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Abstract

How to construct an ideal multi-secret sharing scheme for general access structures
is difficult. In this paper, we solve an open problem proposed by Spiez et al.recently
[Finite Fields and Their Application, 2011(17) 329-342], namely to design an algo-
rithm of privileged coalitions of any length if such coalitions exist. Furthermore, in
terms of privileged coalitions, we show that most of the existing multi-secret shar-
ing schemes based on Shamir threshold secret sharing are not perfect by analyzing
Yang et al.’s scheme and Pang et al.’s scheme. Finally, based on the algorithm men-
tioned above, we devise an ideal multi-secret sharing scheme for families of access
structures, which possesses more vivid authorized sets than that of the threshold
scheme.

Keywords: (t, n) threshold, track, access structure, minimal privileged coalitions,
multi-secret sharing

1. Introduction

Single-secret sharing schemes(SSSS). A secret sharing scheme is a method to
distribute a secret among a set P of participants, which includes a pair of efficient
algorithms:a distribution algorithm and a reconstruction algorithm, implemented
by a dealer and some participants. The distribution algorithm allows a dealer to
split a secret s into different pieces, called shares, and distribute them to par-
ticipants. The reconstruction algorithm is executed by the authorized subsets of
parties who are able to reconstruct the secret by using their respective shares. The
collection of these authorized sets of participants is called the access structure,
Γ ⊂ 2P . A group of participants is called a minimal authorized subsets if they
can recover the secret with their shares, and any of its proper subgroups cannot
do so. Then, the access structure is determined by the family of minimal autho-
rized subsets, (Γ)min. The notion of secret sharing was introduced by Shamir [1]
and Blakley [2] , who considered the only schemes with a (t, n)-threshold access
structure formed by the set of authorized subsets of participants is the set of all
subsets of size at least t, for some integer t. In 1987, Ito et al.[3] proved that there
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exists a secret sharing scheme for any access structure which is more general than
the threshold ones. Afterwards, secret sharing schemes have been widely employed
in the construction of more elaborate cryptographic primitives and several types of
cryptographic protocols(see [4-8]).

A secret sharing scheme is called perfect if any non-authorized subset of par-
ticipants have no information about the secret, and ideal if the shares are of the
same size as that of the secret. An ideal secret sharing scheme is well-known to
be the best efficiency that one can achieve with lowest storage complexity and the
communication complexity[9].

Multi-secret sharing schemes(MSSS). Multi-secret sharing can be seen as a nat-
ural generalization of single secret sharing schemes. In 1994, Blundo et al. [10] stud-
ied the more general case in which the set of participants share more than one secret
and different secret is related to different access structure. Let Γ = (Γ0, . . . ,Γm−1)
be the m-tuple of access structures on P and let S0 × S1 × · · · × Sm−1be the set
from which the secrets are chosen, where for any 0 ≤ j ≤ m − 1, each secret
sj to be shared is chosen in Sj. In the definition of a perfect multi-secret shar-
ing scheme, an m-tuple of secrets (s0, . . . , sm−1) ∈ S0 × · · · × Sm−1 is shared in
an m-tuple (Γ0, . . . ,Γm−1) of access structures on P in such a way that, for each
0 ≤ j ≤ m − 1, the access structure Γj is the set of all subsets of P that can
recover secret sj. A perfect multi-secret sharing scheme is defined in [10] such that
the following requirements are satisfied.

Definition 1.1. Let Γ = {Γ0, . . . ,Γm−1} be an m-tuple of access structures on the
set of participants P = {P1, . . . , Pn}. A multi-secret sharing scheme for Γ =
{Γ0, . . . ,Γm−1} is a sharing of the secrets (s0, . . . , sm−1) ∈ S0 × · · · × Sm−1 in such
a way that, for 0 ≤ j ≤ m− 1,
(1) Correctness requirement: Any subset A ⊆ P of participants enabled to recover

sj can compute sj. Formally, for all A ∈ Γj, it holds H(Sj | A) = 0,
(2) Security requirement: Any subset A ⊆ P of participants not enabled to recover

sj, even knowing some of the other secrets, has no more information on sj
than that already conveyed by the known secrets. Formally, for all A 6∈ Γj and
T ⊆ {S0, · · · , Sm−1}\{Sj}, it holds H(Sj | AT ) = H(Sj | T ).

So far, Multi-secret sharing are widely applied not only in the field of informa-
tion security but also the theories and models of secret sharing schemes[11-19].

Our results. Although fruitful results for the multi-secret sharing have been ob-
tained, it is still difficult to devise ideal multi-secret sharing schemes for general ac-
cess structures. In this paper, by using the theory of privileged coalitions[20,21], we
point out that several multi-secret sharing schemes (see[13-18])based on Shamir’s
threshold scheme are not perfect, and thus are not ideal. In[20] Spiez et al. ob-
tained an algorithm to construct the privileged coalitions of maximal length and
put forward how to design an algorithm of privileged coalitions of any length if
such coalitions exist. Motivated by these concers, we solve this open problem and
devise an ideal multi-secret sharing scheme(IMSSS) for families of access structures
based on the algorithm mentioned above. Finally, we compare our scheme with
two additional schemes[13,14] according to their performance analysis.
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The rest of the paper is organized as follows: In Section 2, the basic definitions
of secret Shamir’s secret sharing scheme and privileged coalitions are reviewed, an
algorithm of privileged coalitions of any length is designed as well. In Section 3 and
4, based on theories of privileged coalitions and corresponding algorithm, we shall
present our ideal multi-secret sharing scheme and make some discussions. Finally,
some remarks are given in the conclusion Section.

2. Preliminaries

2.1. Shamir’s secret sharing scheme

In a (t, n) threshold secret sharing scheme(a scheme with n participants
and threshold t), where 2 ≤ t ≤ n, a dealer does not disclose a secret data to the
participants but only distributes n shares amongest them in such a way that at
least t or more participants can collectively efficiently reconstruct the secret but
no coalition of less than t participants can obtain noting about the secret.

