5(es1) ≤ acknum] checkE1Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es2) ≤ acknum] checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1);

checkE1Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1);

checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1);

checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es3 = E) in

let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1);

——————————————————————————————————————————

hndleACKNACKS2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
=

[5(es1) ≤ acknum] checkE1Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es2) ≤ acknum] checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es3) ≤ acknum] checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2);

checkE1Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es3) ≤ acknum] checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2);

checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2);

checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es3 = E) in

let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2);

——————————————————————————————————————————

hndleACKNACKS3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
=

[5(es1) ≤ acknum] checkE1Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es2) ≤ acknum] checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3);
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checkE1Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1)
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3);

checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3);

checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
= let (es3 = E) in

let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3);

——————————————————————————————————————————

isSet(s, d, apID, es1−3, sID, acknum, bt)
def
=

[5(es1) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else
[5(es2) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else
[5(es3) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else nil;

rtxPck(s, d, apID, es1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx〉.nil;

isSetLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

[5(es1) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
[5(es2) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
[5(es3) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
Src(s, d, apID, es1−3, sID, earAtmp);

rtxPckLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

let (ear = 1) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx〉.
Src(s, d, apID, es1−3, sID, earAtmp);

Process that models the (no timing) behavior of an intermediate node:

Int(ei1−3)
def
=

csi(s, d, apID, sID, sq, ear, rtx).hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
[ ] rcvACKI (ei1−3) [ ] rcvNACKI (ei1−3) [ ] csessionEND(= sEND).nil;

hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3);

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = E] let ei1 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = E] let ei2 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = E] let ei3 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3);
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rcvACKI (ei1−3)
def
=

cidACK(acknum).hndleACKI(s, d, apID, ei1−3, sID, acknum);

hndleACKI (s, d, apID, ei1−3, sID, acknum)
def
=

[5(ei1) ≤ acknum] checkE1I (s, d, apID, ei1−3, sID, acknum) else
[5(ei2) ≤ acknum] checkE2I (s, d, apID, ei1−3, sID, acknum) else
[5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else csiACK〈acknum〉.Int(ei1−3);

checkE1I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei1 = E) in [ei2 ≤ acknum] checkE2I (s, d, apID, ei1−3, sID, acknum) else
[5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else csiACK〈acknum〉.Int(ei1−3);

checkE2I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else
csiACK〈acknum〉.Int(ei1−3);

checkE3I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei3 = E) in csiACK〈acknum〉.Int(ei1−3);

rcvNACKI (s, d, apID, ei1−3, sID, earAtmp)
def
=

cidNACK(acknum,b1).hndleACKNACKI1(s, d, apID, ei1−3, sID, acknum, b1)
[ ] cidNACK(acknum,b1,b2).hndleACKNACKI2(s, d, apID, ei1−3, sID, acknum, b1, b2)
[ ] cidNACK(acknum,b1,b2,b3).hndleACKNACKI3(s, d, apID, ei1−3, sID, acknum, b1, b2, b3);

hndleACKNACKI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

[5(ei1) ≤ acknum] checkE1NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei2) ≤ acknum] checkE2NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

checkE1NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei1 = E) in [5(ei2) ≤ acknum] checkENck2I1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

checkE2NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei3 = E) in hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, bt)
def
=

[5(ei1) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else
[5(ei2) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else
[5(ei3) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else csiNACK〈acknum, bt〉.nil;

rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiACK〈acknum〉.nil;

hndleACKNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

[5(ei1) ≤ acknum] checkE1NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei2) ≤ acknum] checkE2NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);
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checkE1NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei1 = E) in [5(ei2) ≤ acknum] checkENck2I2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

checkE2NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei3 = E) in hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

[5(ei1) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

[5(ei2) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

[5(ei3) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

b1NotNxtb2 (s, d, apID, ei1−3, sID, acknum, b2);

b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2)
def
=

[5(ei1) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei2) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei3) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else csiNACK〈acknum, b2〉.nil;

b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiACK〈acknum〉.nil;

b1NotNxtb2 (s, d, apID, ei1−3, sID, acknum, b2)
def
=

[5(ei1) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei2) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei3) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else csiNACK〈acknum, b1, b2〉.nil;

b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiNACK〈acknum, b1〉.nil;

hndleACKNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3)
def
=

[5(ei1) ≤ acknum] checkE1NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
[5(ei2) ≤ acknum] checkE2NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
[5(ei3) ≤ acknum] checkE3NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
hndleNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3);

The functions checkE1NckI3, checkE2NckI3, checkE3NckI3 and hndleNACKI3 are specified
in the same concept as the functions checkE1NckI3, checkE2NckI3, and hndleNACKI2. Next we
turn to specify the behavior of the destination node.

Process that models the (no timing) behavior of the destination:

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq)
def
=

cid(s, d, apID, sID, sq, ear, rtx).hndleDtDst [ ] csessionEND(= sEND).nil;
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hndleDtDst
def
=

/* Duplicated → check if EAR bit is set → missing packets */
[ed1 = (s, d, apID, sID, sq)] checkEARis1 else
[ed2 = (s, d, apID, sID, sq)] checkEARis1 else

/* NOT duplicated → store → fw to uplayer in-seq packets */
[ed3 = (s, d, apID, sID, sq)] checkEARis1 else strAndFwDst ;

checkEARis1
def
=

[ear = 1] sndACKNACKDst else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

sndACK1NACKDst
def
=

/* if nackNbr = Null snd ACK, if nackNbr > 0 snd NACK*/
[nackNbr = 0] cidACK〈ackNbr〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[nackNbr = 1] 1BitInNACK else
[nackNbr = 2] 2BitInNACK else

/* We allow this case for modelling the attacker ability to set sq in EAR to 4. */
[nackNbr = 3] cidNACK〈ackNbr, 1, 2, 3〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

1BitInNACK
def
=

/* Assume dst knows it should get: 1, 2, 3. Hence num of NACK bits ≤ 3 */
[sq = 2] cidNACK〈ackNbr, 1〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[sq = 3] let sqnm=1 in checkMissingPcktsSQE3 else
[sq > 3] let sqnm=1 in checkMissingPcktsSQG3;

checkMissingPcktsSQE3
def
=

[sqnm ≤ 2] goOnMissingPcktsSQE3 else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

goOnMissingPcktsSQE3
def
=

[5(ed1) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=inc(sqnm) in checkMissingPcktsSQE3 ;

checkMissingPcktsSQG3
def
=

[sqnm ≤ 3] goOnMissingPcktsSQG3 else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

goOnMissingPcktsSQG3
def
=

[5(ed1) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=inc(sqnm) in checkMissingPcktsSQG3 ;

2BitInNACK
def
=

/* Assume dst knows it should get: 1, 2, 3. Hence num of NACK bits ≤ 3 */
[sq = 3] cidNACK〈ackNbr, 1, 2〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[sq > 3] let sqnm=1 in check2BitMissingPckts1stBit ;

check2BitMissingPckts1stBit
def
=

[sqnm > 3] Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed1) = sqnm] let toRTX1=sqnm in let sqnm=inc(sqnm) in goOn2BitMissingPckts2ndBit else
[5(ed2) = sqnm] let toRTX1=sqnm in let sqnm=inc(sqnm) in goOn2BitMissingPckts2ndBit else
[5(ed3) = sqnm] let toRTX1=sqnm in let sqnm=inc(sqnm) in goOn2BitMissingPckts2ndBit else
let sqnm=inc(sqnm) in goOn2BitMissingPckts1stBit ;
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check2BitMissingPckts2ndBit
def
=

[sqnm > 3] Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed1) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=inc(sqnm) in goOn2BitMissingPckts2ndBit ;

strAndFwDst
def
=

/* If in-seq (i.e., nxtsq = sq) → store and fw to upLayer, else only store */
[sq = nxtsq] strSndUp else [sq > nxtsq] strOnly;

strSndUp
def
=

/* Store and send to upLayer */
[ed1 = E] let ed1 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.

/* Decrease nackNbr, update ackNbr, increase nxtsq, finally check the EAR bit */
let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = inc(nxtsq) in
checkEARis1 else [ed2 = E] let ed2 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.
let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = inc(nxtsq) in
checkEARis1 else [ed3 = E] let ed3 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.
let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = inc(nxtsq) in
checkEARis1 ;

strOnly
def
=

/* Store and increase nackNbr, finally check EAR bit */
[ed1 = E] let ed1 = (s, d, apID, sID, sq) in let nackNbr = inc(nackNbr) in checkEARis1 else
[ed2 = E] let ed2 = (s, d, apID, sID, sq) in let nackNbr = inc(nackNbr) in checkEARis1 else
[ed3 = E] let ed3 = (s, d, apID, sID, sq) in let nackNbr = inc(nackNbr) in checkEARis1 ;

Finally, the DTSN protocol for this topology can be defined as the parallel compisition of the
three processes:

/* The DTSN protocol for the given topology */

DTSN (cntsq, s, d, apID, ei1−3, sID, earAtmp, ei1−3, e
d
1−3, ackNbr, nackNbr, toRTX1, nxtsq)

def
=

upLayer(cntsq) | Src(s, d, apID, ei1−3, sID, earAtmp) | Int(ei1−3)
| Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

In the rest of the paper we will refer the process DTSN (cntsq, s, d, apID, ei1−3, sID, earAtmp,
ei1−3, ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) as DTSN(params) for brief presentation. The
behavior of the whole protocol for the given topology is defined as follows:

/* The DTSN protocol for the given topology with variable init */

Prot(params)
def
= let (es1, e

s
2 , es3, e

i
1, e

i
2, e

i
3, e

d
1, e

d
2 , ed3, cntsq) = (E, E, E, E, E, E, E, E, E, 1)

in DTSN(params);

5.3.2 Using crypt time to specify timed behavior of DTSN

In the second step, we will apply the time constructs of crypt time to define the behavior of timers
in DTSN. We modify some of the processes in Section 5.3.1 as follows:

In the case of the DTSN we have to introduce two clock variables, xact
c for activity timer, and

xear
c for ear timer. According to the specification of the DTSN protocol [12], both clocks have the

scope over all the three process, hence, to model timeout we make use of the time invariant that
we define on the process DTSN(params). As the result we model DTSN for the given topology as
the process
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‖ xact
c , xear

c ‖ { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 Prot(params);

The Src process then is extended with the subprocesses actTimeOut and earTimeOut that
describe the behavior of the protocol in case of activity timer and ear timer expired, respectively:

The source handling Activity and EAR timer expiration:

Src(s, d, apID, es1−3, sID, earAtmp)
def
=

csup(= pck, sq).( { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 fwdDt(s, d, apID, es1−3, sID, sq)

[ ] { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 rcvACKS (s, d, apID, es1−3, sID, earAtmp)

[ ] { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 rcvNACKS (s, d, apID, es1−3, sID, earAtmp)

)
[ ] { xact

c ≤ Tact, x
ear
c ≤ Tear } 
 csessionEND(= sEND).nil

[ ] { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 (xact

c = Tact) ↪→ τ .actTimeOut
[ ] { xact

c ≤ Tact, x
ear
c ≤ Tear } 
 (xear

c = Tear) ↪→ τ .earTimeOut ;

