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ABSTRACT 

We propose a computational procedure to find the efficient frontier for the standard Markowitz mean-variance 
model with discrete variables. The integer constraints limit on the one hand the portfolio to contain a predetermined 
number of assets and, on the other hand, the proportion of the portfolio held in a given asset. We adapt the multiob-
jective algorithm NSGA for solving the problem. The algorithm ranks the solutions of each generation in layers 
based on Pareto non-domination. We have applied the procedure in sixty assets of ATHEX. We have also compared 
the algorithm with a single genetic algorithm. The computational results indicate that the procedure is promising for 
this class of problems. 
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1. Introduction 

Every investor faces the problem of choice the appro- 
priate assets in which he will invest his funds. To support 
such decisions, H. M. Markowitz set up some fifty years 
ago a quantitative framework, in which the selected 
portfolio is optimum with respect to both the expected 
return and the variance of return and maximizes the 
so-called utility function [1,2]. The optimal portfolio 
offers the highest level of expected return for a given 
level of risk and the minimum level of risk for a given 
level of return. All such portfolios are called efficient and 
constitute the efficient frontier. The assumption that asset 
returns follow the normal distribution allows the finding 
of efficient frontier via quadratic programming.  

However, Markowitz mean-variance model has been 
criticised not only for the main assumptions it is based 
upon, but also because it neglects some important aspects 
of portfolio performance in real life situations. As a 
result, some other measures of risk have been used, e.g. 
Value-at-Risk [3,4]; and additional constraints were 
introduced in the standard model in order, for example, 
to avoid very small holdings, to restrict the total number 
of holdings and/or to take into consideration the roundlot 
of assets that can be bought or sold in a bunch [5].  

Since these additional constraints lead to sets of 
discrete variables and constraints, the resulting optimi- 

 

zation problem becomes quite complex as it exhibits 
multiple local extrema and discontinuities [4,6–8]. In 
such situations, especially in large-scale instances of the 
problem, classical optimization methods do not work 
efficiently and heuristic optimization techniques are the 
only alternatives for finding optimal or near-optimal 
solutions in a reasonable amount of time. Thus, resear- 
chers have experimented with the application of heuris- 
tic optimization techniques for finding the efficient 
frontier of the standard Markowitz model enriched with 
practical constraints. However, it must be noted that, 
although many metaheuristic algorithms have been 
developed in the past [9], “few authors seem to have 
investigated the application of local search metaheu- 
ristics for solving the portfolio selection problems” [7]. 

One of the first attempts for the use of heuristic 
optimization techniques to portfolio selection was made 
by Mansini and Speranza [10]. They have formulated 
the optimum portfolio choice with round lots as a mixed 
integer programming problem and they have proposed 
heuristics for its solution based upon the idea of con- 
structing and solving mixed integer sub-problems, 
which consider subsets of the available investment 
choices. Chang et al. [6] have extended the standard 
Markowitz model to include cardinality constraints as 
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well as upper and lower bounds on the proportion of the 
portfolio invested in each asset. For finding the 
cardinality constrained efficient frontier the authors 
have applied three heuristic algorithms based upon 
genetic algorithms, tabu search and simulated annealing. 
For the same problem, Anagnostopoulos et al. [11] have 
also proposed a GRASP algorithm enhanced by a learn- 
ing mechanism and a bias function for determining the 
next element to be introduced in the solution. Crama 
and Schyns [7] have also applied a simulated annea- 
ling algorithm but they have extended the model to 
contain not only cardinality constraints and upper and 
lower bounds, but also trading and turnover constraints. 
Jobst et al. [8] investigated the shape of the efficient 
frontier of the mean-variance model including buy-in 
thresholds, cardinality constraints and round lot restric- 
tions using a branch-and-bound algorithm combined 
with heuristics. 

In any case, the construction of the efficient frontier 
via quadratic programming requires the optimization 
problem to be solved several times for various values of 
return. In this paper we confront the standard Markowitz 
model with cardinality constraints as a bi-objective 
optimization problem in order to find the efficient fron- 
tier in a single execution of the algorithm. The problem 
is solved by a multiobjective genetic algorithm, which 
uses a non-dominated sorting procedure to select the 
best parents. To the best of our knowledge, a few of the 
related studies in the literature use a proper multi- 
objective algorithm to construct the Pareto front within 
the context of a portfolio selection problem such as the 
one considered in this work. The algorithm was applied 
in 60 assets of ATHEX and a comparison with a 
variant of the single (as opposed to multiobjective) 
genetic algorithm, which has been proposed by Chang 
et al. [6], was realized. The computational results 
indicate that the procedure is very promising for this 
class of problems. 