In the paper, we consider Shamir’s secret sharing schemes[20] with the
secret placed as a coefficient ai of the scheme polynomial f(x) = a0 + a1x+ · · ·+
at−1x

t−1, where a = (a0, . . . , at−1) ∈ F t
q (q is a prime power). For a fix f(x) and

an j, such scheme is uniquely defined by a sequence L = (l1, l2 . . . , ln) ∈ F n
q∗ of

pairwise different public identities, allocated to participants, called in [20] a track.
The shares yi = f(li) (1 ≤ i ≤ n) assigned to participants are secret.
Remark 1. Shamir’s (t, n) threshold secret sharing and Shamir’s secret sharing
are different. A Shamir’s (t, n) threshold secret sharing must be a Shamir’s secret
sharing, but a Shamir’s secret sharing may not be a Shamir’s (t, n) threshold secret
sharing.

In fact, the public identities L define the n× t matrix A(L) = (lνµ) 1≤µ≤n
0≤ν≤t−1

over

Fq which gives the shares by A(L)aT = yT . Since L is a track any coalition of t
participants determines a t× t non-singular Vandermonde submatrix of the matrix
A(L) consisting of the corresponding rows of the matrix A(L), i.e.,
(i) all t× t submatrices of A(L) are non-singular.

A Shamir’s secret sharing is a Shamir’s (t, n) threshold secret sharing if and
only if
(ii) all (t− 1)× (t− 1) submatrices of the matrix obtained from the matrix A(L)

by removing its j-th column are non-singular.
The track L corresponding to such matrix A(L) satisfying two above conditions

is called (t, j)−admissible[21].

Definition 2.1. Let 0 ≤ j ≤ t − 1. If the track L ∈ F n
q , where n ≥ k, defines a

Shamir’s (t, n) threshold secret sharing with the secret placed as a coefficient aj
of the scheme polynomial f(x) = a0 + a1x + · · · + at−1x

t−1, then L is called a
(t, j)−admissible track.

Note that if the track L ∈ F n
q is not (t, j)−admissible, then it contains a

subtrack consisting of less than t participants which can reconstruct the secret by
themselves, forming a privileged coalition[20].
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2.2. Minimal privileged coalition

Definition 2.2. [20] Let r < t and fix j, 0 < j < t−1. A coalition of r participants
L = (l1, l2, · · · , lr) ∈ F r

q is said to be a (t, j)−privileged coalition, if they can
reconstruct the secret, placed as the coefficient aj of the scheme polynomial f(x) =
a0 + a1x+ · · ·+ at−1x

t−1.

Definition 2.3. Let r < t and fix j, 0 < j < t − 1. A coalition of r participants
L = (l1, l2, · · · , lr) ∈ F r

q is said to be a (t, j)−minimal privileged coalition, if L is
a privileged coalition without any subtracks that can reconstruct the secret.

Note that the tracks of length t, which can be extended by privileged coalitions
of length r, can reconstruct the secrets placed as any coefficients of the scheme
polynomial. Then we would have

Definition 2.4. Fix j, 0 < j < t−1. A coalition of t participants L = (l1, l2, · · · , lt) ∈
F t
q is said to be a (t, j)−unextended track, if L can not be extended by a (t, j)−privileged

coalition.

By Definition 2.3, the minimal authorized subsets of Shamir’s secret sharing
schemes are determined by minimal privileged coalitions and unextended tracks.
Therefore, constructing minimal privileged coalitions become the key to the de-
termination of the access structures. In order to devise an algorithm to obtain
privileged coalitions, we will need the following theorem about the characteriza-
tion of (t, j)−privileged coalitions whose proof can be found in[20].

Theorem 2.5. Assume that 0 < j < t−1, j < r ≤ t−1. Let L = (l1, l2, · · · , lr) ∈
F r
q be a track, and let t ≤ q. Then L is a (t, j)−privileged coalition if and only if

τω(L) = 0, for all ω ∈ {r − j, · · · , t− 1− j},

where τω(L) denotes the elementary symmetric polynomial of total degree ω.

2.3. Privileged coalitions of any length

In this section, we solve an open problem proposed in[20] recently, namely to
design an algorithm of privileged coalitions of any length if such coalitions exist. For
simplicity, we will focus on the tracks whose value of each component is clamped to
the range of {1, 2, · · · , N}, and we call these coalitions (t, j)−privileged coalitions
with respect to N . Using Algorithm 1 we can obtain (t, j)−privileged coalitions
with respect to N of length r over Fp (p is a odd prime). By Definition 2.3, for the
given t, r with t+1

2
≤ r ≤ t− 1, we can obtain (t, j)−minimal privileged coalitions

with respect to N of length r by detaching
(
r−rmin
p−rmin

)
Nmin non-minimal privileged

coalitions from (t, j)−privileged coalitions of length r, where Nmin denotes the
number of privileged coalitions of the shortest length rmin.

As an illustration, we investigate the Shamir’s secret scheme with the number
of participants n = 13 and threshold t = 7. In the appendix, we then present two
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tables of (7, j)−minimal privileged coalitions with respect to N = 13 of any length
if such coalitions exist.

Algorithm 1
Input positive integers t, r, j with t ≥ 3, t+1

2
≤ r ≤ t− 1, t− r ≤ j ≤ r − 1.

Output all of the (t, j)−privileged coalitions of length r with respect to N
over Fp.