Activity timer expiration:
/* We note that there is no time constraint at the beginning, namely, it is true (tt) */

actTimeOut
def
=

[lstAckNumSrc = 3] csessionEND 〈sEND〉.nil
[ ]
[lstAckNumSrc < 3] csi 〈EAR〉.
‖ xact

c , xear
c ‖ { xact

c ≤ Tact, x
ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp);

EAR timer expiration:
/* We note that there is no time constraint at the beginning, namely, it is true (tt) */

earTimeOut
def
=

let earAtmp = inc(earAtmp) in
(
[earAtmp > earMAX ] csessionEND 〈sEND〉.nil
[ ]
[earAtmp ≤ earMAX ] csi 〈EAR〉.
‖ xact

c , xear
c ‖ { xact

c ≤ Tact, x
ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp)

);

In addition we have to add the resetting of the timers at the source node after handling
ACK/NACK packets. Hence, the processes rcvACKS and rcvNACKS are extended as follows:

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(acknum).{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 hndleACK(s, d, apID, es1−3, sID, acknum);

hndleACK (s, d, apID, es1−3, sID, acknum)
def
=

[5(es1) ≤ acknum] { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE1 (s, d, apID, es1−3, sID, acknum) else

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 [5(es2) ≤ acknum]

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE2 (s, d, apID, es1−3, sID, acknum) else

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 [5(es3) ≤ acknum]

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE3 (s, d, apID, es1−3, sID, acknum) else

/* Here we add the resetting of the two timers on process Src */
{ xact

c ≤ Tact, x
ear
c ≤ Tear } 
 let (earAtmp = 0) in

‖ xact
c , xear

c ‖ { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp);

checkE1 (s, d, apID, es1−3, sID, acknum)
def
= let (es1 = E) in

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 [5(es2) ≤ acknum]

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE2 (s, d, apID, es1−3, sID, acknum) else

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 [5(es3) ≤ acknum]
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{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE3 (s, d, apID, es1−3, sID, acknum) else

/* Here we add the resetting of the two timers on process Src */
{ xact

c ≤ Tact, x
ear
c ≤ Tear } 
 let (earAtmp = 0) in

‖ xact
c , xear

c ‖ { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp);

checkE2 (s, d, apID, es1−3, sID, acknum)
def
= let (es2 = E) in

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 [5(es3) ≤ acknum]

{ xact
c ≤ Tact, x

ear
c ≤ Tear } 
 checkE3 (s, d, apID, es1−3, sID, acknum) else

/* Here we add the resetting of the two timers on process Src */
{ xact

c ≤ Tact, x
ear
c ≤ Tear } 
 let (earAtmp = 0) in

‖ xact
c , xear

c ‖ { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp);

checkE3 (s, d, apID, es1−3, sID, acknum)
def
= let (es3 = E) in

/* Here we add the resetting of the two timers on process Src */
{ xact

c ≤ Tact, x
ear
c ≤ Tear } 
 let (earAtmp = 0) in

‖ xact
c , xear

c ‖ { xact
c ≤ Tact, x

ear
c ≤ Tear } 
 Src(s, d, apID, es1−3, sID, earAtmp);

As for rcvNACKS, following the concept in case of rcvACKS, in subprocesses isSetLst and
rtxPckLst we put the construct ‖ xact

c , xear
c ‖ before process Src. According to the definition of

DTSN [12], the activity timer expiration also affect the behavior of the destination. Upon activity
timer expiration, the destination checks if all the packets has been received and confirmed, and in
case yes the session terminates with success, otherwise, it terminates with error. We simplify the
model, without lost of correctness, by not specify explicitly this behavior for the destination, but
by the channel cendSession. When activity timer expired the source sends session-end signal, which
is then received by the destination (and intermediate node) on channel cendSession which followed
by the special process nil. Intuitively, the end session command is given by the source which is
then followed by the other processes. We note that the action τ in (xact

c = Tact) ↪→ τ .actTimeOut
is the silent action that we introduce only because we want to follow the syntax of the calculus
proposed in [5] which makes the process to be representable in timed automaton.

In addition to the processes above, the general rule is that the time invariant construct {
xact
c ≤ Tact, x

ear
c ≤ Tear } 
 is put before each (sub)process of form α∗≺At, for some action α∗,

within DTSN(params). The clock resetting constructs ‖ xact
c , xear

c ‖ are only added at the places
discussed above, where the clocks are reset according to the specification.

5.3.3 Using cryptprobtime to specify probabilistic behavior of DTSN

In the third step, we extend the description of the DTSN protocol in crypt time with probabilistic
choice. According to the definition of the DTSN protocol, the probabilistic choice is placed within
process Int(eii−3), which is the specification of intermediate nodes. In particular, after receiving
a packet an intermediate node stores the packet in its cache with probability p. To model this
behavior we add the probabilistic choice construct in the sub-process hndleDtI (s, d, apID, sID,
sq, ear, rtx, ei1−3).

hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3) ⊕p FwI (s, d, apID, sID, sq, ear, rtx, ei1−3);

FwI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
= cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3);

we add the probabilistic choice

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3) ⊕p FwI (s, d, apID, sID, sq, ear, rtx, ei1−3),
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in which process strAndFwI, which describes when the intermediate node stores the received
packet, is chosen with probability p and process FwI, which specifies that the received packet is
forwarded without storing, is selected with 1− p.

6 Modelling the operation of SDTP using cryptprobtime

6.1 SDTP - A Secure Distributed Transport Protocol for Wireless Sen-
sor Networks

The main security solution of the SDTP protocol is as follows [4]: each (sequentially numbered)
data packet is extended with an ACK MAC (Message Authentication Code) and a NACK MAC,
which are computed over the whole packet with two different keys, an ACK key (KACK ) and a
NACK key (KNACK ). Both keys are known only to the source and the destination and are specific
to the data packet; hence, these keys are referred to as per-packet keys.

Upon receiving a data packet, the destination can check the authenticity and integrity of each
received data packet by verifying the two MAC values. Upon receipt of an EAR packet, the
destination sends an ACK or a NACK packet, depending on the gaps in the received data buffer.
In case an ACK packet refers to a data packet with sequence number n, the destination reveals
its ACK key; similarly, when it wants to signal that this data packet is missing, the destination
reveals its NACK key.

Any intermediate node storing the relevant packets can verify if the ACK or NACK message
it receives is authentic by checking if the appropriate MAC is verified correctly with the included
key. For each verification of the ACK key, the intermediate node deletes the corresponding data
packets (sequence number smaller than or equal to n) from its cache. For each verification of the
NACK key, the intermediate node retransmits the corresponding data packet (if stored), unsets
the bit, and removes the corresponding key. In case the bitmap becomes clear, the intermediate
node sends an EAR message and the NACK becomes an ACK message.

The ACK and NACK key generation and management of SDTP is as follows: that the source
and the destination share a secret which we call the session master key, and we denote it by K.
From this, they both derive an ACK master key KACK and a NACK master key KNACK for the
session as follows:

KACK = PRF(K;“ACK master key”; SessionID)
KNACK = PRF(K;“NACK master key”; SessionID)

where PRF is the pseudo-random function SessionID is the DTSN session identifier.

The ACK key K
(n)
ACK and the NACK key K

(n)
NACK for the n-th packet of the session (i.e., whose

sequence number is n) are computed as follows:

K
(n)
ACK = PRF(KACK ; “per packet ACK key”; n)

K
(n)
NACK = PRF(KNACK ; “per packet NACK key”; n)

Note that both the source and the destination can compute all these keys as they both possess
the session master key K. Moreover, PRF is a one-way function, therefore, when the ACK and
NACK keys are revealed, the master keys cannot be computed from them, and consequently, as
yet unrevealed ACK and NACK keys remain secrets too.

6.2 SDTP in cryptprobtime

To model the cryptographic primitives and operation we add the following equations into the set
of equational theories:

Functions : K (n, ACK ); K (n, NACK ); MAC (t, K (n, ACK ));
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Equations : CheckMac(MAC (t, K (n, ACK )), K (n, ACK )) = ok;
CheckMac(MAC (t, K (n, NACK )), K (n, NACK )) = ok.

where functions K (n, ACK ) and K (n, NACK ) specifies the ACK and NACK per-packet keys. In
order to simplify the modelling procedure, we apply the abstraction in which instead of modelling
the whole key hierarchy given in [4], we assume that the per-packet keys, K (n, ACK ) and K (n,
NACK ) for each valid sequence number n in one session, are not available for the attacker. The
functions MAC (t, K (n, ACK )) and MAC (t, K (n, NACK )) model the MAC value computed over
message t using a per-packet key. The two equations in the set of equational theories represents
the verification of MAC values with the correct keys. The special constant (i.e., a function with
zero arity) ok is used to model the successful verification.

To model the SDTP protocol we extend the specification of the DTSN protocol in the following
way. First, the source node extends each packet with an ACK MAC and a NACK MAC, which
is accomplished by modifying the subprocesses nxtStp1, nxtStp2, nxtStp3 and checkAW within
process fwdDt of Src.

nxtStp1 (s, d, apID, es1−3, sID, sq)
def
=

[es2 = E] checkAW (s, d, apID, es1−3, sID, sq) else
[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp2 (s, d, apID, es1−3, sID, sq)
def
=

[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp3 (s, d, apID, es1−3, sID, sq)
def
=

let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkAW (s, d, apID, es1−3, sID, sq)
def
=

[sq = AW ] ( let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉.Src(s, d, apID, es1−3, sID)) else
(let ear=0 in let rtx=0 in csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉.
Src(s, d, apID, es1−3, sID, earAtmp));

In addition, we have to extend the cryptprobtime specification of DSTN with the verification of
ACK MACs and NACK MACs when the source receives ACK and NACK packets. Formally, we
extend the processes
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rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(acknum, ackkey, nackkey).hndleACK(s, d, apID, es1−3, sID, acknum, ackkey, nackkey);

the expected data on channel csiACK is the extended by ackkey, nackkey that represent per-packet
ACK and NACK keys, which are also included as the parameters of process hndleACK and its
sub-processes checkE1, checkE2 and checkE3.

hndleACK (s, d, apID, es1−3, sID, acknum, ackkey, nackkey)
def
=

[5(es1) ≤ acknum] [CheckMac(6(es1), ackkey) = ok]
checkE1 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
[5(es2) ≤ acknum] [CheckMac(6(es2), ackkey) = ok]
checkE2 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
[5(es3) ≤ acknum] [CheckMac(6(es3), ackkey) = ok]
checkE3 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);

we extend the specification of hndleACK with the verification of the stored ACK MAC using
the keys included in the received ACK packets. This is modelley by the if construct in cryptprobtime:
[CheckMac(6(esi ), ackkey) = ok]. In particular, CheckMac(6(esi ), ackkey) is the verification of ACK
MAC, which is stored in the 6-th place in the cache entry esi . The same extension is applied in
processes checkE1, checkE2 and checkE3.

