
Defensive Leakage Camouflage

E. Brier1, Q. Fortier2, R. Korkikian3,4, K. W. Magld5

D. Naccache2,4, G. Ozari de Almeida3,4, A. Pommellet2

A. H. Ragab5, and J. Vuillemin2,5

1 Ingenico
1, rue Claude Chappe, bp 346, f-07503 Guilherand-Granges, France.

2 École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France.

3 Altis Semiconductor
224 Boulevard John Kennedy, f-91100, Corbeil-Essonnes, France.

4 Sorbonne Universités – Université Paris ii
12 place du Panthéon, f-75231, Paris Cedex 05, France.

5 King Abdulaziz University, Jeddah, Saudi Arabia

Abstract. This paper considers the transfer of digital data over leaky and noisy communication
channels. We develop defensive strategies exploiting the fact that noise prevents the attacker from
accurately measuring leakage.

The defense strategy described in this paper pairs each useful data element k with a camouflage
value v and simultaneously transmits both k and v over the channel. This releases an emission
e(k, v). We wish to select the camouflage values v(k) as a function of k in a way that makes the
quantities e(k, v(k)) as indistinguishable as possible from each other.

We model the problem and show that optimal camouflage values can be computed from side-
channels under very weak physical assumptions. The proposed technique is hence applicable to a
wide range of readily available technologies.

We propose algorithms for computing optimal camouflage values when the number of samples per
trace is moderate (typically ≤ 6) and justify our models by a statistical analysis.

We also provide experimental results obtained using FPGAs.

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes that secrets can
be physically protected in tamper-proof locations. All cryptographic operations are physical
processes where data elements must be represented by physical quantities in physical structures.

At any given point in the evolution of a technology, the smallest logic devices must have a
definite physical extent, require a certain minimum time to perform their function and dissipate
a minimal switching energy when transiting from one state to another. Energy is also dissipated
statically, i.e. in the absence of any switching.

During the last twenty years, the research community devised many sophisticated methods
for retrieving secret information from circuits by measuring their side-channel emanations.

A number of authors, e.g. [1], rely on the isotropic switching-model in which all bits dissipate
identical switching energies. This work does not assume any a priori side-channel model and
totally relies on the analysis of actually measured6 emissions.

6 potentially anisotropic

2

While most previous works analyzed leakage from complex cryptographic computations, we
focus on one of the simplest forms of leakage: the emanations of a bus through which bits are
being sent. We make only two physical assumptions:

– Emanations can be measured with equal (in)accuracy by both the attacker and the defender.
– Leakage is a global function of data plus noise. The proposed methods are thus unadapted

to settings in which individual channel bits are probed with precision.

The proposed methodology is hence applicable to a wide range of circuits having leaky buses.

The proposed countermeasure pairs each useful data element k with a camouflage value v
and simultaneously transmits k and v through the channel. This releases a physical side-channel
emanation e(k, v) that can be measured by both the attacker and the defender.

We address the following question:

How can a defender pair each value of k with a corresponding value v(k) that makes
the e(k, v(k)) as indistinguishable as possible from each other?

The crux of this paper is the definition of indistinguishability given the measured emissions.
Section 2 introduces algorithms for computing optimal camouflage values from actual power

traces. These algorithms are efficient when each trace contains a few samples (typically ≤ 6).
Section 3 presents a statistical analysis justifying the intuition that the best v values are those
concentrating the e(k, v) into the smallest possible sphere containing representatives of all k
values. Section 4 provides experimental results.

In a way, this work achieves some sort of cryptographic key exchange based on the existence
of ambient noise and on a gap in measurement accuracy between the legitimate receiver and
the attacker.

2 Models and Algorithms

Let e(d) represent the side-channel (e.g. power consumption) resulting from the transfer of
an n-bit data element d over an n-bit channel (e.g. a bus). e(d) can be measured with equal
precision by both the attacker and the defender.

The defender builds a set of 2n side-channel measurements E . Each e(d) ∈ E is generated
by transmitting an n-bit data element d. The defender assigns s channel bits to the useful
information k, and devotes the remaining n−s bits to the transmission of (n−s)-bit camouflage
values v(k). We denote d = k|v and call the k’s ”keys” or ”colors”. Note that key bits and
camouflage bits are not necessarily adjacent and might be interleaved.