The rest of this paper is organized as follows. In 
Section 2, after a short review of the Markowitz model, 
the portfolio selection is defined as a multiobjective 
combinatorial problem. An adaptation of the Nondomi- 
nated Genetic Algorithm (NSGA) for solving the pro- 
blem is presented in Section 3. Section 4 is devoted to 
our numerical results, and some concluding remarks are 
presented in Section 5. 

2. The Formulation of the Problem 

2.1 The Markowitz Mean-Variance Model 

The problem of optimally selecting a portfolio among N 
assets was formulated by H.M. Markowitz in 1952. H. M. 
Markowitz based on the assumption that every investor 
has the desire to achieve a predetermined return and to 
minimize risk on investment. Mean or expected return is 

employed as a measure of return and standard deviation 
or variance of return is employed as a measure of risk. 
Among all portfolios there are special ones for which it 
cannot be said that one is better than the other. All such 
portfolios that are Pareto-optimal (or non-dominated) 
offer the maximum level of return for a given level of 
risk, or equivalently, the minimum level of risk for a 
given level of return. The investor should select a port- 
folio among the efficient portfolios. The proper choice 
among efficient portfolios depends on the willingness 
and ability of the investor to assume risk. 

However, the main problem is to find this efficient 
frontier. Under the assumption of the normality of returns, 
this can be done by solving a quadratic optimization 
problem for all possible values of ρ, i.e. the desired level 
of return. The set of all optimal solutions constitutes the 
mean-variance frontier. It is usually displayed as a curve 
in the plane where the vertical axis denotes portfolio’s 
expected return, while the horizontal axis represents the 
variance of this return. Mathematically, the problem can 
be formulated as follows: 

min 
1 1

N N

i j ij
i j

w w 
 
            (1) 
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1

N

i i
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0, 1,...,iw i  N            (4) 

where: 

iw : the decision variable which denotes the proportion 

held of asset i  

ir  : the expected return of asset i  

ij : the covariance between assets i and j 

 : the desired level of return 

N : the number of assets available  
The objective function (1) minimizes the total varian- 

ce (risk) associated with the portfolio, while Equation (2) 
ensures that the portfolio has an expected return of ρ. 
Equations (3) and (4) describe budget and non-negativity 
constraints respectively. Budget constraint ensures that 
100% of the budget is invested in the portfolio, while 
non-negativity constraints ensure that no asset has a 
negative proportion. 

An alternative form of the model is often used in 
practice (see, for example, [6,11] by removing the return 
constraint and replacing the objective Function (1) by  

 
1 1 1

min 1
N N N

i j ij i i
i j i

w w w r  
  

           (5) 
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Values of λ satisfying 0  λ  1 represent an explicit 
tradeoff between risk and return, and generate solutions 
between the two extremes λ = 0 and λ = 1. To draw the 
efficient frontier, the problem is repeatedly solved using 
several values of λ. 

2.2 The Multiobjective Optimization Model 

For more realistic portfolio selection several extensions 
of Markowitz standard model have been proposed. In 
real financial decision-making, it is useful to avoid very 
small holdings, and to restrict the total number of assets. 
These requirements can be modeled as threshold and 
cardinality constraints. In general, both lead to sets of 
discrete variables and constraints. 

Threshold and cardinality constraints can be added to 
the model using a binary variable zi, which is equal to 1 if 
the asset i (1iN) is held in the portfolio and 0 
otherwise. Introducing finite upper and lower bounds εi, 
δi for the stock weight wi, threshold constraints are 
represented by the following inequality: 

, 1,...,i i i i iz w z i N     

To facilitate portfolio management or to control 
transaction costs, some investors may wish to limit the 
number of assets held in their portfolio. The cardinality 
constraint, which limits the portfolio to contain 
predetermined number of assets K, can be added to the 
model by counting the binary variables zi. This constraint 
is expressed by the following equation: 

1

N

i
i

z K


  

When such constraints are added, the resulting mixed 
integer program becomes larger in size and computa- 
tionally more complex than the standard mean-variance 
model. 

In this paper we reformulate the quadratic optimization 
problem into a two-objective optimization problem. This 
allows us to find the efficient frontier in a single exe- 
cution of the algorithm. The vector objective function has 
as elements the portfolio return and the variance of return. 
Moreover our model has been enriched with threshold 
and cardinality constraints. 