When a NACK packet has been received the SDTP protocol includes verification of ACK
MAC and NACK MACs. The structure of the NACK packet compared to DTSN case is extended
with an ACK key (if any) and some NACK keys depending on the number of bits in the NACK
packet. Hence, the expected data on channel csiNACK is extended with the ackkey and nackkey
parameters, for instance, instead of csiNACK(acknum, b1) we have csiNACK(acknum, b1, ackkey,
nackkey1). Each process hndleACKNACKSi and checkEiNckj includes the received ACK key and
NACK keys as process parameters. Namely, the verification part [5(esi ) ≤ acknum] is extended
with [CheckMac(6(esi ), ackkey) = ok] [CheckMac(7(esi ), nackkey) = ok] for each i ∈ {1, 2, 3}.

The parameters of processes isSet(s, d, apID, es1−3, sID, acknum, b) and isSetLst(s, d, apID,
es1−3, sID, acknum, b) are extended with the corresponding ackkey and nackkey. Finally, processes
rtxPck and rtxPckLst are modified as follows:

rtxPck(s, d, apID, es1−3, sID, acknum, bt)
def
=

let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
let (ear = 0) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx, ACKMAC, NACKMAC〉.nil;

and

rtxPckLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
let (ear = 1) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx, ACKMAC, NACKMAC〉.
Src(s, d, apID, es1−3, sID, earAtmp);

Now we turn to modifying process Int(ei1−3) according to the definition of the SDTP protocol.
Process hndleDtI beside the parameters defined in case of DTSN, also includes ackmac and nack-
mac. Each cache entry at intermediate nodes stores the packets that contains an ACK MAC and
NACK MAC at the 6-th and 7-th places, respectively.

40



hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac)
def
=

[ei1 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac);

In process strAndFwI each data packet is stored in the cache entry and then forwarded to the
next node:

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac)
def
=

[ei1 = E] let ei1 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei2 = E] let ei2 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei3 = E] let ei3 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3);

in process rcvACKI the ACK message format required to be received on channel cidACK is (ack-
num, ackkey), and process hndleACKI contains ackkey as its parameter.

rcvACKI (ei1−3)
def
=

cidACK(acknum, ackkey).hndleACKI(s, d, apID, ei1−3, sID, acknum, ackkey);

The specifications of processes hndleACKI, checkE1I, checkE2I and checkE3I are modified simi-
larly in case of processes hndleACK and its sub-processes checkE1, checkE2 and checkE3 of the
Src process.

Regarding process rcvNACKI (s, d, apID, ei1−3, sID, earAtmp) that specifies the behavior when
an intermediate node receives a NACKmessage, the expected messsage format on channel cidNACK

is the format of NACK messages, e.g., cidNACK(acknum,b1 ) is modified to cidNACK(acknum, b1,
ackkey, nackkey). Processes hndleACKNACKIi for i ∈ {1, 2, 3} are extended with paramemeters
ackkey and a given number of nackkey.

Finally, the process Dst for the destination node is modified such that an SDTP packet is
expected on channel cid, namely, cid(s, d, apID, sID, sq, ear, rtx, ackmac, nackmac). In process
hndleDtDst the comparison [edi = (s, d, apID, sID, sq, ackmac, nackmac)] is changed to [edi = (s,
d, apID, sID, sq, ackmac, nackmac)]. One most important change resulted from the specification
of the SDTP is that the destination node includes ACK and NACK keys in the ACK and NACK
messages. These relevant changes is made in the process sndACK1NACKDst.

sndACK1NACKDst
def
=

/* if nackNbr = Null snd ACK, if nackNbr > 0 snd NACK*/
[nackNbr = 0] let Kack = K(ackNbr, ACK) in cidACK〈ackNbr, Kack〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[nackNbr = 1] 1BitInNACK else
[nackNbr = 2] 2BitInNACK else

/* We allow this case for modelling the attacker ability to set sq in EAR to 4. */
[nackNbr = 3] let Kack = K(ackNbr, ACK) in let Knack1 = K(1, NACK) in

let Knack2 = K(2, NACK) in let Knack3 = K(3, NACK) in
cidNACK〈ackNbr, 1, 2, 3, Kack, Knack1, Knack2, Knack3〉.
Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);
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The let constructs of type let Kack = K(ackNbr, ACK) in and let Knack1 = K(1, NACK) in are
used to represent that the destination generates the ACK and NACK keys for ACK and NACK
messages, respectively. The rest two cases where there is one bit or there are two bits in NACK
message, represented by processes 1BitInNACK and 2BitInNACK are modified in the same way.

7 Security Analysis of DTSN and SDTP using cryptprobtime

7.1 Security Analysis of the DTSN protocol

Security properties we want to check in case of DTSN protocol is that how secure it is against
the manipulation of control and data packets. In particular, can the manipulation of packets
result in unintentional closing of a session or preventing DTSN from achieving its goal. As already
mentioned before, DTSN is vulnerable to the manipulation of control packets, where the attacker
can modify the base number in ACK packets causing that the stored packets are deleted from the
cache although they should not be (by increasing the base number), or causing unnecessary storage
of the already delivered packets (by decreasing the base number). In this section we demonsrate

how to formally prove the security or vulnerability of DTSN using cryptprobtime.
We assume that an attacker can intercept outputs of the honest nodes and modify them

according to its knowledge and computation ability. The attacker’s knowledge consists of the
intercepted outputs during the protocol run and the information it can create, for instance, its
private keys or fake data such as packet IDs, etc. The ability of the attacker(s) is that it can
modify the elements of the plaintexts, such as the base number and the bits of the ACK/NACK
messages, the EAR and RTX bits and sequence number in data packets. Further, attacker(s)
can send packets to its neighborhood. To describe the activity of the attacker(s) we apply the
concept used in the applied π-calculus that model the presence of the attacker(s) in an implicit
way, in the form of the environment. Every message that is output by the nodes taking part in the
protocol is available for the environment, and although in case of sensor nodes an internal attacker
(compromised node) cannot intercept the messages sent by non-neighbor nodes, it is still suitable
for our attacker model in which there can be more than one attacker who can even cooperate with
each other. In particular, in our model we consider a specific topology of honest nodes (source,
intermediate, destination, and the number and place of the attacker(s) in the given network are
not explicitly specified, but they are only revealed and to be made explicit according to a given
attack scenario.

Figure 2: The difference between the real and ideal version of the DTSN protocol.

We define the ideal version of the process Prot(params), denoted by Protideal(params), which
contains the ideal version of DTSN(params):

/* The ideal version of the DTSN protocol for the given topology */

Protideal(params)
def
=

let (es1, e
s
2 , es3, e

i
1, e

i
2, e

i
3, e

d
1, e

d
2 , ed3, cntsq) = (E, E, E, E, E, E, E, E, E, 1)

in DTSNideal(params);
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The main difference betweenDTSNideal(params) andDTSN(params) is that inDTSNideal(params)
honest nodes always are informed about what kind of packets or messages they should receive from
the honest sender node. This can be achieved by defining hidden or private channels between hon-
est parties, on which the communication cannot be observed by attacker(s). In Figure 2 we
show the difference in more details. In the ideal case, three private channels are defined that are
not available the attacker(s). Src, Int and Dst denote the source, intermediate and destination.
Channels cprivSD, cprivID and cprivSI are defined between Src and Dst, Int and Dst, Src and Int,
respectively. Whenever S sends a packet pck on public channel csi, it also informs I about what it
should receive, by sending pck directly via private channel cprivSI to I, so when I receives a packet
via csi it compares the message with pck. The same happens when I sends a packet to D. The
channels cprivSD and cprivID can be used by the destination to inform S and I about the messages
to be retransmitted. We recall that the communication via private channel is not observable by
the environment, hence, it can be seen as a silent τ transition. Note that for simplicity we omitted
to include the upper layer and channel csup in the Figure.

With this definition of Protideal(params) we ensure that the source and intermediate nodes are
not susceptible to the modification or forging of ACK and NACK messages since they make the
correct decision either on retransmitting or deleting the stored packets independently from the
content of the acknowledgement messages. Therefore, to show that DTSN is vulnerable to the
modification or forging of ACK and NACK messages we prove that the operation of Prot(params)
is not probabilistic timed bisimilar to Protideal(params).

First of all, in Prot(params) and Protideal(params) the source and intermediate nodes output
the constants CacheEmptyS and CacheEmptyI respectively whenever they have emptied their
buffers after processing an ACK or NACK message. This is defined by the following cryptprobtime

code fragment:
In case of the source node (process Src), outputting of the constant CacheEmptyS is placed at

the end of processes checkE1, checkE2 and checkE3, checkE1Nck1-3, checkE2Nck1-3, checkE3Nck1-
3 within the subprocesses procCacheDeletedS and procCacheDeletedSNck1-3. The process proc-
CacheEmptyS is invoked in which the constant CacheEmptyS is output whenever the number of
the empty cache entries, nbrEcache, is 3.

With the analogous concept, in process Int the output of the constant CacheEmptyI is placed
at the end of processes checkE1I, checkE2I and checkE3I, checkE1NckI1-3, checkE2NckI1-3,
checkE3NckI1-3 within the subprocesses procCacheDeletedI and procCacheDeletedINck1-3.

For the destination node we specify the process Dst such that the variable nackNbr is output
via a public channel cncknot0 (i) whenever the number of bits (i.e., the variable nackNbr) within the
NACK message to be sent is greater than zero; and (ii) whenever the source outputs the constant

CacheEmptyS, with the assumption nackNbr > 0. This is solved by the following cryptprobtime code
part in process Dst.

[nackNbr > 0] cdeltd(= CacheEmptyS ).cncknot0〈nackNbr〉.
Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

This process says that if (nackNbr > 0) and Dst receives the constant CacheEmptyS on channel
cdeltd then it outputs nackNbr on channel cncknot0, followed by invoking recursively process Dst.

Let process Prot’(params) be a process such that its frame ϕ(Prot’(params)) contains the
substitution σ1 = {. . . , CacheEmptyS/xi, nackNbr/xj , . . . } or σ2 = {. . . , CacheEmptyI /yi,
nackNbr/yj , CacheEmptyS/xi, nackNbr/xj , . . . }. In case of σ1 the fact that CacheEmptyS and
nackNbr is next to each other in this order, that is they are output right after each other, represents
the state when all the cache entries of the source have been deleted and the number of packets
to be retransmitted is greater than zero, and σ2 means that both the caches of the intermediate
and source node has been emptied, however, the number of packets to be retransmitted is greater
than zero.

Both σ1 and σ2 represent an undesired situation because according to the specification of
DTSN the source should store the packets to be retransmitted when a NACK packet is sent by
the destination.
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According to Definition 9 processes Prot(params) and Protideal(params) are not probabilistic
timed bisimilar because the third point of the definition is violated. Let s = (Prot(params), v)
and sideal = (Protideal(params), v), where v denotes the initial clock valuation (where the two
clocks xact

c and xear
c are reset) at both states s and sideal. Further, let s′ = (Prot’(params), v′),

where Prot’(params) and v′ is the process that represents undesired state, discussed above, and
the corresponding valuation respectively. We assume that starting from s and sideal the Definition
9 is satisfied until some state pair (si, s

ideal
i ) on the execution path of s and sideal respectively.