Let e(k, v) = e(d) be the emanation released by transmitting d = k|v.
The vector V = [v(0), . . . , v(2s − 1)] of all camouflage values must be chosen to make all

emanations e(k, v(k)) look ”as similar as possible”. Our goal is to infer V from E .
We assign a unique color k = color(e(k|v)) to each e(i) ∈ E . E is hence analogous to a

multidimensional cloud of 2n colored points (i.e. 2s sets of colored points; each of these 2s sets
contains 2n−s identically colored points).

A color-spanning sphere is a subset B ⊂ E containing at least one emission of each color.

3

The defender will use the 2n elements of E to select 2s transmittable k|v(k) values forming
a color-spanning sphere A(V) ⊂ E . The attacker will only get to see traces belonging to A(V):

A(V) =
∪

k=1,...,2s−1

{e ∈ E : color(e) = k}

The defender’s goal is to minimize the size of the color-spanning sphere A(V) exposed to
the attacker. i.e. infer from E a smallest color-spanning sphere Aoptimal such that

∥Aoptimal∥ = min
V

∥A(V)∥

Aoptimal has thus the least size for all choices of V .

The next section considers the simplest setting where emanations are scalars7. In that case
the difference |e − e′| between two scalars e, e′ ∈ E can be used as a similarity measure for
constructing Aoptimal efficiently.

2.1 One Dimension

Assume that the e(d) are scalars (e.g. execution times or a unique power measurement per
trace). Acquire the 2n reference traces:

E = {e(0), . . . , e(2n − 1)}

A given choice of V = [v(0), . . . , v(2s − 1)] restricts the attacker’s information to

A(V) = {e(0, v(0)), . . . , e(2s−1, v(2s−1))}

The defender’s goal is to minimize:

∥A(V)∥ = maxA(V)−minA(V) = max
k

(e(k, v(k)))−min
k

(e(k, v(k)))

Let P = [p0 ≤ p1 ≤ · · · ≤ p2n−1] be the e(i) ∈ E sorted (with repetitions) by increasing
scalar values. A color-spanning segment is an interval of P containing at least one pi of each
color.

A straightforward algorithm for finding Aoptimal consists in working with two pointers start
and end representing the beginning and the end of the segment under evaluation. When exe-
cution begins, start and end point at p0. While [start,end] is not a color-spanning segment end
is moved to the right. When end reaches p2n−1 start is moved by one position to the right (i.e.
from pi to pi+1) and end is moved back to start. Throughout this process, whenever a shorter
color-spanning segment is found, it is recorded. The complexity of this algorithm is quadratic
in the cardinality of E , i.e. O(22n).

More clever approaches allow to solve the problem in Õ(2n). To do so build the 2s sorted
sequences (with repetitions) of emissions for each color:

Pk = [pk0 ≤ . . . ≤ pk2n−s−1] for k = 1, . . . , 2s − 1

7 e.g. execution times or a unique power measurement per trace.

4

Represent the color-spanning segments by a binary search tree T of size 2s.

At step 0, initialize the tree to T0 = {p00, . . . , p
2s−1
0 } and proceed by 2s-way merging.

At stage t, the color-spanning tree is

Tt =
{
p0λ0

t
, . . . , p2

s−1

λ2s−1
t

}
where the λk

t denote the merge pointers.
Let m and m denote (respectively) the minimal and maximal scalars in Tt. We denote by

ϕt the minimal (i.e. best) segment length found at step t.
If t = 0 or m−m < ϕt−1, then update ϕt = m−m else ϕt = ϕt−1.

Let m = pcλc
t
and let m = pcλc

t+1 be the next emission of the same color. The next tree Tt+1

is obtained by replacing m by m in Tt. i.e. we increase λc
t+1 = λc

t + 1 and stall all other merge
pointers λk

t+1 = λk
t for k ̸= c.

The algorithm terminates (at some step τ < 2n) when it fails to find a successor m to m.
The length of the minimal color-spanning segment is then ϕτ .

Complexity: Partitioning E to 2s color subsets and sorting these subsets to get the Pk costs
O(n2n).