The problem to be solved is formulated as follows: 

opt        1 2f w = f w ,f w  

subject to 

1

1
N
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1
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i
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z K


  

Nizwz iiiii ,...,1,    

10iz  

The objective function  1f w  represents portfolio’s 

return while the objective function  2f w  represents 

portfolio’s variance of return. The N-vector w denotes 
the set of decision variables wi. 

3. The Multiobjective Algorithm 

Multiobjective genetic algorithms have gained much 
attention last years in solving optimization problems with 
multiple objectives [12,13]. The primary reason of these 
studies is the unique feature of genetic algorithms to use 
a population of solutions. This allows multiple Pareto- 
optimal solutions to be found in a single simulation run. 
It appears that the first who tried to use genetic algo- 
rithms for finding the Pareto frontier in a multiobjective 
optimization problem was Schaffer [14]. Although his 
Vector Evaluated Genetic Algorithm (VEGA) gave 
encouraging results, it suffered from biasness towards 
some Pareto-optimal solutions. To overcome this pro- 
blem, it is suggested the use of both techniques, a non- 
dominated sorting procedure to move a population 
toward the Pareto front and some kind of niching 
technique to keep the GA from converging to a single 
point on the front. Based on this suggestion a number of 
independent GA implementations have been proposed, 
for example the MultiObjective Genetic Algorithm 
(MOGA) [15] and the Niched-Pareto Genetic Algorithm 
(NPGA) [16]. 

Srinivas and Deb [17] proposed the Nondominated 
Genetic Algorithm (NSGA) which is based on several 
layers of classifications of individuals. Before selection, 
a procedure ranks the solutions of each generation in 
layers based on Pareto non-domination. Firstly, the 
nondominated individuals are identified so that to consti- 
tute the first nondominated front; and they are assigned a 
large dummy fitness value, which is proportional to 
population size, to provide an equal reproductive poten- 
tial to all these nondominated individuals. To maintain 
diversity in the population classified individuals are 
shared with their dummy fitness values. Sharing is achi- 
eved by dividing each individual’s dummy fitness value 
by a niche count which is proportional to the number of 
individuals one has in its neighborhood. The parameter 
niche count for every individual i in the front is cal- 
culated by the following equation: 

 
1

M

i i
i

c Sh d


  j  

where Sh(dij) is the sharing function, dij is the phenotypic 
distance between individuals i and j, and M is the number 
of individuals in the current front. Sharing function is 
expressed by the equation 

    ShijShij dd
ijd    ,1

0  
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P  randgeneratepopulation() /* Initial population P 
generation  0 
do while generation < maxgenerations  
find the vector of decision variables for each individual i  P 
compute variance and return i  P 
k  0 
Dk    
Fk   /* the kth front of individuals 
do until P =  begin /*sorting procedure 
k  k+1     
for all i  P and for all j  i  P 
if for any j, individual i is dominated by j then 
Dk  Dk-1{i} 
else 
Fk  Fk-1{i} 
end if  
end for 
P  P  Dk 

assign dummy fitness in each i  Fk 
apply sharing function in Fk  
end do 
P  F1…Fk 
recombine P according to shared fitness value 
mutate P 
generation  generation + 1  
end do 

Figure 1. Pseudocode of the algorithm 
 

Table 1. Crossover example 

10 20 30 40 50 
Parent 1 

0.1 1 0 0.7 0.8 

10 20 5 15 25 
Parent 2 

0.9 0 0.6 0.4 1 

10 20 30 5 25 
Offspring 1 

0.1 0 0 0.6 1 

10 20 40 50 15 
Offspring 2 

0.9 1 0.7 0.8 0.4 

 
where usually α = 1, and σsh is the maximum distance 
allowed between two individuals. 