Morever, si is such a state from which there is a transition leading from si to s′, si
α(d), π

−−−−→PTTS1

s′, where α is outputting the constant nackNbr, (i.e., α = νz.cncknot0〈z〉) where nackNbr is bound
to z. Finally, for the proof of the first vulnerability that does not include time issues, we assume
that each operation takes a constant time d.

In case of DTSN protocol the set of distributions contains only one distribution π, Π = {π},
which is valid either in case of Prot(params) or Protideal(params). Hence, in every case the
scheduler F defined for DTSN chooses π at each transition step. In order to prove the insecurity
of DTSN, without lost of generality, we define π such that it chooses the transition leads to state
(strAndFwI, vk) with probability p, and to (FwI, vl) with 1 − p. All the other transitions are
chosen with probability 1 (after the nondeterministic choice has been resolved, if any).

According to the third point of Definition 9 and the assumptions above, the following should
be valid to prove the probabilistic timed bisimilarity between Prot(params) or Protideal(params):

1. if si
α(d), π

−−−−→PTTS1 s′ and fv(α) ⊆ dom(Prot i(params)) ∧ bn(α) ∩ fn(Prot idealj (params)) =

∅, then ∃ s
′
ideal such that sideal

α(
∑

dj), π
=⇒PTTS2 s

′
ideal and

(a) ProbF (si
α(d), π

−−−−→PTTS1 s′) = ProbF (sideal
α(

∑
dj), π

=⇒PTTS2 s
′
ideal);

(b) d =
∑

di

(c) s′ R s
′
ideal .

We define function f that returns
∑

dj itself. Due to the requirement s′ R s
′
ideal the processes in the

two states have to be static equivalent (first point of Definition 9), which means (according to the
definition of static equivelance) that the frame of the proces in s

′
ideal has to contain the constants

nackNbr, CacheEmptyS and CacheEmptyI. Note that to be static equivalence it is required that
these constants are in the same places as in the σ1 or σ2.

To explain the proof we denote the source, intermediate and destination node by S, I and D.
We distinguish three types of attacks that concern (separately) the violation of the three points
of Definition 9, respectively.

Scenario 1 (SC-1): In the first attack scenario the third point of the definition is violated.
In case of Prot(params) the attacker can achieve that S or I (or both) empties its cache (via
some action trace) with probability pr > 0, which cannot be simulated (via the same action trace)
in the ideal process Protideal(params) when S or I (or both) empties its cache only with some
zero probability. This attack scenario comes with the topologies S − A − I − D or S − I −
A − D, where A represents a compromised node. In the first topology, A does not forward the
packets come from S, instead it generates a fake ACK message with a large base number and
sends it to S which deletes its cache. Similarly, in the second topology A can make I and S free
their caches. Moreover, these attack scenarios and statements are still valid in case of external
attacker(s). Note that in these two attack scenarios the first point of Definition 9 is not necessarily
be violated since in the ideal version both CacheEmptyS and CacheEmptyI can be output based
on the normal operation of DTSN.

The following execution from state s to s′ cannot be simulated by any execution trace of sideal

in terms of probabilistic timed bisimilarity.

• s
α1(d), π

−−−−→PTTS1 s1, where α1 = νz1.csup〈z1〉 with {1/z1}. The upper layer requests the source
to forward the packet with sequence number 1.
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• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = csup(z1). The source S receives the request to forward the
packet with sequence number 1.

• s2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0 )/z2}. The source
sends (s, d, apID, sID, 1, 0, 0 ) to the intermediate node. This message can be obtained by
the attacker(s) (i.e., the environment).

• s3
α4(d), π

−−−−→PTTS1 s4, where α4 = csiACK(5(z2)) where 5(z2) represents the 5th element of the
packet, which is the seq number 1. The packet sent by S in the 2nd point is intercepted by
attacker(s) who, instead of forwarding it, sends an ACK with base number 1 to S.

• s4
α5(d), π

−−−−→PTTS1 s5, where α5 = νz3.cemptyC〈z3〉 with {CacheEmptyS/z3}. The constant
CacheEmptyS is output upon node S erased all of its cache entries.

• s5
α6(d), π

−−−−→PTTS1 s6, where α6 = νz4.cncknot0〈z4〉 with {nackNbr/z4}. The constant nackNbr
is output by D signalling that the number of packets to be retransmitted is greater than
zero.

Based on this action transition trace, we can see that ProbF (s4
α5(d), π

−−−−→PTTS1 s5) > 0 while there

is no any sideal5 such that ProbF (sideal4

α5(d), π
=⇒PTTS2 sideal5 ) > 0, which violates the third point of

Definition 9. We note that from s until s4 Prot ideal(params) can simulate Prot(params) via the
same actions and corresponding states sideal to sideal4 .

Scenario 2 (SC-2): The violation of the first point of Definition 9 is caused by the second
attack scenario where A can make both S and I empty their buffers although the destination
requires retransmission of some packets. This undesired state is defined by process Prot’(params)
and σ2. In the topology S − I − A − D, first, S sends I a packet in which (sq, ear, rtx ) = (1,
0, 0), then I stores it and forwards to the packet to A who manipulates the packets and sends
(2, 1, 0) to D. As the result, D sends a NACK message requesting the retransmission of the first
packet. Meanwhile instead of forwarding the NACK message sent by the destination, A sends a
fake ACK message causing I and S erase their buffers. To summarize, in this scenario the attacker
can achieve that S and I empty all of their cache entries but the destination is waiting for some
packets to be retransmitted.

The following execution from state s to s′ cannot be simulated by any execution trace of sideal

in terms of probabilistic timed bisimilarity.

• s
α1(d), π

−−−−→PTTS1 s1, where α1 = νz1.csup〈z1〉 with {1/z1}. The upper layer requests the source
to forward the packet with sequence number 1.

• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0 )/z2}. The source
sends (s, d, apID, sID, 1, 0, 0 ) to the intermediate node.

• s2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz3.cid〈z3〉 with {(s, d, apID, sID, 1, 0, 0 )/z3}. Node I
forwards message (s, d, apID, sID, 1, 0, 0 ) via channel cid. This output packet is available
to the attacker.

• s3
α4(d), π

−−−−→PTTS1 s4, where α4 = cid(1(z3), 2(z3), 3(z3), 4(z3), inc(5(z3)), inc(6(z3)), 7(z3)).
The attacker manipulated the packet (referred as z3) output by I, by increment the 5th and
6th elements, which are the sequence and ear bit. Afterwards, the resulted packet (s, d,
apID, sID, 2, 1, 0 ) to the destination.

• s4
α5(d), π

−−−−→PTTS1 s5, where α5 = νz4.cidNACK〈z4〉 with {(0,1 )/z4}. Node D sends back the
NACK message requesting the retransmission of the packet with sequence number 1.
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• s5
α6(d), π

−−−−→PTTS1 s6, where α6 = cidACK(2(z4)). The attackerA intercepts the NACKmessage
(z4), and instead sends an ACK with the base number 1 to I. As the result I erases its
cache.

• s6
α7(d), π

−−−−→PTTS1 s7, where α7 = νz5.cemptyC〈z5〉 with {CacheEmptyI /z5}. The constant
CacheEmptyI is output upon node I erased all cache entries.

• s7
α8(d), π

−−−−→PTTS1 s8, where α8 = νz6.cncknot0〈z6〉 with {nackNbr/z6}. The constant nackNbr
is output by D.

• s8
α9(d), π

−−−−→PTTS1 s9, where α9 = νz7.csiACK〈z7〉 with {(1) /z7}. Node I forwards the ACK
to S.

• s9
α10(d), π

−−−−→ PTTS1 s10, where α10 = νz8.cemptyC〈z8〉 with {CacheEmptyS/z8}. Node S emp-
ties all of its cache entries.

• s10
α11(d), π

−−−−→ PTTS1 s12, where α12 = νz9.cncknot0〈z9〉 with {nackNbr/z9}. The constant
nackNbr is output by D. Note that s12 = s′.

Based on the definition of Protideal(params) there can be the matching labeled transition trace
from sideal that outputs the constants CacheEmptyS, CacheEmptyI, and nackNbr, however they
are not placed next to each other as in case of σ2. Therefore, according to the definition of static
equivalence, from state sideal we cannot reach any state s

′ideal such that Aideal ≈s A
′ideal, where

Aideal and A
′ideal are extended processes in the states sideal and s

′ideal, respectively.
Scenario 3 (SC-3): The violation of the second point of Definition 9 is caused by the third

attack scenario which is related to the timeout issue defined in DTSN. Let us consider topology S
− I − A − D, such that during the attack scenario A sends messages that already have reached
the destination before, but now with the EAR bit being always set to 1. The goal of the attacker(s)
is to force D sending unnecessary ACK/NACK messages. In case of Prot(params), the attacker
causes the destination to process these manipulated packets and sends back the corresponding
ACK/NACK messages, which takes more time than in case of Protideal(params) for the same
action trace. Note that in Protideal(params) the destination knows about what it should receive
from S and I (it has been informed via the private channels cprivSD and cprivID).

Regarding process Prot(params), let the labeled action trace starting from the s to some sk
represents the following executions: (1) Upper Layer requests S to send packet pck with sq = 1;
(2) S forwards pck to I; (3) after storing the packet, I sends it to D; (4) D received pck and
puts it into its cache, which is represented by the state sk = (Protk(params), vk) where Protk is
the process at sk. The frame of Protk(params) contains the substitution {pck / zk}, which means
that pck is available for the attacker. Process Protideal(params) can simulate this action trace via
the same action transitions as in Prot(params), and the corresponding states from sideal to sidealk .
However, in case of Protk(params) there is the following transition trace

• sk
αk+1(d), π

−−−−→ PTTS1 sk+1, where αk+1 = νzk+1.cid〈zk+1〉 with {(1(zk), 2(zk), 3(zk), 4(zk),
5(zk), inc(6(zk)), 7(zk)) /zk+1}. After obtaining pck, which is refered to as zk+1, the
attacker increments the 6th element of pck, that is, setting the ear bit from 0 to 1 and sends
the modified pck to D.

• sk+1

αk+2(d), π

−−−−→ PTTS1 sk+2, where αk+2 = cid(zk+1). The destination receives the modified
packets, modelled by an input action on cid.

• sk+2

αk+3(d), π

−−−−→ PTTS1 sk+3, where αk+3 = νzk+2.cidACK〈zk+2〉 with αk+2 = {1 / zk+2}. The
destination sends back the ACK packet with base number 1 to I.
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To illustrate how the violation of the second point of Definition 9 is relevant in pinpointing the
weaknesses of DTSN, we define Protideal(params) such that when D receives a packet with ear=1
that has not been informed by S or I (or differs from the expected message) then D sends an
ACK immediately (with no any further verification steps) with some base number predefined for
this purpose. Based on this specification of Protideal(params), the three transitions above can be
simulated by from sidealk with the same action transitions, and reaching the corresponding state
sidealk+3 . However, the definition of time simulation is not valid because the total time from sidealk

to sidealk+3 is less than from sk to sk+3 because in Protideal(params) the destination saves time by
omitting the verification steps before sending the ACK.