Binary search trees [5] support the operations (insert, find-min, extract-min and find-max)
required by the structure T , each of these operations requires O(s) time. It follows that the
2s-way merge runs in O(s2n) and hence the above algorithm has an overall complexity of Õ(2n).

2.2 Higher Dimensions

We now consider the general case where e is a T -dimensional vector, e.g. a power consumption
sampled at T different instants. E is now a T -dimensional cloud of colored points (Fig. 1) and
the color spanning interval is a T -dimensional sphere. We need to determine the smallest sphere
containing at least one point of each color i.e. the smallest color-spanning sphere Aoptimal (Fig.
2, right).

The cloud of points is contained in some minimal enclosing T -dimensional rectangle R,
whose sides are parallel to the hyperspace’s T axes (Fig. 3, right).

Divide and Conquer This problem lends itself to divide and conquer resolution.

Let B be some8 initial color spanning sphere of radius r. Let ℓ denote the length of the
rectangleR along some dimension x. SplitR along the x axis into two overlapping sub-rectangles
of lengths ℓ

2+r as shown by Figure 4. LetRright andRleft be the two equally sized sub-rectangles
obtained that way (Fig. 5).

By construction, Aoptimal is fully contained in either Rright or Rleft. So, we recursively apply
the process to Rright and Rleft until splitting diminishes the rectangles’ sizes only negligibly9.
At that point we solve each of the smaller instances (by any chosen method) and output the

8 not necessarily optimal, cf. Fig. 3, left.
9 After the w-th splitting the rectangles’ sides are of size ℓw = (ℓ−2r)2−w +2r. Hence splitting can last forever.
We suggest to stop splitting when ℓw < 3r i.e. after ⌊log2(ℓ/r − 2)⌋ iterations.

5

Fig. 1. Power trace representation in 3 dimensions.

Power Sample 2

Power
Sample 1

Power

Time

Aoptimal

Power Sample 2

Power
Sample 1

Fig. 2. Left: Mapping curves into points. Right: Problem instance and its optimal solution Aoptimal.

B

Power Sample 2

Power
Sample 1

l

R

Power Sample 2

Power
Sample 1

Fig. 3. Left: Step 1, find any color spanning sphere B. Right: Step 2, define the rectangle R.

smallest solution of all, which is indeed the smallest color-spanning sphere in R i.e. the smallest
color-spanning sphere Aoptimal of the original problem.

6

l/2 l/2 r r

Fig. 4. Left: Step 3, split R into two overlapping rectangles Rright and Rleft of length ℓ
2
+ r.

Rleft : find optimum here

Rright : find optimum here

↓
RrightRleft

r+l/2 r+l/2

Fig. 5. Recursive problem size reduction.

Note that splitting can take place along several orthogonal axes simultaneously.

While practically very useful, this algorithm fails in a number of pathological cases (e.g.
when B is too large to split R). Luckily this is a well-studied problem: [2] describes a simple
linear-time algorithm in two dimensions and Welzl [3] shows how to solve the problem in linear

7

time for all dimensions, considering that the number of dimensions is a fixed problem parameter.
Complexity is however exponential in the number of dimensions.

A key choice is the initial sphere B: we want B to be small enough to significantly reduce
the divide and conquer’s search space. Yet, we want B to remain easy to compute.

Fig. 6. Program output example in 2 dimensions.

Heuristics: In our implementation we used the following method to construct B: let p0 be a
point (for example the closest point to the center of R) of color 0. After computing p1, . . . , pk,
we select as pk+1 the point of color k + 1 at minimal distance from the barycenter of the cloud
p1 · · · pk. The resulting B is not necessarily optimal, (cf. Figure 7) but turns out to be much
better than selecting any random color-spanning sphere.

2.3 Implementations

Algorithms were implemented in C++10 in a straightforward manner. A function

bool smallest_ball(points, space, output)

splits space and points as explained above (using a sphere found by find_ball_barycenter)
and calls recursively smallest_ball on the smaller spaces, until this process stops to signif-
icantly decrease the problem size. We then use Miniball11, a C++ software for computing

10 the code is available at http://perso.ens-lyon.fr/quentin.fortier/color ball.html
11 http://www.inf.ethz.ch/personal/gaertner/miniball.html

8

Fig. 7. The optimal sphere (left) is different from the sphere found by the barycenter heuristic (right) if the
heuristic considers first the red, then the blue and finally the green points.

smallest enclosing spheres of points in arbitrary dimensions (without requiring spheres to be
color spanning) using brute force. The description of Miniball can be found in [4, 3].