1. Compute the range of values for j, and set a← r − j, b← t− 1− j. Take
J is a set of all integers from a to b.

2. Obtain all of the tracks of length r with respect to N over Fp.
2.1. B = (1, 2, · · · , n), for i = 1 to N

2.1.1 For j = i+ 1 to N
If B(j) > B(i) (B(j) denotes the elements of the j−th position

of the array B),
2.1.1.1 For k = j + 1 to N

If B(k) > B(j)
...

r−1 Nested loops are carried out in turn, then (· · · , B(k), B(j), B(i))︸ ︷︷ ︸
r

is a track.
3. Find (t, j)−privileged coalitions from the tracks obtained in Step 2 by means

of the principle about Vieta theorem of high power equation.
3.1. For i = 1 to b− a+ 1

3.1.1. Set p← J(i), and go through tracks that obtained in Step 2.
Let C = 1. For j = 1 to r

Set C ← C × (x+ L(j))
3.1.2. Setf ← C, and select m as a vector whose components are

coefficients of the expansion of f(x) in ascending power of x.
Set s←m(r − p+ 1), then set vp ← mod(s, p).

3.2. If vp = 0, then return (L).

3. An ideal multi-secret sharing scheme

When the probability distributions over the secrets and shares are uniform, a
secret sharing scheme is said to be ideal if all secrets and shares are the same size[19].
In this section we firstly define a (t-1)-tuple Γ = (Γ0, . . . ,Γt−2) of access structures
and then we devise an IMSSS which realizes such a (t-1)-tuple Γ = (Γ0, . . . ,Γt−2)
of access structures.

3.1. Definition of the access structures

Let P = {P1, . . . , Pn} be the set of participants, we firstly define such an (t-1)-
tuple Γ = (Γ0, . . . ,Γt−2) as follows:

(1) (Γ0)min = {A ⊆ P | |A| = t}.
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(2) (Γj)min = {A ⊆ P | LA is either a (t, j)− unextended track or a (t, j)−
privileged coalition, (1 ≤ j ≤ t− 2)}.

As each component of a track can be used as the identity of the participants, we
can determine the minimal authorized subsets of (Γj)min for the secret placed as a
coefficient aj of the scheme polynomial f(x) = a0 + a1x+ · · ·+ at−1x

t−1 by getting
both (t,j)-unextended track and (t,j)-privileged coalition using the Algorithm 1.

Obviously, a subset A ⊆ P is likely to reconstruct more than one secret. For
example, if A ∈ Γi and A ∈ Γj, then A can reconstruct not only si but also sj,
where 0 ≤ i, j ≤ t− 2 and i 6= j.

Example 3.1 Let P = {P1, P2, P3, P4, P5, P6}, t = 5, q = 7. Without loss
of generality, D distributes i to participant Pi for 1 ≤ i ≤ 6. It follows from
algorithm 1 that (5,1)-privileged coalition over F7 is (1, 2, 5, 6), (1, 3, 4, 6) and
(2, 3, 4, 5); (5,2)-privileged coalition is (1, 2, 4), (3, 5, 6); (5,3)-privileged coalition
is (1, 2, 5, 6), (1, 3, 4, 6) and (2, 3, 4, 5), but without (t,j)-unextended track. Hence
(t− 1)-tuple Γ = (Γ0, . . . ,Γm−2) can be defined as follows:

(Γ0)min = {{P1, P2, P3, P4, P5}, {P1, P2, P3, P4, P6}{P1, P2, P4, P5, P6},
{P1, P2, P3, P5, P6}, {P1, P3, P4, P5, P6}, {P2, P3, P4, P5, P6}},

(Γ1)min = (Γ3)min = {{P1, P3, P4, P6}, {P1, P2, P5, P6}, {P2, P3, P4, P5}},
(Γ2)min = {{P1, P2, P4}, {P3, P5, P6}}.

3.2. Construction of the IMSSS

3.2.1. Initialization phase

Note that s0, . . . , st−2 denote t-1 secrets to be shared, where (s0, . . . , st−2) ∈ S0×
· · · ×St−2. The dealer D randomly chooses n pairwise different li and assigns them
to every participant Pi as their public identity, where li ∈ F ∗q for 1 ≤ i ≤ n. Then
D computes the (t, j)-unextended track and (t, j)-privileged coalition by means of
algorithm 1 for 0 ≤ j ≤ t− 2.

3.2.2. Distribute phase

The dealer D performs the following steps:
(1) Choose an integer at−1 from F ∗q and construct (t− 1)th degree polynomial

f(x) mod q, where 0 < s0, . . . , st−2, at−1 < q as follows:f(x) = s0 + · · ·+
st−2x

t−2 + at−1x
t−1 mod q.

(2) Compute yi = f(li) mod q for i = 1, 2 . . . , n and distribute them to every
participant Pi as secret shares by a secret channel.

3.2.3. Recovery phase

Assume that (0 ≤ j ≤ t − 2). for any A ∈ (Γj)min, if |A| = t, then any subset
A ∈ (Γj)min can reconstruct the secret sj by solving equation system A(LA) aT =
yT , where LA is corresponding track of A; if |A| < t and L = (li1 , li2 , . . . , lir) ∈ F r

q

is a (t, j)-privileged coalition of A, let L
′

A = (li1 , li2 , . . . , lir , lir+1 , . . . , lit) ∈ F t
q , then

the participants in A can reconstruct the secret sj by solving equation system

A(L
′

A) aT = yT , where a = (s0, . . . , st−2, at−1) ∈ F t
q , y = (yi1 , . . . , yit), and A(LA),

A(L
′

A) are all t× t matrix which can be specifically written as (lνµ) 1≤µ≤n
0≤ν≤t−1

.
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4. Correctness and security proof

In order to prove that our scheme is perfect, we need to introduce some re-
sults on the generalized the Vandermonde determinants. As usual, for a k−tuple
of indeterminates x = (x1, . . . , xk) and a k−tuple of increasing non-negative in-
tegers c = (c1, . . . , ck) we call Vc(x) = det((xcνµ )1≤ν,µ≤k) generalized Vandermonde
determinant. Write ek = (0, . . . , k − 1). If c = ek then Vc(x) equals the classical
Vandermonde determinant V (x) =

∏
1≤i<j≤k(xj − xi).

Theorem 4.1. The scheme presented in Section 3 is a perfect multi-secret sharing
scheme.