Sharing function plays an important role in NSGA’s 
performance, and it is strongly depended on the 
appropriate selection of the parameter σsh. The method 
proposed by Deb and Goldberg for estimating σsh seems 
do not to work efficiently in our problem. This is 
probably due to the additional integer constraints which 
limit the search space. Thus, the algorithm was 
executed several times for different values of the 
parameter σsh, which was kept smaller than the initial 
value computed by Deb and Goldberg’s method, until 
the best efficient frontier was found. After sharing, 
these individuals are ignored temporarily and the 
second front of nondominated individuals is identified. 
These new set of points are assigned a new dummy 
fitness value which is kept smaller than the minimum 
shared fitness value of the first front (95% of the 
smallest shared fitness value of the previous front). The 
process continues until all individuals in the population 

are classified.  
The population is then reproduced according to the 

shared fitness value. A stochastic remainder propor- 
tionate selection is used in this approach. Since indivi- 
duals in the first front have the maximum fitness value, 
they always get more copies than the rest of the popula- 
tion. This allows the search for nondominated regions 
and sharing helps to distribute the population over this 
region. The efficiency of NSGA lies in the way multiple 
objectives are reduced to a dummy fitness function using 
nondominated sorting procedure. Another aspect is that 
any number of objectives can be solved and both mini- 
mization and maximization problems can be handled [17]. 
The pseudocode of the algorithm is shown in Figure 1. 

A crucial aspect in genetic algorithms is how to 
represent a solution. The chromosome is divided into two 
parts. The first part is a set A of K distinct assets and the 
second one is a set B that includes K real numbers 
associated with each asset i. 

   1 ,..., , 1,K iA N     

 
1
,..., , 0 1,

K iB n n n i A      

Then, in order to find the proportion of each asset, the 
free portfolio proportion is calculated as follows 

1

1
i

K

i

fpp 


   

Thereafter, the proportion associated with each asset in 
the portfolio is calculated by the following equation 

i

i i

i

n
w f

n


 



 


pp  

In this way all the constraints are satisfied. 
The offspring are generated by uniform crossover as 

described below. If an asset is present in both parents it is 
present in the children with the corresponding associated 
value n. The remaining non-common assets are then se-
lected randomly to fulfill children’s sets. An example can 
be seen in Table 1. 

Children are also subject to mutation by multiplying 
by 0.9 or 1.1 (chosen with equal probability) the value ni 
of a randomly selected asset i. The next generation of 
individuals completely replaces the current population.  

4. Computational Results 

The algorithm has been implemented in Visual Basic and 
run on a personal computer Pentium 4 at 2.4 GHz. To 
construct the data set, 60 assets of big και medium 
capitalization from Athens Exchange were considered 
and weekly prices from 10-5-2005 to 12-5-2006 were 
used to calculate returns and covariances. The weekly  
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Figure 2. The initial population 
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Figure 3. The efficient frontier, K = 10 
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Figure 4. The efficient frontier, K = 5 
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Figure 5. The efficient frontier, K = 2 
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Figure 6. The efficient frontier generated by the single 
genetic algorithm, K = 10. 
 

Table 2. Parameters of the problem 

 Κ = 10 Κ = 5 Κ = 2 
Population size 1000 1000 1000 
Probability of crossover 0.7 0.7 0.7 
Probability of mutation 0.1 0.1 0.1 
σsh 0.25 0.15 0.05 
Max number of genera-
tions 

200 100 100 

Efficient solutions 448 
(44.8%) 

385 
(38.5%) 

750 
(75%) 

 
return of the asset i in the period t was calculated 

according the equation 
itr

e b
it it it

it e
it

d
r

 


 
  

where e
it  ( b

it ) is the closing price of asset i at the end 

(beginning) of period t and  is the dividend paid to 

shareholders in period t. 
itd

We tried to find the efficient frontier for different val-
ues of K and especially for K = 2, 5, 10. For all these 
problems lower and upper bounds were 1% and 100% 
respectively, i.e., 0.1, 1i i i A     . 

In order to see the algorithm performance, an initial 
population has been randomly generated (Figure 1). Fig-
ures 2, 3 and 4 represent the cardinality constrained effi-
cient frontier for K = 2, 5, 10 respectively. As we can see 
from these outputs, the algorithm has found many 
Pareto-optimal points with good distribution along the 
efficient frontier. The number of generated points and 
their distribution are crucial aspects in multiobjective 
optimization. 

If the multiobjective algorithm converges in a small 
region near or on the true Pareto-optimal front, the pur-
pose of multiobjective optimization is not served. This is 
because, in such cases, many interesting solutions with 
large trade-offs among the objectives and parameter val-
ues have been probably undiscovered. Table 1 illustrates 
this distribution of points for each problem instance, to-
gether with important parameters of the algorithm. 
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We have also implemented a variant of the genetic al-
gorithm proposed in [6]. The differences between their 
genetic algorithm and our algorithm are, on the one hand, 
the complete replacing of the solutions (as in our mul-
tiobjective algorithm) versus the partial replacing and, on 
the other hand, the rank selection versus the tournament 
selection. Because of limited space, only some of the 
obtained results are presented. 