Timings were measured on a Dell Inspiron 152012. Code was compiled using Visual C++
2008 with all optimization flags set for maximal speed.

Total number of points 2 colors 3 colors 4 colors 5 colors

102 8 ms 11 ms 43 ms 211 ms

103 96 ms 221 ms 833 ms 7 s

104 946 ms 3 s 11 s 81 s

105 10 s 31 s 145 s 953 s

106 109 s 327 s

Table 1. Running time for points randomly chosen in the 3-dimensional unit cube, averaged over 10 runs

Total number of points 2 colors 3 colors 4 colors 5 colors

102 11 ms 39 ms 309 ms 2 ms

103 164 ms 1 s 10 s 147 s

104 2 s 16 s 160 s

105 27 s 188 s 37 min

106 287 s 32 min > 1 hour > 1 hour

Table 2. Running time for points randomly chosen in the 4-dimensional unit cube, averaged over 10 runs

Experimental running times seem to confirm that the algorithm is linear in the number of
points and exponential in the number of colors.

12 Intel Core 2 Duo T7300 processor, 2.0GHz, 4MB L2 cache, 2Go memory.

9

3 Why Euclidean Distances?

Let {m0,t, . . . ,mn−1,t} be a database of n reference power consumption traces measured over
some discrete time interval t ∈ [0;T − 1]. Sample mi,t corresponds to the power consump-
tion caused by the manipulation of data element i at instant t. Let µt be the average power
consumption at time t and σt the standard deviation at time t:

µt =
1

n

∑
i<n

mi,t σt =

√
1

n

∑
i<n

(mi,t − µt)2.

Let at be an unidentified power measurement made by an attacker. The attacker’s problem
consists in finding the mk,t that best reassembles at. This section justifies why for doing so, an
attacker would naturally compute for i < n the quantities:

score(i) =
∑
t<T

(at −mi,t)
2

σ2
t

, (1)

and output the guess k corresponding to the mk,t whose score is the lowest i.e.:

score(k) = min
i<n

(score(i)).

This formula is justified in the next section for t-wise independent mi,t’s.

In general, samples may be correlated, for instance when the same secret bit is manipulated
at two different instants. We analyze this general case later and propose an explicit score
minimization formula (2) taking into account intra-sample correlations.

3.1 Multivariate Normal Distributions

Equation (1) stems from the assumption that, for any fixed i, successive measurements of mi,t

follow an independent normal distribution with mean µt and standard deviation σt, and hence
abide by the probability density function:

fmt(x) =
1

σt
√
2π

exp
(
−(x− µt)

2

2σ2
t

)
When the mi,t’s are independent, the probability density of all measurements t < T can be

expressed, for x = [x0 · · ·xT−1] as a T -dimensional multivariate distribution:

fm(x) =
∏
t<T

fmt(xt) =
1

(2π)T/2
∏
t<T

σt
exp

(
−

∑
t<T

(xt − µt)
2

2σ2
t

)
.

Note that in the previous equation µt and σt are the expected value and standard deviation
of mi,t over all data elements i. For a measurement mi,t corresponding to a specific data element
i, in addition, we also assume that mi,t follows a normal distribution with mean µ̃t = mi,t and
standard deviation σ̃t; we also assume that the standard deviation σ̃t around mi,t is the same

10

for all data elements. In this case, the measurement mt corresponding to data element i has the
following distribution:

fm(x) =
1

(2π)T/2
∏
t<T

σ̃t
exp

(
−

∑
t<T

(xt −mi,t)
2

2σ̃2
t

)
Additionally, we assume that the standard deviation σ̃t of mt around mi,t is proportional to

the standard deviation σt of mt when all data values are considered, i.e. we assume σ̃t = α · σt
for all 0 ≤ t ≤ T − 1 for some α ∈ R. In this case, the probability density function of the mt’s
for data i can be written as:

fi(m) =
1

(2π)T/2αT
∏
t<T

σt
exp

(
−

∑
t<T

(mt −mi,t)
2

2α2σ2
t

)
∝ exp

(
− score(i)

2α2

)
where score(i) is given by equation (1). The probability to obtain measurements mt from data
i is thus a decreasing function of score(i). Given measurement m, the most probable candidate
is therefore the one with the lowest score.