7.2 Security Analysis of the SDTP protocol

We define the ideal version of process ProtSDTP(params), denoted by ProtSDTPideal(params)
and ProtSDTPidealtime(params), in the same concept as in ProtDTSNideal(params) and porcess
ProtDTSNidealtime(params). The only difference is that in SDTP, we define the processes Src
and Int such that whenever the verification made by S and I made on the received ACK/NACK
message has failed, S and I output a predefined constant BadControl via the public channel
cbadpck. Note that this extension does not affect the correctness of the protocol, and only plays a
role in the proofs of probabilistic timed bisimilarity.

Since the main purpose of SDTP is using cryptographic means to patch the security holes of
DTSN, we examine the security of SDTP according to each discussed attack scenario to which
DTSN is vulnerable.

Scenario 1 (SC-1): First we prove that SDTP is not vulnerable to the attack scenario (SC-1)
by showing that ProtSDTPideal(params) can simulate (according to Definition 9) the transition
trace produced by ProtSDTP(params).

• The transition s
α1(d), π

−−−−→PTTS1 s1, where α1 = νz1.csup〈z1〉 with {1/z1}, can be simulated

by the transition sideal
α1(d), π

−−−−→PTTS2 sideal1 in ProtSDTPideal(params).

• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = csup(z1), can be simulated by the transition sideal1

α2(d), π

−−−−→PTTS2

sideal2

• s2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0, ACKMAC1,

NACKMAC1)/z2}, can be simulated by the transition sideal2

α3(d), π

−−−−→PTTS2 sideal3 . We note
that in case of SDTP the packet sent by S includes the ACK MAC and NACK MAC. This
packet is available for the attacker(s) who can manipulate and send it.

• The next transition in ProtSDTP(params) is s3
α4(d), π

−−−−→PTTS1 s4 is in case of DTSN, where
α4 = csiACK(t), describes that the attacker sends the ACK message to S with some content
t. In case of DTSN it was 5(z2), however, in SDTP the format of ACK required to include
the correct ACK key. In general, t can be defined by fa(K ∪ z2), where fa is a subset of
functions that define the operations that the attacker performed on its knowledge base K
∪ z2 (K is its knowledge, which is extended constantly during the protocol run). It can be
shown that for all possible behaviors (fa ⊆ B, where B describes attacker’s computation
ability, defined by the set of functions available for the attacker), ProtSDTPideal(params)

can simulate this with sideal3

α4(d), π

−−−−→PTTS2 sideal4 .

• Due to the fact that the ACK key of the packet sent by S has not been output yet on a public
channel, the attacker cannot construct the correct ACK message for the packet. Formally,
we can say that Kack /∈ K ∪ z2 and B does not contain any function that returns the correct
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ACK/NACK keys for the packets sent by the source, hence, fa(K ∪ z2) cannot be the ACK
message for packet 1 sent by S.

Therefore, for any t in ProtSDTP(params) we have the transition s4
α5(d), π

−−−−→PTTS1 s5, where

α5 = νz3.cbadpck〈z3〉 with {BadControl/z3}, which can be simulated by sideal4

α5(d), π

−−−−→PTTS2

sideal5 in ProtSDTPideal(params).

Hence, the attack scenario (SC-1) does not work in case of SDTP protocol. However, in (SC-1) the
attacker still can make the source unnecessarily handle each bogus ACK/NACK packet, consuming
more time than usual. This can be formally proven by showing that ProtSDTPidealtime(params)

cannot simulate the transition trace s4a
τ(d), π

−−−−→PTTS1 s4b in ProtSDTP(params), where the silent
transition represents the verification of the stored ACK MAC with the ACK key included in the
ACK message: defined by the code part [CheckMac(esi , ackkey) = ok], i ∈ {1, 2, 3} in process
hndleACK. Hence, based on this transition ProtSDTPidealtime(params) and ProtSDTP(params)
are not timed bisimilar.

Now we turn to examine the security of SDTP according to the Scenario-2 (SC-2).

• s
α1(d), π

−−−−→PTTS1 s1 in ProtSDTP(params), where α1 = νz1.csup〈z1〉 with {1/z1}, can be

simulated by the transition sideal
α1(d), π

−−−−→PTTS2 sideal1 in ProtSDTPideal(params).

• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0, ACK MAC,

NACK MAC )/z2}, can be simulated by the transition sideal1

α2(d), π

−−−−→PTTS2 sideal2 .

• s2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz3.cid〈z3〉 with {(s, d, apID, sID, 1, 0, 0, ACK MAC,

NACK MAC )/z3}, can be simulated by the transition sideal2

α3(d), π

−−−−→PTTS2 sideal3 .

• s3
α4(d), π

−−−−→PTTS1 s4, where α4 = cid(t), can be simulated by the transition sideal3

α4(d), π

−−−−→PTTS2

sideal4 . Similarly as in (SC-1) t = fa(K ∪ z3), differ from the correct packet sent by I. The
attacker sends a packet it ables to compose based on its knowledge and computation ability.

• s4
α5(d), π

−−−−→PTTS1 s5, where α5 = νz4.cbadpck〈z4〉 with {(BadPck)/z4}, can be simulated by

the transition sideal4

α5(d), π

−−−−→PTTS2 sideal5 .

We can conclude that the attack scenario (SC-2) cannot be performed on the SDTP protocol
like in DTSN. However, similarly as in (SC-1) the attacker can force the destination to perform
more time consuming verification steps by sending bogus packets. This again can be proven by

showing that ProtSDTPidealtime(params) cannot simulate the transition trace s4a
τ(d), π

−−−−→PTTS1

s4b in ProtSDTP(params), where the silent transition represents a MAC verification step at the
destination.

In the following we prove that SDTP is not vulnerable to the attack scenario (SC-3). Again,
we take the three possible transitions discussed in (SC-3):

• After obtaining the packet pck sent by I, which is refered to as zk+1, the attacker sets the ear
bit from 0 to 1 and sends this modified packet to D. Formally, this is defined by the transition

sk
αk+1(d), π

−−−−→ PTTS1 sk+1 in ProtSDTP(params), where αk+1 = νzk+1.cid〈zk+1〉 with {(1(zk),
2(zk), 3(zk), 4(zk), 5(zk), inc(6(zk)), 7(zk), 8(zk), 9(zk)) /zk+1}. Note that compared
with DTSN, in SDTP zk+1 contains an ACK MAC and a NACK MAC that is specified by

8(zk), 9(zk) respectively. This transition can be simulated by sidealk

αk+1(d), π

−−−−→ PTTS2 sidealk+1 in

ProtSDTPideal(params).
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• sk+1

αk+2(d), π

−−−−→ PTTS1 sk+2, where αk+2 = cid(zk+1), can be simulated by sidealk+1

αk+2(d), π

−−−−→ PTTS2

sidealk+2 in ProtSDTPideal(params). The transitions say that the destination receives the mod-
ified packets, modelled by an input action on channel cid.

• sk+2

αk+3(d), π

−−−−→ PTTS1 sk+3, where αk+3 = νzk+2.cbadpck〈zk+2〉 with αk+2 = {BadPck / zk+2},

can be simulated by sidealk+2

αk+3(d), π

−−−−→ PTTS2 sidealk+3 in ProtSDTPideal(params). These transi-
tions say that the destination informed its environment about the reception of an incorrect
message.

Vulnerability of SDTP: The fact that in the SDTP protocol intermediate nodes do not verify
the authenticity of the data packets but only store/forward them, makes SDTP be vulnerable to
such attack in which the attackers send data packets with bogus (fake) MACs to intermediate
nodes, and later send ACK/NACK messages corresponding to the bogus MACs. This attack
is described by scenario SC-4: Let S, I, D be the source, intermediate, and destination nodes,
respectively; and let A1 and A2 be the two cooperative compromised nodes. Assume that the
topology is such that there are symmetrical links between S − A1, A1 − I, I − A2, and A2 −
D. First, A1 creates a data packet pck containing a MAC value computed with fake ACK and
NACK keys, then node I stores the packet without being able to verify the MAC values. Later,
even without the presence of D, A2 generates fake ACK, NACK packets with the corresponding
fake keys, which will match the MAC values of the stored pck at node I.

In cryptprobtime we can prove this vulnerability of SDTP by showing that ProtSDTP ideal(params)
and ProtSDTP(params) are not probabilistic timed bisimilar. The proof is based on the fact that
in ProtSDTP ideal (params) intermediate nodes will output the constant BadControl when they
receive an unexpected packet, this cannot be simulated by ProtSDTP(params).

8 Automated security verification using the PAT process
analysis toolkit

PAT [6] is a self-contained framework to specify and automatically verify different properties of
concurrent (i.e. parallel compositions construct), real-time systems with probabilistic behavior.
It provides user friendly interfaces, featured model editor and animated simulator for debugging
purposes. PAT implements various state-of-the-art model checking techniques for different prop-
erties such as deadlock-freeness, divergence-freeness, reachability, LTL properties with fairness
assumptions, refinement checking and probabilistic model checking. To handle large state space,
the framework also includes many well-known model-checking optimization methods such as par-
tial order reduction, symmetry reduction, parallel model checking, etc. An another advantage of
PAT is that it allows user to build customized model checkers easily. Currently it contains eleven
modules to deal with problems in different domains including real time and probabilistic systems.
PAT has been used to model and verify a variety of systems, such as distributed algorithms, and
real-world systems like multi-lift and pacemaker systems.

Currently PAT does not provide syntax and semantics for specifying cryptographic primi-
tives and operations, such as digital signature, MAC, encryptions and decryptions, one-way hash
function. Hence, we model cryptographic operations used by SDTP in an abstract, simplified
way. Note that the simplication has been made in an intuitive way, and does not endanger the
correctness of the protocol.

PAT is basically designed as a general purpose tool, not specifically for security protocols or
any specific problem. It provides a CSP [9] (the well-known process algebra based model-checker)
like syntax, but it is more expressive than CSP because it also includes the language constructs
for time and probabilistic issues. PAT also provides programming elements like comminucation
channels, array of variables and channels, similarly as Promela [10] (Process Meta Language), the
specification language used by the SPIN [10] model-checker. PAT handles time in a tricky way,
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namely, instead of modeling clocks and clock resets in an explicit manner, to make model-checking,
automatic verification be more effective it applies an implicit representation of time (clocks) by
defining specific time expressions such as TIMEOUT, WAITUNTIL, INTERRUPT, etc.

In the following we briefly introduce four modules of PAT that we use to automatically verify
the security of DTSN and SDTP. Namely, the four modules are as follows: (1) Communicating
Sequential Programs (CSP#) Module, (2) Real-Time System (RTS) Module; (3) Probability CSP
(PCSP) Module; (4) Probability RTS (PRTS) Module.

8.1 Communicating Sequential Programs (CSP#) Module

The CSP# module supports a rich modeling language named CSP# (a modified variant of CSP)
which combines high-level modeling operators like (conditional or non-deterministic) choices, in-
terrupt, (alphabetized) parallel composition, interleaving, hiding, asynchronous message passing
channel, etc..

It also provides low-level constructs like variables, arrays, if-then-else, while, etc. It offers great
flexibility on how to model your systems. For instance, communication among processes can be
either based on shared memory (using global variables) or message passing (using asynchronous
message passing or CSP-style multi-party barrier synchronization).