In order to compare the quality of solutions obtained 
by the multiobjective genetic algorithm and the single 
objective genetic algorithm, we use the technique pro- 
posed in [18]. The multiobjective genetic algorithm is 
considered not worse than the single objective if  

    
1

0
L

ml sl
l l

l

s s


  w w  

where sl is the scalarizing function, wsl the best solution 
obtained by optimization of sl with the single GA and wml 
the best solution on sl selected from the set of Pareto- 
optimal solutions generated by the multiple objective GA. 
Figure 6 shows the solutions obtained by optimizing 81 
objective functions (l = 1,…, 81) with single objective 
GA, defined for values λ = 0 to 1 with step 0.0125 (see 
Equation (5)). Since  

    
1

0.0265 0
L

ml sl
l l

l

s s


   w w   

we may compare the computational requirements of the 
two approaches. The effectiveness index is equal to 

25m

s

CT
EI

CT
    

where CTs is the average running time the single objec-
tive GA spent on optimization of sl and CTm the running 
time the multiobjective GA needs to generate the Pareto- 
optimal solutions s1…sL. These results are based on the 
Pareto front generated from the multiobjective algorithm 
with 200 generations. If the generations are equal to 50 
(although the Pareto front is slightly inferior), the equa-
tion is still verified and the EI is equal to 6,025. Thus we 
can conclude that the generation of the Pareto-optimal 
solutions with NSGA is competitive both from the com-
putational effectiveness point of view and the quality of 
the Pareto front. 

5. Conclusions 

Constraints in the size of the portfolio and in lower and 
upper bounds on the proportion of the portfolio held in a 
given asset transform the standard Markowitz model in a 
mixed integer optimization problem and create discon- 
tinuities in the efficient frontier. In this paper we adapt 
the multiobjective algorithm NSGA for finding the cardi- 
nality constrained efficient frontier. 

We argue that the proposed procedure solves efficient- 

ly the cardinality constrained portfolio optimization 
problem as it generates in relatively short computational 
time a large number of Pareto-optimal solutions, which 
are uniformly distributed along the efficient frontier. 
Even if the efficient frontier is not continuous and, then, 
competition among solutions may lead to extinction of 
some sub-regions, the algorithm finds a large number of 
Pareto-optimal solutions in every segment. On the other 
hand, the procedure is in general time consuming, since 
the quality of solutions depends on the population size, 
but this shortcoming is balanced by the fact that the 
efficient solutions are obtained after a small number of 
generations. Finally, a further difficulty is the appropriate 
selection of σsh as the algorithm performance is highly 
dependent on this value. 

Constraints in the size of portfolio and in lower and 
upper bounds on the proportion of the portfolio in a 
given asset help the decision maker to facilitate its 
portfolio management; and to avoid excessive transac-
tion costs on one hand, and to avoid holding very 
small/large amounts of any particular asset on the 
other. It is empirically known that much of the portfo-
lio risk can be diversified by holding a rather small 
number of assets [4,19]. We have solved for the effi-
cient frontier following the tradition of standard 
Markowitz approach, however, focusing on the case 
where the investor wants to invest in exactly K out of 
N number of assets. Furthermore, portfolios with posi-
tions in assets with very small amounts have been ex-
cluded through the use of threshold constraints. The 
resulting efficient frontier gives the best possible 
trade-off of risk against return for a particular number 
of assets (K). The investor then examines the trade-off 
points in the possibilities curve and selects the one 
particular point of interest. This may be the point with 
the lowest variance but having the lowest return, lo-
cated in the lower left part of the frontier; or it may be 
the point with the maximum expected return but with 
the maximum risk, located in the right upper part of 
the frontier; or it may be any intermediate point. The 
proper selection of the particular point depends on the 
investor’s willingness to assume risk. In the next step, 
the investor implements the one particular portfolio 
whose image is the point in the nondominated frontier. 
Furthermore, solving for different values of K, the 
trade-off between risk, return and the number of assets 
of the portfolio could be examined.  

Currently our research focus on a generalization of the 
cardinality constrained mean-variance problem, by in-
cluding class constraints that limit the proportion of the 
portfolio that can be invested in assets in each class, such 
as bank stocks, telecommunication stocks etc. For its 
solution, procedures of the so called second generation 
multiobjective genetic algorithms are tested. 
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