3.2 Multivariate Normal Distribution: Taking Correlation into Account

We denote by Σ the covariance matrix of the measurements, defined as follows:

Σ = var(m) = var

m1
...

mT

 =


var(m1) cov(m1m2) · · · cov(m1mT)

cov(m1m2)
. . . · · ·

...
...

...
. . .

...
cov(m1mT) · · · · · · var(mT)


where cov(X,Y) = E(XY)− E(X)E(Y) and var(X) = cov(X,X) = E(X2)− E(X)2.

We assume that the measurements follow a T -dimensional multivariate distribution with
mean µ and covariance matrix Σ. The probability density function can then be expressed as:

fm(x) =
1

(2π)T/2|Σ|1/2
exp

(
−1

2(x− µ)trΣ−1(x− µ)
)
.

where |Σ| is the determinant of Σ and M tr is the transposed of matrix M . The mean µ is a
T -vector and Σ is a T × T -matrix.

Note that in the previous equation µ and Σ are the expected value and covariance matrix
of measurements for all data elements i. As previously for measurements corresponding to a
specific data element i, we assume that these measurements follow a T -multivariate normal
distribution with mean µ̃t = mi,t and covariance matrix Σ̃.

If we further assume that matrix Σ̃ is identical for all data elements, the measurement m
for data i then obeys the multivariate distribution:

fm(x) =
1

(2π)T/2|Σ̃|1/2
exp

(
− 1

2(x−mi,·)
trΣ̃−1(x−mi,·)

)
.

11

As previously, let us additionally assume that the covariance matrix satisfies Σ̃ = α ·Σ for some
α ∈ R. In this case, the probability density function is expressed by:

fm(x) =
1

(2πα)T/2|Σ|1/2
exp

(
− 1

2α(x−mi,·)
trΣ−1(x−mi,·)

)
.

This can finally be written as

fm(x) =
1

(2πα)T/2|Σ|1/2
exp

(
− score(i)

2α

)
where

score(i) = (m−mi,·)
trΣ−1(m−mi,·) (2)

It follows that equation (2) is a generalization of equation (1) where correlations are taken into
account. In other words, to take correlations into account acquire at and compute for every i
the score as per equation (2), sort the scores by increasing values and bet on the smallest.

Example To illustrate the procedure, we consider the bivariate case where the covariance
matrix between variables X and Y is:

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
where var(X) = σ2

x, var(Y) = σ2
y , cov(X,Y) = ρσxσy and ρ is the correlation between X and

Y . In this case, we find:

Σ−1 =
1

1− ρ2

 1
σ2
x

−ρ
σxσy

−ρ
σxσy

1
σ2
y


and the probability density function can be written as

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
x2

σ2
x

+
y2

σ2
y

− 2ρxy

σxσy

])
.

In this case, equation (2) gets simplified as follows:

si =
(a1 −mi,1)

2

σ2
1

+
(a2 −mi,2)

2

σ2
2

− 2ρ(a1 −mi,1)(a2 −mi,2)

σ1σ2

where σ1 = var(m1), σ2 = var(m2) and ρ is the correlation between m1 and m2.

4 Experiments

4.1 Measurements

This section describes our experimental results using the Altera EP2C20F484C7N FPGA present
on the Cyclone II Starter Development Kit (SDK). Fig.8 shows the circuit used to measure the
power consumption of a memory read + register store operation. The circuit consisted of a

12

RAM, a multiplexer, eight registers, slide switches (DIP) and buttons. Identical data was simul-
taneously written into eight identical registers to increase power signature.

Power was measured using a 1GHz oscilloscope (TDS 684B) and a Tektronix P6247 differen-
tial probe (1GHz bandwidth). The SDK’s two GPIO pins (power and ground) were connected
via the differential probe. Apart from DC signal rejection no filtering or power trace post pro-
cessing was done.