Proof. When j = 0 due to the perfect property of the (t, n) secret sharing schemes,
our scheme satisfies the two conditions of Definition 1.1. Now we consider that
1 ≤ j ≤ t− 2.

(1) If |A| = t, then by solving equation system A(LA) aT = yT , the partic-
ipants in A can obtain the unique solution sj in terms of Cramer rule. If |A| < t
and L = (li1 , li2 , . . . , lir) ∈ F r

q is a (t, j)-privileged coalition of A, by Theorem 2.5,
τω(L) = 0, for all ω ∈ {r − j, · · · , t − 1 − j}. By Lemma 2[20], τω(L) = 0 for all
ω ∈ {r − j, · · · , t− 1− j} if and only if

τt−1−j(L || ûm) = 0 for all m, 1 ≤ m ≤ t− r, (1
′
)

let u = (u1, . . . , ut−r) ∈ F t−r
q be a track disjoint with L, and ûm denotes the

sequence obtained from u by removing the term um. Let

yk =

{
f(lk) k ∈ {1, . . . , r}
f(uk−r) k ∈ {r + 1, . . . , t} ,

and let L
′

A = (li1 , li2 , . . . , lir , u1, . . . , ut−r) ∈ F t
q , then sj can be obtained by solving

equation system A(L
′

A) aT = yT

sj =
1

V (L || u)
(

r∑
k=1

(−1)k+j+1V (L̂k || u)τt−1−j(L̂k || u)yk +

t∑
k=r+1

(−1)k+j+1V (L || ûk−r)τt−1−j(L || ûk−r)yk. (2
′
)

By (1
′
) and (2

′
), (t, j)-privileged coalition of A can compute the secret sj. Hence,

it holds that for all A ∈ Γj, H(Sj | A) = 0.
(2) If A 6∈ Γj, then |A| < t and LA is not a (t, j)− privileged coalition. In view

of (1
′
), there exists a m

′
, where 1 ≤ m

′ ≤ t − r such that τt−1−j(L || ûm′ ) 6= 0.
Thus, the share ym′+r of um′ is needed. By (2

′
) we can obtain that the participants

in A have no information on sj, even knowing some of the other secrets. Hence,
it holds that H(Sj | AT ) = H(Sj | T ), where T denotes the secrets that A can
compute.

Therefore, according to Definition 1.1, the scheme is a perfect multi-secret shar-
ing scheme.
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As a consequence, our scheme is an ideal and perfect linear multi-secret sharing
scheme. In 2004 and 2005, Yang et al.[13] and Pang et al.[14] proposed multi-secret
sharing schemes based on Shamir’s threshold secret sharing, respectively, which are
relatively efficient with lower cost of computing due to the Lagrange interpolation
operation that is employed in the process of schemes construction. However, The
existence of the privileged coalitions and the Lagrange interpolation polynomial
participants use will result in a fact that the union of less than t participants may
compute the coefficients of the polynomial corresponding to secrets by solving equa-
tion system, thereby obtaining further information about the secret. Consequently,
both of the two schemes are not perfect, i.e., there is information leakages. Table
1 is for the comparison among three schemes.

Likewise, the multi-secret sharing schemes[15-18] are not perfect, and thus are
not ideal.
Remark 2. The validity of the shares can be verified in a verifiable secret sharing
scheme, thus participants are not able to cheat. Based on our scheme, we can
further construct an ideal verifiable multi-secret sharing scheme by adding the
existing verifiability methods where the intractability of discrete logarithm problem
is frequently employed (see[15-18]).

Table 1 The comparison of performance among three schemes

Capability Our scheme Yang’s scheme. Pang’s scheme
Multi-secret Yes Yes Yes
Each participant holds only one share Yes Yes Yes
Recover multi-secrets by Lagrange interpolating polynomials No Yes Yes
Access structures corresponding to each secret is the same No Yes Yes
Access structures possess more vivid authorized sets Yes No No
The scheme is perfect Yes No No
The scheme is ideal Yes No No

5. Conclusions

In this paper, we consider an ideal multi-secret sharing scheme based on the
theories of minimal privileged coalitions and Shamir’s secret sharing, where for a
set of participants P = {P1, . . . , Pn}, each subset of Γj carries different target secret
sj for 0 ≤ j ≤ t−2. In particular, in order to obtain privileged coalitions, we devise
an algorithm of privileged coalitions of any length if such coalitions exist. In real
terms, we can integrate data into a database which obtained from the experiment
for different value t in accordance with our needs, and then we can extract the
results as identities of participants applied to the construction of the scheme for
practical applications.
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Table 2 The number of (7, j)-minimal privileged coalitions in the track
(1, . . . , 13) over Fp for 1 ≤ j ≤ 5

p j=1 j=2 j=3 j=4 j=5 p j=1 j=2 j=3 j=4 j=5
13 72 114 71 93 132 137 15 10 11 18 0
17 101 69 76 72 98 139 18 12 10 13 0
19 90 53 72 57 92 149 13 13 8 8 0
23 72 61 58 63 83 151 12 9 13 13 0
29 60 43 51 46 26 157 14 10 13 10 0
31 58 51 40 39 32 163 13 16 9 7 0
37 51 49 38 27 76 167 13 12 9 11 0
41 44 36 38 27 94 173 8 13 11 10 0
43 41 40 35 34 94 179 7 11 9 10 0
47 41 32 36 39 76 181 7 8 12 9 0
53 26 35 35 27 31 191 5 4 11 10 0
59 32 25 28 24 5 193 12 8 7 8 0
61 27 32 31 28 2 197 10 10 11 9 0
67 21 32 25 22 0 199 7 13 9 8 0

71 26 22 22 23 0
...

...
...

...
...

...
73 23 24 21 31 0 809 1 2 3 0 0

79 24 20 22 15 0
...

...
...

...
...

...
83 23 21 24 25 0 5231 0 0 1 0 0

89 18 12 15 18 0
...

...
...

...
...