The high-level operators are based on the classic process algebra Communicating Sequential
Processes (CSP). The main advantage of CSP# keeps the original CSP as a sub-language of
CSP#, whilst offering a connection to the data states and executable data operations.

Global constant is defined using the syntax

#define constname val

where constname is the name of the constant and val is the value of the constant. Variables
and array can be defined as follows

1. var varname = val; 2. var arrayname = [val_1,..., val_n]; 3. var arrayname[n]

In PAT variables can take integer values. The first point defines the variable with name
varname with the initial value val ; the second point defines the fix size array with n values, and
third point declares the array of size n, where each element is initialized to 0. To assign values to
specific elements in an array, event prefix is used as follows:

P () = assignvalEV {arrayname[i] = val} -> Skip,

where the assignment of the ith element of the array arrayname is performed within the scope of
the event assignvalEV.

In PAT, process may communicate through message passing on channels. Channels, output
and input action on a channel can be declared using the syntax

1. (declaration of channel channame): channel channame size;

2. (output of val on channame): channame!val;

3. (input a msg on channame): channame?x

channel is a keyword for declaring channels only, channame is the channel name and size is the
channel buffer size. Channel buffer size must be greater or equal to 0. It is important that a
channel with buffer size 0 sends/receives messages synchronously. This is used to model pair-
wise synchronization, which involves two parties. For instance in case of size is 0, by puting
the channame!val and channame?x in parallel, the output and input actions are performed in a
synchronized form: val is sent and is bounded to variable x.

One of the most relevant element of the specification language in PAT is processes that is
defined as an equation in the following syntax,

P(x1, x2, ..., xn) = ProcExp;
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where P is the process name, x1,. . . , xn is an optional list of process parameters and ProcExp
is a process expression. The process expression determines the internal behavior of the process.
A process without parameters is written either as P() or P. A defined process may be referenced
by its name (with the valuations of the parameters). Process referencing allows a flexible form of
recursion (recursive process invocations)

PAT special processes to make coding be more convenient: Process Stop is the deadlock
process that does nothing; process Skip terminates immediately and then behaves exactly the
same as Stop.

Events are defined in PAT for make debugging more straightforward and to make the returned
attack traces more readable. A simple event is a name for representing an observation. Given
a process P, the syntax ev -> P describes a process which performs ev first and then behaves
as P . For instance, the following describes a simple vending machine which takes in a coin and
dispatches a coffee every time.

VM() = insertcoin -> coffee -> VM();

An event ev can be a simple event orcan be attached with assignments which update global
variables as in the following example, ev{x = x + 1; } -> Stop ; where x is a global variable. An
event may be attached with a statement block of a sequential program (which may contain local
variables, if-then-else, while, math function etc.). This kind of event-prefix process is called data
operation in PAT. Sequential program is considered as an atomic action, that is, no interleaving
of other processes before the sequential program finishes.

PAT defines invisible events (i.e., tau event) by using keyword tau, e.g., tau -> Stop. In the
tau event, statement block can still be attached. With the support of tau event, you can avoid
using hiding operator to explicitly hide some visible events by name them tau events. The second
way to write an invisible event is to skip the event name of a statement block, e.g., {x = x+ 1;}
-> Stop, which is equivalent to tau{x = x+ 1;} -> Stop.

A sequential composition of two processes P and Q is written as P ;Q in which P starts first
and Q starts only when P has finished. In PAT (as in CSP), different type of choices are defined:
general choice; external choice and internal choice. General choice is resolved by any event. A
general choice is written as P [ ] Q, which states that either P or Q may execute. If P performs an
event first, then P takes control. Otherwise, Q takes control. External choice, P [∗] Q, is resolved
by the observation of a visible event (i.e., not tau event). If P performs a visible event first, then
P takes control. If Q performs a visible event first, then Q takes control. Otherwise, the choice
remains.

Interleaving represents two processes which run concurrently without barrier synchronization
is written as P ||| Q, in which both P and Q may perform their local actions without synchronizing
with each other.

Parallel composition represents two processes with barrier synchronization is written as P
|| Q, where || denotes parallel composition. Not like interleaving, P and Q may perform lock-
step synchronization, i.e., P and Q simultaneously perform an event. For instance, if P is a ->
c -> Stop and Q is c -> Stop, because c is both in the alphabet of P and Q, it becomes a
synchronization barrier. PAT also features event hiding to hide events so that it is not observable
by the environment. Process P\E where E is a set of events turns events in E to invisible ones.

Assertion : An assertion is a query about the system behaviors. PAT provides queries for
deadlock-freeness, divergence-freeness, deterministic, nonterminating, reachabiliy, respectively as
in the following syntax:

1. #assert P() deadlockfree; /* asks if P() is deadlock-free or not.*/

2. #assert P() divergencefree; /* asks if P() is divergence-free or not.*/

3. #assert P() deterministic; /* asks if P() is deterministic or not.*/
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4. #assert P() nonterminating; /* asks if P() is nonterminating or not.*/

5. #assert P() reaches cond; /* asks if P() can reach a state where cond is satisfied.*/

PAT’s model checker performs Depth-First-Search or Breath-First-Search algorithm to repeat-
edly explore unvisited states until a deadlock state (i.e., a state with no further move).

Linear Temporal Logic (LTL): In PAT, we support the full set of LTL syntax. Given a
process P (), the following assertion asks whether P () satisfies the LTL formula.

#assert P() |= F;

where F is an LTL formula whose syntax is defined as the following rules,

F = e | prop | [] F | <> F | X F | F1 U F2 | F1 R F2

where e is an event, prop is a pre-defined proposition, [ ] reads as ”always”, <> reads as
”eventually”, X reads as ”next”, U reads as ”until” and R reads as ”Release”. For instance, the
following assertion asks whether the P () can always eventually less than zero or not.

#assert P() |= []<>goal;

PAT supports FDR’s approach for checking whether an implementation satisfies a specification
or not. That is, by the notion of refinement or equivalence. Different from LTL assertions, an
assertion for refinement compares the whole behaviors of a given process with another process,
e.g., whether there is a subset relationship. There are in total 3 different notions of refinement
relationship, which can be written in the following syntax.

/* whether P() refines Q() in the trace semantics; */

#assert P() refines Q()

/* whether P() refines Q() in the stable failures semantics; */

#assert P() refines<F> Q()

/* whether P() refines Q() in the failures divergence semantics; */

#assert P() refines<FD> Q()

8.2 Real-Time System (RTS) Module

The RTS modeule in PAT enables us to specify and analyse real-time systems and verify time
concerned properties. To make the automatic verification be more efficient, unlike timed automata
that define explicit clock variables and capturing real-time constraints by explicitly setting/reseting
clock variables, PAT defines several timed behavioral patterns are used to capture high-level
quantitative timing requirements wait, timeout, deadline, waituntil, timed interrupt, within.

1. Wait : A wait process, denoted by Wait[t], delays the system execution for a period of t
time units then terminates. For instance, process Wait[t] ;P delays the starting time of P
by exactly t time units.

2. Timeout : Process P timeout[t] Q passes control to process Q if no event has occurred in
process P before t time units have elapsed.

3. Timed Interrupt : Process P interrupt[t] Q behaves as P until t time units elapse and
then switches to Q. For instance, process (ev1 -> ev2 -> . . . ) interrupt[t] Q may engage in
event ev1, ev2 . . . as long as t time units haven’t elapsed. Once t time units have elapsed,
then the process transforms to Q.

4. Deadline : Process P deadline[t] is constrained to terminate within t time units.

5. Within : The within operator forces the process to make an observable move within the
given time frame. For example, P within[t] says the first visible event of P must be engaged
within t time units.
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8.3 Probability RTS (PRTS) Module

The PRTS module supports means for analysing probabilistic real-timed systems by extending
RTS module with probabilistic choices and assertions.

The most important extension added by the PRTS modul in the probabilistic choice (defined
with the keyword pcase):

prtsP = pcase {

[prob1] : prtsQ1

[prob2] : prtsQ2

...

[probn] : prtsQn

};

prtsP, prtsQ1,. . . , prtsQn are PRTS processes which can be a normal process, a timed process, a
probabilistic process or a probabilistic timed process. The choice construct says that prtsP can
proceed as prtsQ1, prtsQ2, . . . , prtsQn with probability prob1, prob2, . . . , probn, respectively. The
sum of the n probabilities should be 1.

For user’s convenience, PAT support another format of representing probabilities by using
weights instead of probs in the pcase construct. In particular, instead of prob1, . . . , probn we
can define weight1, . . . , weightn, respectively, such that the probability from prtsP to prtsQ1 is
weight1 / (weight1 + weight2 + . . . + weightn).

Probabilistic Assertions: A probabilistic assertion is a query about the system probabilistic
behaviors. PAT provides queries for deadlock-freeness with probability, reachabiliy with proba-
bility, Linear Temporal Logic (LTL) with probability, and refinement checking with probability,
respectively as in the following syntax:

1. #assert prtsP() deadlockfree with pmin/ pmax/ prob;

2. #assert prtsP() reaches cond with prob/ pmin/ pmax;

3. #assert prtsP() |= F with prob/ pmin/ pmax;

4. #assert prtsP() refines Spec() with prob/ pmin/ pmax;

5. #assert Implementation() refines<T> TimedSpec();

The first assertion asks the (min/max/both) probability that prtsP() is deadlock-free or not; the
second assertion asks the (min/max/both) probability that prtsP() can reach a state at which some
given condition is satisfied; the third point asks the (min/max/both) probability that prtsP()
satisfies the LTL formula F . PAT also supports refinement checking in case of probabilistic
processes. The last assertion ask the probability that the system behaves under the constraint of
the specification (i.e., an ideal version of a process). PRTS module also supports timed refinement
checking. The fifth assertion allows user to define the specification which has real-time features
and check if the implementation could work under the constraint of timed specification.
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8.4 On verifying DTSN using the PAT process analysis toolkit

We specify the behavior of DTSN in PAT’s language with the topology S − I − D, where S,
I and D represent the source, the intermediate and the destination node, respectively. Without
losing generality and for ease the coding, reducing state space, we assume that the buffer of S and
I is three and the buffer of D is four (for allowing some specific attack attempts). We choose the
acknowledgement windows AW to be 2, approximately the half of the buffer size of each node. To
be more precise we also include explicitly the definition of the upper layer that requests the source
to send packets in sequence, and receives packets from the destination.

Between the node pairs (S, I) and (I, D) we define four symmetric channels SI1Pck, SI1Ack,
SI1Nack, SI1Ear, DI1Pck, DI1Ack, DI1Nack, and DI1Ear for sending data packets, ACK, NACK,
and EAR messages, respectively. In addition, we add channels between upper layer and S, D
respectively. We also define the channel EndSession between the source and each other entities,
for indicating the end of a session.