0

1

2

3

4

5

6

7

D0

D1

D2

D3

D4

D5

D6

D7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

A0 - A4

DIP

ON

RAM

32x8

CLK W/R

QD

CLK

CLR

R0

QD

CLK

CLR

R7

R1

R2

R3

R4

R5
R6

S

0x00

0x08

/

/

/

5

5

5

Fig. 8. The experimental circuit used for power consumption measurements

The experimental protocol was defined as follows:

– The DIP’s eight slide switches were manually set to 0x00.
– Address 0x00 was latched on address bus A=[A0,...,A4] using the multiplexer’s control

bit S. This caused the value 0x00 to be written into RAM address 0x00.
– For d = 0 to 255:

• The DIP’s eight slide switches were manually set to d.
• Pressing the board’s KEY0 button triggered the following sequence of events 1000 times

(averaged to remove noise):
1. RAM write (W) was activated and bit S was used to latch address 0x08 on bus A.

This caused d to be written to RAM address 0x08 (1 cycle).
2. RAM read was activated (R) and bit S was used to latch address 0x00 on bus A.

This caused 0x00 to be read-out of RAM and clear all data previously present on
the bus and in the registers (3 cycles).

3. The RAM’s CLK signal was disabled.
4. Bit S was used to latch address 0x08 on bus A.
5. The oscilloscope was triggered.
6. The RAM’s CLK signal was enabled for one cycle only causing d to appear on

bus [R0,...,R7]. The RAM’s CLK signal was immediately re-disabled to avoid a
double-reads and freeze d on bus [R0,...,R7].

7. At the next clock cycle, d appeared at the Q output pins of the eight registers.
8. The clock was left running for one more cycle to acquire any signal tails due to

capacitive discharges.

13

• A 2500-sample averaged power measurement e′(d) was recorded.
• Three samples corresponding to instants t0, t1, t2 were extracted from e′(d) to form

e(d). e(d) was recorded13 as a file trace d.d used for camouflage calculations.

The described state-flow could only be interrupted by power-off or by pressing KEY0. A finite
state-machine (FSM) diagram will appear in the final version of this paper. A characteristic
power trace is shown in Figure 9.

Fig. 9. Power trace of the circuit on Fig.8

The obtained results confirm very wall both our analysis and intuition. However, for various
technical reasons, we are not entirely satisfied with this first measurement campaign. We thus
plan to refine our setting and provide new experimental results in the final paper.

4.2 Analysis

Figure 12 represent the 256 values (n = 8) obtained experimentally as 8 color families (i.e. 32
points per family). The experimental data is available upon request.

Our goal is to consider this data as 2i colors×28−i points for i = 1, . . . , 7, select the optimal
bus bits on which k should be encoded, compute the v(k) in all cases and check if the results
indicate, as we conjecture, that similar Hamming weight words yield the best encoding.

For two colors (i.e. a 1-bit k) the two most similar bus values are 0x7F and 0xF9 for which:

distance(e(0x7F), e(0xF9)) = distance({28601, 28795, 28794}, {29115, 28789, 28876}) = 26.94

For four colors (i.e. a 2-bit k) we get:
binary value of k optimal k and v(k) observed side channel e(k, v(k))

00 0xB4=10110100 e(0xB4) = {28704, 28232, 28278}
01 OxD9=11011001 e(0xD9) = {28652, 28107, 28315}
10 0x96=10010110 e(0x96) = {28716, 28159, 28293}
11 0x6B=01101011 e(0x6B) = {28670, 28280, 28380}

13 3 big-endian values stored in ASCII in decimal format. Each sample is represented by two bytes (oscilloscope’s
precision).

14

sample 1

sample 3

sample 2

sample 3

sample 1

sample 2

sample 3

sample 2

sample 1

Fig. 10. Experimental results for n = 8. 3D and projected representations of the 256 experimental measurements
(represented as 8 color families of 32 points).

e(0xB4), e(0xD9), e(0x96), e(0x6B) are contained in a sphere of radius
√

17239
2

∼= 92.84 cen-

tered at c = {28661, 28193.5, 28347.5} where:

distance(c, e(0xB4)) = 90.34 distance(c, e(0xD9)) = 92.84
distance(c, e(0x96)) = 84.77 distance(c, e(0x6B)) = 92.84

The positions are illustrated in Figure 11 where points were re-scaled to [0, 1] using the
affine transform rescale({x, y, z}) = {u(x), u(y), u(z)} where u(ℓ) = (ℓ− 28107)/609:

rescale(e(0xB4)) = {0.98, 0.21, 0.28} rescale(e(0xD9)) = {0.89, 0.00, 0.34}
rescale(e(0x96)) = {1.00, 0.09, 0.31} rescale(e(0x6B)) = {0.92, 0.28, 0.45}

5 Conclusion and Further Research

This works raises a number of interesting questions. A first natural generalization is the transla-
tion of our analysis to an infinite number of dimensions (in terms of metrics on function spaces
and distances between functions).