...
97 18 24 15 17 0 31601 0 1 0 0 0

101 19 10 21 17 0
...

...
...

...
...

...
103 18 20 14 20 0 199999 0 0 0 0 0

107 21 14 12 18 0
...

...
...

...
...

...
109 18 18 9 16 0 499253 0 0 0 0 0

113 12 14 16 16 0
...

...
...

...
...

...

127 12 12 16 19 0
...

...
...

...
...

...
131 13 7 11 12 0 ≥ 725597 0 0 0 0 0
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Table 3 The (7, 3)-privileged coalitions with the shortest length in the track (1, . . . , 13) over Fp
p Nr. (7, 3)-privileged coalitions with the shortest length
13 3 {12, 8, 5, 1} {11, 10, 3, 2} {9, 7, 6, 4}
17 1 {11, 10, 7, 6}
19 3 {13, 5, 4, 3, 1} {13, 9, 8, 5, 2} {10, 8, 7, 6, 2}
23 2 {10, 9, 8, 6, 1} {13, 11, 8, 7, 1}
29 3 {11, 4, 3, 2, 1} {11, 9, 7, 5, 1} {12, 9, 6, 4, 3}
31 1 {9, 8, 5, 3, 1}
37 2 {12, 10, 8, 5, 1} {7, 6, 4, 3, 2}
41 1 {11, 9, 7, 6, 4}

{10, 5, 4, 3, 2, 1}{12, 6, 5, 3, 2, 1} {11, 10, 9, 5, 3, 1} {13, 7, 5, 4, 2, 1}{12, 11, 6, 4, 2, 1}
{13, 11, 9, 5, 2, 1} {11, 10, 7, 6, 2, 1}{11, 8, 6, 3, 2, 1} {12, 10, 8, 6, 5, 4}{13, 12, 11, 6, 5, 4}

43 35 {11, 9, 8, 5, 4, 1}{13, 9, 8, 6, 4, 1}{11, 10, 8, 7, 4, 1}{12, 11, 10, 9, 4, 1}{12, 11, 8, 6, 5, 1}
{13, 11, 10, 8, 6, 1}{13, 9, 5, 4, 3, 2}{12, 10, 8, 6, 3, 2} {10, 9, 8, 7, 3, 2}{13, 12, 10, 5, 4, 2}
{12, 10, 8, 7, 4, 2}{12, 9, 8, 6, 5, 2} {13, 10, 8, 6, 5, 2, }{11, 9, 8, 7, 6, 2,}{8, 7, 5, 4, 3, 1}
{12, 11, 10, 6, 5, 3}{13, 12, 11, 8, 6, 3}{11, 10, 9, 8, 7, 5}{11, 7, 6, 5, 4, 3}{12, 11, 8, 4, 3, 2}
{11, 9, 7, 4, 2, 1}{13, 10, 8, 7, 6, 4}{13, 11, 9, 7, 6, 1}{11, 10, 9, 8, 4, 3}{13, 11, 9, 6, 4, 2, }

47 1 {13, 11, 9, 8, 2}
{11, 6, 5, 3, 2, 1} {12, 10, 7, 3, 2, 1}{7, 6, 5, 4, 2, 1}{12, 11, 8, 4, 2, 1}{12, 8, 6, 5, 2, 1}
{11, 9, 7, 5, 2, 1}{11, 10, 9, 6, 2, 1} {12, 11, 5, 4, 3, 1}{12, 9, 7, 5, 3, 1}{13, 10, 8, 6, 3, 1}
{13, 12, 11, 10, 3, 1}{9, 8, 7, 6, 4, 1}{13, 10, 9, 6, 4, 1}{13, 12, 10, 6, 5, 1} {13, 12, 9, 8, 6, 1}

53 35 {9, 8, 6, 5, 3, 2}{13, 9, 8, 7, 3, 2}{13, 11, 8, 7, 4, 2} {13, 10, 8, 7, 5, 3}{13, 11, 8, 7, 6, 3}
{10, 8, 7, 5, 4, 2}{13, 12, 7, 5, 4, 2}{11, 10, 9, 5, 4, 2}{13, 11, 10, 9, 8, 2} {12, 11, 9, 7, 6, 2}
{11, 8, 6, 5, 4, 3}{12, 10, 9, 5, 4, 3}{11, 10, 8, 7, 4, 3}{11, 9, 7, 6, 5, 3}{13, 12, 11, 9, 2, 1}
{3, 9, 6, 5, 2, 1} {10, 9, 8, 7, 3, 1}{13, 12, 10, 4, 3, 2}{12, 11, 10, 7, 6, 3}{13, 12, 10, 8, 6, 2}
{10, 7, 6, 3, 2, 1}{11 8, 5, 4, 2, 1}{12, 10, 5, 4, 2, 1} {10, 8, 7, 4, 2, 1}{11, 7, 6, 5, 2, 1}
{12, 9, 8, 7, 6, 5} {12, 9, 8, 6, 3, 1}{12, 8, 7, 5, 4, 1}{13, 10, 9, 7, 4, 1}{13, 12, 8, 6, 5, 1}

59 28 {11, 10, 7, 4, 3, 2}{13, 12, 11, 10, 6, 5} {13, 11, 8, 4, 3, 2}{13, 11, 10, 6, 3, 2}{13, 12, 10, 8, 3, 2}
{13, 11, 10, 8, 5, 2} {13, 12, 11, 9, 8, 2}{12, 9, 7, 5, 4, 3}{13, 12, 11, 7, 4, 3}{11, 10, 9, 8, 4, 3}
{12, 11, 10, 9, 8, 7}{11, 10, 8, 6, 5, 4}{13, 8, 7, 6, 3, 1}{10, 9, 8, 7, 5, 3}{13, 6, 5, 4, 3, 1}
{12, 10, 9, 5, 3, 2}{13, 10, 7, 6, 5, 2}{12, 11, 9, 8, 5, 1}
{10, 9, 5, 3, 2, 1}{11, 10, 6, 3, 2, 1}{12, 10, 7, 4, 2, 1}{12, 9, 6, 5, 2, 1}{13, 11, 7, 5, 2, 1}
{13, 8, 6, 4, 3, 1}{12, 11, 6, 5, 3, 1}{11, 9, 8, 5, 3, 1}{12, 11, 10, 5, 4, 1}{10, 8, 7, 6, 5, 1}
{13, 12, 11, 8, 7, 1}{12, 6, 5, 4, 3, 2}{10, 9, 6, 4, 3, 2}{12, 10, 8, 5, 3, 2}{13, 12, 10, 7, 6, 1}