We define different constants such as the Error for signalling errors according to DSTN, and
the time values of timers, the size of buffers, the maximal value of packet for a session, and the
constant EARpck that represents a EAR packet. We assume that the probability that a packet sent
by a node has lost and does not reach the addresee is, denoted by plost, is 10%. The probability
that an intermediate node stores a packet, denoted by pstore, is 70%. The value of activity timer,
denoted by Tact, is 20, while value of ear timer (Tear) is 10. Finally we set the maximal EAR
attempt to be 5. Note that these values are only some (intuitively meaningful) example for build
and running the program code, however, these values can be change easily and what important is
that these values do not affect the security of DTSN, but only change the complexity, as well as
the number of states during the verification.

As already mentioned, PAT is not optimized for verifying security protocols in presence of
adversaries, hence, in the current form it does not support a convenient way for modelling attackers.
In case of the ProVerif tool [2], which is designed for modelling and verifying security protocols,
users need not to specify the behavior of attackers, because it is implicitly included during the
verification algorithm. In particular in ProVerif, the attacker is specified similarly as the notion
of environment in the applied π-calculus, such that it can intercept every information output by
honest entities and synthesise or sending any message based on its ability. Differ from ProVerif, in
PAT the attacker(s) are not included by default, and the user has to define the attacker’s behavior
and its place in the network explicitly.

To analyse the security of DTSN we define the attacker process(es) based on the following
scenarios. We examine different places of the attacker in the network: Top1. S − A − I − D;
Top2. S − I − A − D; Top3. S − A1 − I − A2 − D. We recall the assumption that the source
and destination cannot be the attacker. For each scenario, we define additional symmetric channels
between the attacker(s) and its(their) honest neighbors. We define the behavior of the attacker(s)
to be as close as the attacker model assumed in ProVerif. However, in order to reduce the
complexity of the verification, we limit the attacker’s ability according to the messages exchanged
in DTSN. More specifically, the attacker intercepts every message sent by its neighbors, and it can
modify the content of the intercepted packet as follows:

• it can increase, decrease or replace the sequence number in data packets;

• it can set/unset the EAR bit and RTX bit in each data packet;

• it can increase, decrease or replace the base (ack) number in ACK/NACK packets;

• it can change the bits in NACK packets;

• the combination of these actions,

and finally it can forward the modified packets to the neighbor nodes.
We specify the following bad states, in the form of assertions and goals in PAT, which represent

the insecurity of the protocol, and we run automatic verification to see whether these bad states
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can be reached. We will follow the concept used in the manual verification in Section 7.1 and define
the ideal (i.e. the specification in PAT) versions of DTSN, and examine if the real version refines
the specification. Since each ideal version is designed to test specific (potential) weaknesses, in
case the refinement holds it means that DTSN is not vulnerable to these weaknesses, otherwise, if
the refinement does not hold the attacker can exploit these weaknesses and PAT returns an attack
trace.

The ideal version of DTSN is defined in the same concept as in the manual verification in
Section 7.1. In the first ideal process, defined as process DTSNideal() in the PAT code, there is
a private channel between honest node pairs (S, I), (I, D) and (S, D). They use these channels
to inform each other about the correct messages that has been sent, that is, as an addressee what
should they receive. When the honest nodes receive a message that is not the expected message,
they output immediately (without further actions) on a public channel ChBadMsg a constant
BadMsg indicating the reception of bad message.

The information sent on the private channels is not observable by the environment, which
we solve in PAT by encoding each related event as a hidden event. The second ideal process,
DTSNidealtime() in the PAT code, is specified similarly as ProtDTSN time

ideal. More precisely, DT-
SNidealtime() is defined similarly to DTSNideal() but while in the second case.

In the following, we provide the definition of bad states based on the each design goal of
DTSN [12]. Similarly as in the manual verification with crypt time

prob :

1. The first main goal of DTSN is to provide reliable delivery of packets. DTSN supports
different reliability grades in order to suit the requirements of different applications. Hence,
if the attacker can achieve that the probability of delivery of some packet in a session is zero
(i.e., the probability of the delivery of all packets in a session), then DTSN is not secure in
presence of adversaries.

The assertion for verifying the security of DTSN regarding the first main goal is the following:

#define violategoal1p1 (OutBufL == 0 && BufI1 == 0 && numNACK > 0)

where (OutBufL == 0) and (BufI1 == 0) represent the cache of S and I are emptied, but
at the same time (numNACK > 0), which means that D has not receveid all packets. Note
that this statement may appear to be a bit strict in the sense that despite (numNACK > 0)
at the time the caches are empty, the required packets could have been retransmitted before
and have not reached D yet. So there can be the lucky situation that D will eventually
receive all the packets. However, this assertion still shows the weakness of DTSN since in
DTSN honest nodes should empty their caches only after they receive ACK packets from D,
which means that (numNACK == 0). We can define an another assertion that state that
the caches of S and I are emptied without retransmit the required packets by D before it:

#define violategoal1p2 (OutBufL == 0 && BufI1 == 0 && isEARpending == 0 &&
numNACK > 0)

which extends violategoal1p1 with (isEARpending == 0) meaning that there is no EAR
peding, when the caches have been deleted. Next we define the PAT codes for asking if these
bad states can be reached during the DTSN:

A1. #assert DTSN() reaches violategoal1p1 ;
A2. #assert DTSNideal() reaches violategoal1p1 ;
A3. #assert DTSN() reaches violategoal1p1 with pmax ;
A4. #assert DTSNideal() reaches violategoal1p1 with pmax ;
A5. #assert DTSN() reaches violategoal1p2 ;
A6. #assert DTSNideal() reaches violategoal1p2 ;
A7. #assert DTSN() reaches violategoal1p2 with pmax ;
A8. #assert DTSNideal() reaches violategoal1p2 with pmax ;
A9. DTSNidealHide() refines DTSNHide().
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For topology S − I − D with the attacker A in the transmission range of I and D, but is
not the part the route. We run the PAT model-checker with the default settings for (A1)
and (A2) and get the following results: (A1) is Valid and the returned attack trace is as
follows:

S → I: (sq, ear, rtx) = (1, 0, 0) on channel SI1Pck ;
I → D: (sq, ear, rtx) = (1, 0, 0) on DI1Pck without storing,

and the packet (1, 0, 0) reaches the destination D which stores it;

S → I: (sq, ear, rtx) = (2, 1, 0) on SI1Pck, ear = 1 since AW=2;
I → D: (sq, ear, rtx) = (2, 1, 0) on DI1Pck without storing,

but the packet (2, 1, 0) is lost and does not reach the destination D;

S → I: (sq, ear, rtx) = (3, 1, 0) on SI1Pck, ear = 1 since the buffer of S became full;
I → D: (sq, ear, rtx) = (3, 1, 0) on DI1Pck without storing,

and the packet (3, 1, 0) reaches the destination D which stores it;

A → I: then A sends the incorrect NACK packet, acknowledging the reception of
the first 3 packets and requests the retransmission of a bogus packet 4;

I → S: I received this incorrect NACK message and because its buffer is empty
(because it only forwards the packets without storing) it forwards the
same NACK message to S;

S: S received this incorrect NACK message and empty its buffer.

For the assertion (A2) PAT returns the text NOT valid as result, that is, violategoal1p1
cannot be reached during DTSNideal() in the presence of the attacker. This means that
the ideal version does not contain this vulnerability. Running PAT for (A3) and (A4) we
receive the result that the maximum probability of reaching violategoal1p1 in DTSN() is
greater than 0, while in case of DTSNideal() it is 0. As we expected, the verifications of
the assertions (A5 − A8) give the similar results as in case of the first four, namely, (A5)
is Valid, while (A6) is not, and the maximal probability returned in (A7) is greater than 0,
and equal to 0 in (A8).

Because in PAT the refinement check between two processes is based on the equivalence
of their traces of visible events, to make the verification of refinement defined in (A9) be
meaningful, in DTSNideal() and DTSN() we have to hide (i.e. make invisible) the events
that is not defined in the code of the another version. Note that we specify DTSNideal() and
DTSN() in such a way that making these events invisible is meaningful and the correctness
of the verification is not corrupted. For instance, in DTSNideal() the events that specify
the communication via the private channels, as well as the equality check of the expected
message and the received message are hidden from the environment, only the outputs on
public channels are visible. We denote these processes as DTSNidealHide() and DTSNHide(),
respectively. Now we can run the verification in PAT to examine the trace equivalent between
DTSNidealHide() and DTSNHide() in (A9). PAT returns NOT valid because it detects a
trace containing the output of constant BadMsg after receiving a bad NACK/ACK or data
packet, which trace cannot be produced in DTSNHide().

2. The second main goal of DTSN is to avoid useless wasting of energy resources through
minimization of the control and retransmission overhead. DTSN attempts to achieve this
by allowing intermediate nodes to store packets with a certain probability, hence, a fraction
of the retransmitted packets need not to traverse the whole path from the source to the
destination. Therefore, if the attacker can achieve that the packets are all deleted from the
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cache of intermediate nodes, defeating the purpose of DTSN, then DTSN is insecure. We
defines the bad state and assertions for verifying the second goal.

#define violategoal2p1
(notExpDelCacheI = 1 && notExpDelCacheS = 0 && numNACK > 0).

A10. #assert DTSN() reaches violategoal2p1 ;
A11. #assert DTSNideal() reaches violategoa12p1 ;

Basically, we define the bad state as the state violategoal2p1 where the buffer of I is emptied
after receiving an ACK/NACK message from the attacker, this is modelled by (notExpDel-
CacheI = 1), however, S did not empty its cache (notExpDelCacheS = 0), and the number
of packets are not received by D is greater than 0. Then, we examine whether the bad
state violategoal2p1 can be reached inDTSN() (assertion A10) or DTSNideal() (A11). After
running the verification in PAT, we get Valid for (A10) and NOT valid for (A11). In the
first case, PAT found an attack scenario based on the topology S − A1 − I − D including
the second attacker A2 that is not the part of the route but is the neighbor of both I and D.
In the returned scenario after D receives a packet with (ear = 1) at the moment (numNACK
> 0),

• A2 sends a bogus NACK message with a large base number;

• I receives this NACK message and deletes its buffer, and forwards this message to A1;

• A1 forwards the NACK message with smaller base number such that S will not erase
all of its entries;

• S receives this NACK message and deletes some but not all of its cache entries.

In case of DTSNideal() the attacker(s) cannot perform this attack since whenever the honest
nodes receive a bad NACK/ACK message they output the constant BadMsg instead of
deleting their caches. Hence, the bad state violategoal2p1 cannot be reached in DTSNideal().

8.5 On verifying SDTP using the PAT process analysis toolkit

Next we examine the security of SDTP using the PAT toolkit. First of all we give some important
code parts in the SDTPReal.prts file that specifies the behavior of the SDTP protocol assuming
the topology S − I − D. As already mentioned earlier, PAT does not support language elements
for specifying cryptographic primitives and operations in an explicit way. We specify the operation
of SDTP with the implicit representation of MACs and ACK/NACK keys.

First, recall that in SDTP the per-packet ACK and NACK keys are generated as

K
(n)
ACK = PRF(KACK ; “per packet ACK key”; n)

K
(n)
ACK = PRF(KKACK ; “per packet NACK key”; n).