15

Fig. 11.Display of the re-scaled optimal solution rescale(e(0xB4)), rescale(e(0xD9)), rescale(e(0x96)), rescale(e(0x6B)).

sample 1

sample 3

sample 2

sample 3

sample 1

sample 2

sample 3

sample 2

sample 1

Fig. 12. Experimental results for n = 8. Position of the optimal solution e(0xB4), e(0xD9), e(0x96), e(0x6B).

A second line of research consists in introducing more complex information encoding schemes.
Here the defender detects the 2s most similar traces in E = {e(0), . . . , e(2n−1)}, e.g. using clus-
tering. Let L be the subset (cluster) of these most similar traces:

L = {e(ℓ(1)), . . . , e(ℓ(2s − 1))} ⊂ E

16

The communicating parties assign14 to the transmitted information the encoding:

ℓ(k) = encode(k) k = decode(ℓ(k))

For four colors (i.e. a 2-bit k) using our experimental data, we get:

binary value of k optimal encode(k) observed side channel e(encode(k))

00 0x96=10010110 e(0x96) = {28716, 28159, 28293}
01 OxB4=10110100 e(0xB4) = {28704, 28232, 28278}
10 0xD0=11010000 e(0xD0) = {28703, 28238, 28247}
11 0xD9=11011001 e(0xD9) = {28652, 28107, 28315}

e(0x96), e(0xB4), e(0xD0), e(0xD9) are contained in a sphere of radius
√

12193
2

∼= 78.08 cen-

tered at c = {28677.5, 28172.5, 28281}. This solution (shown in green in Figure 13) shares three
points with the previous solution (Figure 12) shown in red.

sample 1

sample 2

sample 3

Fig. 13. Experimental results for n = 8. Position of the optimal solution e(0xB4), e(0xD9), e(0x96), e(0xD0).

Along the same line of ideas, a further refinement consists in buying an easier computation of
camouflage values at the cost of extra assumptions on the power consumption model. Assume for
instance an isotropic consumption model where emanations are proportional to the Hamming
weight of the transmitted data. Here all

(
n
w

)
emissions of weight w cause identical emanations.

The largest binomial has weight w = n/2, and it is bounded by

2n√
2n

< bn =

(
n
n
2

)
<

2n√
πn/2

.

Assigning cn = ⌈log2
√
2n⌉ implies that 2n−cn ≤ 2n/

√
2n < bn, i.e. 2

s < bn for s = n − cn.
We can thus choose a distinct configuration of weight n/2 to encode each secret key k. It follows

14 e.g. using a lookup table.

17

that cn = (3 + log2 n)/2 bits are sufficient to perfectly hide the emanations from s = n − cn
keys over the n bits of an isotropic bus.

If the noise level is high enough then the implementer may use the fact that

log

((
n
n
2

))
≃ log

((
n

n
2 ± γ

))
for moderate γ values

and increase bandwidth at the cost of a carefully controlled security risk.

6 Acknowledgments

Part of this work was supported under grant 12-15-1432-HiCi from King Abdulaziz University.

References

1. E. Brier, C. Clavier, F. Olivier, Optimal Statistical Power Analysis Cryptology ePrint Archive, Report 152,
http://eprint.iacr.org/, 2003

2. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and
Applications, Springer, 1997

3. E. Welzl, Smallest Enclosing Disks (Balls and Ellipsoids), New Results and New Trends in Computer Science,
volume 555 of LNCS, Springer, pp. 359-370, 1991

4. B. Gärtner, Fast and Robust Smallest Enclosing Balls, Proc. of the 7th Annual European Symposium on
Algorithms (ESA), volume 1643 of LNCS, Springer, pp. 325-338, 1999

5. D. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Addison Wesley, 2nd edition,
1998