61 31 {13, 11, 10, 5, 3, 2}{13, 9, 7, 6, 3, 2}{12, 11, 8, 7, 3, 2}{13, 12, 9, 7, 4, 2}{10, 9, 7, 6, 5, 2}
{12, 10, 7, 5, 4, 3}{13, 11, 9, 6, 4, 3}{13, 12, 10, 8, 4, 3}{13, 11, 9, 4, 2, 1}{13, 12, 10, 9, 5, 1}
{11, 10, 7, 6, 5, 3} {13, 12, 8, 6, 2, 1}{13, 12, 11, 9, 6, 5} {13, 12, 8, 6, 5, 4}{13, 12, 11, 10, 9, 2}
{13, 12, 9, 7, 5, 3}
{12, 10, 6, 3, 2, 1}{10, 8, 7, 3, 2, 1}{8, 6, 5, 4, 2, 1}{11, 9, 8, 5, 2, 1}{12, 11, 9, 6, 2, 1}
{13, 12, 11, 6, 4, 1}{10, 8, 7, 6, 5, 1}{12, 9, 8, 7, 6, 1}{12, 11, 10, 8, 6, 1}{9, 7, 6, 5, 3, 2}

67 25 {12, 9, 6, 5, 4, 2}{13, 9, 8, 6, 5, 2}{13, 9, 7, 5, 4, 3}{12, 11, 8, 5, 4, 3}{9, 8, 7, 6, 4, 3}
{12, 11, 9, 6, 5, 3}{13, 11, 10, 8, 7, 3}{13, 10, 8, 7, 5, 4}{13, 11, 9, 8, 5, 4}{11, 9, 7, 5, 4, 1}
{13, 12, 10, 9, 8, 6}{13, 12, 8, 5, 3, 1}{13, 12, 9, 5, 3, 2}{11, 10, 7, 6, 4, 3}{12, 11, 9, 8, 4, 1}
{13, 12, 4, 3, 2, 1}{13, 10, 9, 3, 2, 1}{11, 10, 6, 4, 2, 1}{7, 6, 5, 4, 3, 1}{13, 8, 5, 4, 3, 1}
{9, 8, 5, 4, 2, 1}{11, 9, 8, 4, 3, 1}{12, 11, 9, 7, 4, 1}{10, 9, 7, 6, 5, 1}{12, 11, 10, 9, 6, 1}

71 22 {10, 9, 7, 4, 3, 2}{12, 10, 8, 5, 4, 2}{13, 12, 11, 6, 4, 2}{13, 11, 10, 7, 4, 2}{13, 12, 9, 8, 5, 2}
{10, 9, 8, 6, 4, 3}{12, 11, 8, 7, 4, 3}{13, 12, 10, 9, 7, 3}{13, 12, 11, 10, 9, 5}{13, 9, 7, 4, 3, 1}
{10, 6, 5, 4, 3, 2}{13, 9, 8, 7, 6, 2}
{13, 8, 4, 3, 2, 1}{10, 8, 5, 3, 2, 1}{12, 10, 9, 5, 2, 1}{12, 11, 9, 6, 2, 1}{10, 9, 7, 4, 3, 1}
{13, 10, 7, 5, 3, 1}{13, 9, 8, 7, 3, 1}{12, 11, 8, 7, 6, 1}{12, 11, 10, 8, 3, 2}{11, 9, 8, 5, 4, 2}

73 21 {13, 11, 7, 6, 5, 2}{11, 10, 9, 6, 5, 2}{13, 12, 8, 7, 5, 2}{13, 11, 10, 9, 7, 2}{11, 10, 8, 6, 4, 3}
{12, 10, 9, 8, 6, 4}{13, 12, 9, 8, 5, 4}{12, 11, 10, 7, 5, 3}{13, 11, 10, 8, 4, 2}{13, 12, 9, 4, 3, 1}
{12, 8, 7, 6, 5, 3}
{9, 7, 6, 3, 2, 1}{13, 11, 10, 3, 2, 1}{13, 10, 5, 4, 2, 1}{13, 7, 6, 5, 2, 1}{10, 9, 6, 5, 2, 1}
{12, 11, 7, 5, 3, 1}{10, 9, 7, 5, 4, 1}{12, 11, 8, 5, 4, 1}{9, 6, 5, 4, 3, 2}{11, 9, 7, 5, 3, 2}
{13, 10, 8, 6, 5, 2}{11, 8, 6, 5, 4, 3}{13, 12, 10, 5, 4, 3}{13, 9, 8, 7, 4, 3}{12, 8, 7, 6, 5, 3}

79 22 {13, 11, 9, 8, 5, 4}{12, 11, 10, 7, 6, 4}{13, 11, 10, 9, 6, 5}{13, 11, 10, 8, 7, 6}{13, 12, 10, 8, 2, 1}
{12, 8, 7, 6, 4, 2}{13, 12, 9, 7, 5, 3}
{12, 5, 4, 3, 2, 1}{13, 7, 4, 3, 2, 1}{8, 7, 6, 4, 2, 1}{12, 11, 7, 4, 2, 1}{13, 10, 5, 4, 3, 1}
{13, 10, 7, 6, 3, 1}{13, 12, 9, 8, 4, 1}{12, 9, 8, 6, 5, 1}{11, 10, 9, 8, 5, 1}{13, 11, 8, 7, 6, 1}