Following this concept, in PAT, we define the ACK key and NACK key for the packet with se-
quence number n by the triple n.ACK.K and n.NACK.K , respectively. Where the constants
ACK and NACK represent “per packet ACK key”, and “per packet NACK key”, and K rep-
resents a session master key. Then we specify the packets sent by the source node as follows:
sq.ear.rtx.sq.sq.ACK.K.sq.sq.NACK.K, where the first part sq.ear.rtx contains the packet’s
sequence number, the EAR and RTX bits, respectively; the second part sq.sq.ACK.K and the
third part sq.sq.NACK.K represent the ACK MAC and NACK MAC respectively, computed over
the packet sq without the EAR and RTX bits (as discussed earlier), using the ACK and NACK
keys belonging to the data packet with the sequence number sq, sq.ACK.K and sq.NACK.K
respectively.

Following the specification of SDTP, to model the fact that at the beginning the attacker(s)
does not posses the per-packet ACK and NACK keys, we specify explicitly the behavior of the
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attacker processes such that they cannot use the master key K to construct the ACK/NACK keys
of the bogus data packets. More precisely, according to the protocol attacker(s) can receive a data
packet or ACK/NACK messages of the following pre-defined forms:

data pckt = sq.ear.rtx.sq.sq.Kack.sq.sq.Knack;

ACK msg = acknbr.acknbr.Kack

NACK msg1 = acknbr.nckb1.acknbr.Kack.nckb1.Knack;

NACK msg2 = acknbr.nckb1.nckb2.acknbr.Kack.nckb1.Knack.nckb2.Knack;

NACK msg3 = acknbr.nckb1.nckb2.nckb3.acknbr.Kack.nckb1.Knack.nckb2.Knack.

nckb3.Knack;

NACK msg4 = acknbr.nckb1.nckb2.nckb3.nckb4.acknbr.Kack.nckb1.Knack.nckb2.Knack.

nckb3.Knack.nckb4.Knack;

ACK messages include the base number acknbr and the corresponding per-packet ACK key
acknbr.Kack, while NACK messages contains the ack base number, and the packets to be retrans-
mitted, followed by the triplets that represent the corresponding per-packet ACK and NACK keys.
NACK msg1 represent the case when only one packet needed to be retransmitted, and NACK
msg4 is for the case of four missing packets. Attacker processes are defined such that when-
ever, they receive one of these messages they can use only the triplets acknbr.Kack, nckb1.Knack,
nckb2.Knack, nckb3.Knack, nckb4.Knack, but not the key Knack itself. This is because we assume
that the one-way hash function used in SDTP for computing per-packet keys is secure and, for
example, from acknbr.Kack the attacker cannot deduce Kack. The attacker processes can include
the ACK/NACK keys they received by honest nodes, or can use bogus keys that they posses or
construct that are not equal to the legal keys. We assume that the attacker(s) have ACK/NACK
keys of forms acknbr.Kattack and nckb.Kattnack, where Kattack and Kattnack have the similar
role as Kack, Knack but is contructed by the attacker(s). Note that the attacker(s) should send
the ACK/NACK keys of this 3-tuple form since this is expected by honest nodes.

The behavior of the attacker(s) can be summarized as the non-deterministic choice of each
following point:

• The attacker can send (either when it receives any message or not) non-deterministically
ACK and NACK messages that it constructs with its own keys Kattack or Kattnack, and
some base number and bits. Further, within the NACK messages the attacker can choose
non-deterministically which NACK message (among msg1,. . . , msg4) it sends to the neighbor
honest nodes;

• The attacker (either when it receives any message or not) can send fake data packets with
incorrect sequence number, RTX or EAR bit and MACs, to its honest neighbors.

• The attacker can be a relay node and simply forward the received packet unchaged, not
affecting actively the protocol.

Note that PAT applies general purposes model-checking techniques that are not optimized to scope
with the presence of the strong attacker who can do any operations on the data it has collected,
which would induce a very large state space. Hence, we have to limit the behavior of the attacker
such that instead of trying all the possible ack base number and the packets to be retransmitted
in ACK/NACK packets, we define the following: Basically, the attacker can construct messages
and forwards them based on the message it receives. More specifically,

• Before the attacker(s) receives any message from honest nodes, it can only send packets that
is composed of its initial knowledge: it can non-deterministically send (1) a data packet with
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sequence number 5 not among the sequence number of session packets, the EAR bit is set
to 1, the RTX bit is set to 0, and includes the ACK and NACK MACs computed with the
attacker’s ACK packet key 5.Kattack ; (2) an ACK message with the ack base number from
5 with the corresponding ack key 5.Kattack.

• Whenever the attacker receives/intercepts a data packet sq.ear.rtx.sq.sq.Kack.sq.sq.Knack
from a honest node the attacker can non-deterministically choose to (1) forward this packet
unchanged; (2) to send the data packet or (non-deterministically) send an ACK with sequence
and base number 5 respectively like in the first point; (3) construct and send packets from
the parts of the received data packet: the clear text sq.ear.rtx, the ACK MAC sq.sq.Kack,
and the NACK MAC sq.sq.Knack. More specifically, the attacker can compose and send the
data packet sq.ear.rtx.sq.sq.Kattack.sq.sq.Kattnack using the clear text part and its com-
puted MACs. The attacker can also send packet sq.ear’.rtx.sq.sq.Kattack.sq.sq.Kattnack,
sq.ear.rtx’.sq.sq.Kattack.sq.sq.Kattnack, or sq.ear’.rtx’.sq.sq.Kattack.sq.sq.Kattnack, where
ear’ and rtx’ are the negation of ear and rtx, respectively.

• When the attacker receives/intercepts an ACK message acknbr.acknbr.Kack from a honest
node the attacker posses its parts acknbr and acknbr.Kack, and it can non-deterministically
choose to (1) forward the message unchanged; (2) to send the data packet or (non-deterministically)
send an ACK with sequence and base number 5 respectively like in the first point; (3) to send
the data packets acknbr.ear.rtx.acknbr.acknbr.Kattack.acknbr.acknbr.Kattnack, with ear, rtx
∈ {0, 1}; (4) to send the NACK message 0.acknbr.acknbr.Knack, requesting the retransmis-
sion of packet acknbr;

• When the attacker receives/intercepts an NACK message with one nack bit acknbr.nckb1.
acknbr.Kack.nckb1.Knack from a honest node, it posseses the parts acknbr, nckb1, acknbr.Kack,
nckb1.Knack. Based on this knowledge it can send the following messages: (1) the received
NACK message unchanged; (2) replay the data packets acknbr.ear.rtx.acknbr.acknbr.Kack.
acknbr.acknbr.Knack if it has obtained this data packet before; (3) it can send packets with
different values of ear/rtx bits, acknbr.ear.rtx.acknbr.acknbr.Kack.acknbr.acknbr.Knack if
the attacker posseses the NACK key corresponding to seqnum acknbr, which can happen
if it has obtained the NACK packet referred to acknbr before; (4) it sends ACK messages
acknbr.acknbr.Kack, nckb1.nckb1.Kack, 5.5.Kack ; (5) it sends NACK message based on the
received NACK: 0.nckb1.nckb1.Knack and 0.acknbr.acknbr.Knack or 0.acknbr.nckb1.acknbr.
Knack.nckb1.nckb1.Knack if the attacker has obtained before the NACK key corresponding
to seqnum acknbr.

• When the attacker receives/intercepts an NACK message with two, three and four nack bits
acknbr.nckb1.nckb2.acknbr.Kack.nckb1.Knack.nckb2.Knack,

acknbr.nckb1.nckb2.nckb3.acknbr.Kack.nckb1.Knack.nckb2.Knack.nckb3.Knack and

acknbr.nckb1.nckb2.nckb3.nckb4.acknbr.Kack.nckb1.Knack.nckb2.Knack.nckb3.Knack.nckb4.Knack,
respectively, from a honest node, it creates and sends data packets, ACK and NACK mes-
sages in the similar concept as in the third point.

Now we turn to discuss the automatic verification of SDTP in PAT. First, to see if SDTP reaches
its design goals in hostile environment we define the ideal version of SDTP, defined with process
SDTPideal(), in the same concept as in the case of DTSN. Namely, there is a private channel
between honest node pairs (S, I), (I, D) and (S, D) to inform about the correct messages. In
case of improper message are received, the constant BadMsg is output immediately on the public
channel ChBadMsg. Otherwise, SDTPideal() behaves similarly as SDTP().

Basically, the design goal of SDTP is to make DTSN achieve its goals in a hostile environment.
Hence, we examine every assertions defined in case of DTSN.

1. The defined PAT codes for asking if these bad states can be reached for SDTP case is as
follows:
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B1. #assert SDTP() reaches violategoal1p1 ;
B2. #assert SDTPideal() reaches violategoal1p1 ;
B3. #assert SDTP() reaches violategoal1p1 with pmax ;
B4. #assert SDTPideal() reaches violategoal1p1 with pmax ;
B5. #assert SDTP() reaches violategoal1p2 ;
B6. #assert SDTPideal() reaches violategoal1p2 ;
B7. #assert SDTP() reaches violategoal1p2 with pmax ;
B8. #assert SDTPideal() reaches violategoal1p2 with pmax ;
B9. SDTPidealHide() refines SDTPHide().

Recall that (B1) reaching the bad state defined by violategoal1p1, for verifying the security of
DTSN regarding the first main goal, is Valid in case of DTSN. We run PAT to model-check
(B1) for SDTP, and get the result Not Valid. This means that in the presence of the same
attacker(s), DTSN can be corrupted such that D has not received some packets and required
retransmissions but the buffers of S and I are emptied, however, it cannot be happen in
the SDTP protocol. Similarly, reaching the assertion violategoal1p2 (B5), which is Valid in
DTSN, is Not valid in SDTP. Assertions (B2) and (B6) also result in Not valid. Assertions
(B3), (B4), (B7) and (B8) return 0 as the maximal probability pmax. Finally, checking (B9)
also ends with Valid. We note that SDTPidealHide() and SDTPHide() are defined in the
similar concepts as in DTSN case, hiding the events belonging to the communication on
private channels.

9 Conclusion

In this paper, we address the problem of formal and automated security verification of WSN
transport protocols that may perform cryptographic operations. The verification of this class
of protocols is difficult because they typically consist of complex behavioral characteristics, such
as real-time, probabilistic, and cryptographic operations. To solve this problem, we propose a
probabilistic timed calculus for cryptographic protocols, and demonstrate how to use this formal
language for proving security or vulnerability of protocols. The main advantage of the proposed
language is that it supports an expressive syntax and semantics, including bisimilarities that
supports real-time, probabilistic, and cryptographic issues at the same time. Hence, it can be
used to verify the systems that involve these three property in a more straightforward way. In
addition, we propose an automatic verification method, based on the well-known PAT process
analysis toolkit, for this class of protocols. For demonstration purposes, we apply the proposed
manual and automatic proof methods for verifying the security of DTSN and SDTP, which are
two of the recently proposed WSN tranport protocols.

In the future, we focus on improving the automatic security verification for this class of sys-
tems/protocols. Currently we found that PAT is the most suitable tool because it enables us
to define the concurrent, non-deterministic, real time, and probabilistic behavior of systems in a
convenient way. However, in the current form it does not support (or only in a very limited way)
cryptographic primitives and operations, as well as the behavior of strong (external or insider)
attackers.
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