83 24 {12, 9, 8, 6, 3, 2}{11, 10, 9, 6, 3, 2}{13, 9, 7, 6, 4, 2}{12, 10, 9, 6, 4, 2}{12, 11, 10, 8, 4, 2}
{13, 12, 10, 7, 5, 2}{9, 8, 7, 5, 4, 3}{13, 12, 10, 8, 4, 3}{12, 10, 9, 7, 5, 4}{11, 10, 9, 8, 7, 4}
{10, 8, 6, 5, 3, 1}{12, 11, 7, 5, 3, 2}{12, 11, 10, 6, 5, 2} {13, 12, 11, 10, 9, 7}
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{12, 9, 5, 4, 2, 1}{9, 8, 6, 5, 2, 1}{13, 11, 5, 4, 3, 1}{12, 11, 8, 5, 3, 1}{11, 8, 6, 5, 4, 1}
89 15 {13, 7, 5, 4, 3, 2}{13, 11, 10, 8, 7, 3} {13, 11, 10, 4, 3, 2}{12, 10, 9, 5, 3, 2}{11, 10, 9, 6, 5, 2}

{12, 8, 6, 5, 4, 3}{13, 12, 7, 6, 5, 3}{13, 12, 11, 10, 6, 3}{13, 12, 8, 5, 4, 1}{12, 11, 10, 7, 6, 2}
97 1 {12, 11, 10, 5, 4}

{12, 10, 4, 3, 2, 1}{11, 10, 7, 3, 2, 1}{13, 9, 8, 3, 2, 1}{12, 10, 7, 5, 2, 1}{13, 10, 7, 6, 2, 1}
{13, 11, 9, 8, 6, 3} {13, 12, 11, 7, 2, 1}{10, 7, 5, 4, 3, 1}{13, 11, 8, 4, 3, 1}{9, 7, 6, 5, 4, 1}

101 21 {11, 10, 9, 7, 6, 1}{13, 11, 7, 6, 5, 4} {12, 11, 8, 7, 3, 2}{13, 9, 6, 5, 4, 2}{13, 10, 9, 8, 6, 2}
{12, 11, 10, 8, 4, 3}{12, 10, 9, 6, 5, 3}{13, 11, 10, 9, 8, 5}{11, 9, 8, 7, 2, 1}{12, 10, 9, 6, 4, 1}
{13, 10, 8, 6, 4, 3}
{10, 7, 5, 4, 2, 1}{12, 10, 6, 4, 2, 1}{12, 11, 9, 4, 2, 1}{12, 11, 8, 6, 2, 1}{12, 7, 6, 4, 3, 1}

103 14 {12, 11, 10, 7, 5, 4} {13, 10, 9, 5, 3, 2}{11, 10, 9, 5, 4, 2}{13, 12, 11, 9, 5, 2}{10, 9, 6, 5, 4, 3}
{12, 9, 7, 6, 5, 3}{13, 11, 10, 8, 7, 4}{9, 8, 5, 4, 3, 2}{13, 12, 10, 5, 4, 3}
{13, 12, 10, 3, 2, 1}{10, 8, 6, 4, 2, 1}{12, 9, 8, 4, 2, 1}{12, 11, 7, 6, 2, 1}{13, 12, 7, 5, 4, 1}

107 12 {11, 10, 9, 8, 6, 1}{11, 9, 8, 5, 3, 2}{13, 10, 7, 6, 5, 2}{13, 12, 11, 9, 8, 3}{12, 10, 9, 7, 5, 4}
{13, 12, 11, 10, 4, 1}{13, 9, 8, 7, 6, 5}
{13, 12, 10, 3, 2, 1}{10, 8, 6, 4, 2, 1}{12, 9, 8, 4, 2, 1}{12, 11, 7, 6, 2, 1}{13, 12, 7, 5, 4, 1}

107 12 {11, 10, 9, 8, 6, 1}{11, 9, 8, 5, 3, 2}{13, 10, 7, 6, 5, 2}{13, 12, 11, 9, 8, 3}{12, 10, 9, 7, 5, 4}
{13, 12, 11, 10, 4, 1}{13, 9, 8, 7, 6, 5}
{10, 9, 5, 4, 3, 1}{13, 12, 7, 4, 3, 1}{11, 10, 9, 7, 5, 1}{13, 11, 10, 8, 7, 1}{13, 12, 9, 7, 3, 2}

109 9 {10, 8, 6, 5, 4, 3}{13, 12, 9, 8, 6, 4}{10, 9, 8, 7, 6, 5}{13, 7, 6, 5, 4, 3}
113 1 {13, 12, 7, 5, 2}

{9, 6, 5, 3, 2, 1}{13, 11, 9, 3, 2, 1}{13, 12, 5, 4, 2, 1}{11, 10, 8, 5, 3, 1}{13, 11, 8, 7, 3, 1}
127 16 {13, 10, 9, 8, 7, 1}{13, 12, 8, 4, 3, 2}{13, 9, 8, 5, 3, 2}{12, 11, 8, 5, 3, 2}{11, 10, 8, 5, 4, 2}

{10, 9, 8, 5, 4, 3}{13, 8, 7, 6, 5, 3}{13, 11, 10, 9, 5, 4}{13, 12, 10, 8, 6, 4}{9, 8, 7, 6, 5, 1}
{13, 12, 10, 9, 7, 2}
{11, 6, 5, 4, 2, 1}{13, 8, 6, 4, 2, 1}{12, 11, 9, 5, 2, 1}{9, 8, 6, 4, 3, 2}{13, 12, 11, 10, 8, 2}

131 11 {10, 8, 7, 6, 5, 3} {13, 11, 10, 7, 5, 3}{12, 11, 10, 9, 5, 3}{13, 10, 8, 7, 5, 4}{13, 11, 10, 8, 6, 4}
{13, 12, 8, 7, 6, 5}
{13, 12, 10, 7, 2, 1}{13, 7, 6, 4, 3, 1}{11, 10, 8, 5, 4, 1}{13, 11, 10, 9, 4, 1{10, 8, 7, 5, 3, 2}

137 11 {12, 11, 10, 9, 7, 2}{10, 9, 7, 6, 5, 3}{13, 11, 7, 6, 5, 3}{13, 9, 8, 7, 6, 4}{12, 11, 9, 8, 6, 5}
{11, 10, 9, 8, 5, 2}
{13, 12, 8, 3, 2, 1}{9, 7, 6, 4, 2, 1}{13, 7, 6, 5, 3, 1}{12, 10, 9, 7, 3, 1}{11, 10, 9, 6, 5, 1}

139 10 {11, 6, 5, 4, 2}{10, 9, 8, 5, 4, 2}{13, 12, 9, 7, 4, 3}{13, 12, 11, 7, 5, 3}{8, 7, 6, 5, 4, 2}
149 1 {13, 10, 6, 5, 1}

{10, 9, 8, 7, 2, 1}{11, 9, 8, 7, 3, 1}{13, 12, 10, 7, 6, 1}{12, 11, 9, 8, 6, 1}{11, 8, 6, 4, 3, 2}
151 13 {11, 10, 7, 6, 4, 2} {12, 9, 7, 6, 5, 2}{12, 11, 9, 8, 7, 2}{12, 10, 7, 6, 4, 3}{12, 11, 10, 9, 8, 3}

{13, 12, 8, 7, 6, 4}{13, 10, 9, 8, 7, 5}{10, 9, 8, 4, 3, 2}
{12, 9, 6, 3, 2, 1}{11, 7, 5, 4, 2, 1}{13, 8, 5, 4, 2, 1}{10, 7, 6, 5, 3, 1}{13, 11, 9, 7, 3, 1}

157 13 {13, 10, 7, 5, 4, 1}{12, 9, 8, 5, 3, 2}{12, 11, 8, 7, 5, 2}{13, 9, 8, 6, 4, 3}{12, 10, 9, 8, 6, 3}
{13, 10, 8, 6, 5, 4}{13, 12, 11, 10, 6, 3}{11, 10, 9, 8, 3, 1}
{11, 10, 7, 5, 3, 2}{13, 12, 11, 5, 3, 2}{9, 8, 6, 5, 4, 2}{11, 8, 7, 5, 4, 2}{13, 12, 7, 6, 4, 2}

163 9 {11, 10, 9, 8, 6, 2}{11, 9, 7, 5, 4, 3}{13, 12, 11, 10, 9, 6}{13, 10, 8, 7, 5, 2}
{12, 9, 6, 4, 2, 1}{13, 11, 6, 5, 2, 1}{12, 9, 7, 4, 3, 1}{12, 11, 10, 7, 3, 1}{13, 12, 7, 6, 4, 1}

167 9 {12, 11, 10, 9, 6, 2}{11, 9, 7, 5, 4, 3}{13, 12, 11, 10, 9, 6} {12, 10, 7, 5, 3, 2}
173 1 {13, 12, 9, 7, 6}

{12, 11, 9, 3, 2, 1}{12, 10, 6, 5, 2, 1}{13, 8, 7, 5, 2, 1}{8, 7, 6, 5, 3, 1}{10, 9, 7, 6, 3, 1}
179 9 {12, 8, 7, 5, 4, 3}{13, 11, 10, 7, 4, 3}{13, 11, 10, 7, 6, 5}{12, 11, 7, 6, 4, 1}

{8, 5, 4, 3, 2, 1}{13, 11, 7, 4, 2, 1}{9, 8, 7, 6, 2, 1}{13, 11, 10, 8, 3, 1}{13, 12, 10, 6, 4, 1}
181 12 {11, 9, 6, 5, 3, 2}{12, 11, 10, 7, 3, 2}{13, 9, 8, 7, 5, 2}{13, 12, 10, 8, 7, 2}{13, 11, 10, 9, 7, 3}

{12, 10, 8, 7, 5, 4}{9, 7, 5, 4, 3, 2}
{10, 7, 5, 3, 2, 1}{11, 7, 6, 4, 2, 1}{13, 10, 7, 4, 3, 1}{13, 11, 7, 6, 3, 1}{13, 12, 11, 9, 4, 1}

191 11 {12, 10, 9, 6, 3, 2}{13, 8, 7, 6, 5, 4}{11, 10, 9, 7, 5, 4}{13, 12, 10, 8, 5, 4}{12, 11, 10, 8, 6, 4}
{13, 12, 7, 6, 3, 2}
{12, 11, 10, 8, 2, 1}{11, 10, 8, 4, 3, 1}{13, 11, 5, 4, 3, 2}{10, 8, 7, 4, 3, 2}{11, 10, 8, 6, 3, 2}

193 7 {12, 10, 9, 8, 7, 2}{13, 11, 8, 7, 6, 5}
{11, 9, 5, 3, 2, 1}{12, 9, 8, 6, 2, 1}{12, 11, 10, 7, 2, 1}{13, 9, 7, 5, 3, 1}{11, 8, 7, 6, 3, 1}

197 11 {12, 8, 7, 5, 4, 2}{13, 9, 7, 6, 5, 2}{12, 11, 7, 5, 4, 3}{12, 11, 10, 6, 4, 3}{13, 11, 10, 8, 5, 4}
{13, 11, 8, 5, 3, 2}
{13, 9, 4, 3, 2, 1}{13, 11, 8, 5, 2, 1}{13, 10, 8, 6, 4, 1}{11, 10, 9, 8, 7, 1}{12, 8, 6, 5, 4, 2}

199 9 {12, 10, 7, 6, 5, 2} {10, 9, 8, 7, 5, 2}{12, 11, 10, 6, 5, 3}
{12, 11, 10, 6, 4, 2}

...
...

≥ 22787 no privileged coalitions (proven)
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