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ABSTRACT 

In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has at-
tracted serious attention of the hydrology researchers. It has become an important area of research to enhance the qual-
ity of prediction of yield in river basins. In this paper, we analyzed the data of Godavari basin, and regionalize it using a 
cluster ensemble method. Cluster Ensemble methods are commonly used to enhance the quality of clustering by com-
bining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous basins. The goal 
is to identify, analyse and describe hydrologically similar catchments using cluster analysis. Clustering has been done 
using RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base cluster-
ing schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for 
each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. 
Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed 
further and either assigned to clusters or declared as noise. Clustering results of RCDA algorithm have been compared 
with Best of k-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, 
domain knowledge based comparison has also been performed. All the results are encouraging and indicate better re-
gionalization of the Godavari basin data. 
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1. Introduction 

Estimating design flow of ungauged basins is very cru- 
cial in the planning and management of hydraulic and 
water resources engineering. Regionalization for identi- 
fying homogeneous hydrologic regions is a well-accepted 
technique in this area. Regionalization is defined as de- 
termination of hydrologically similar units, and is one of 
the most challenging tasks in surface hydrology. In re- 
cent years several new mathematical and computational 
tools have been explored for this task [1]. 

Regionalization is done for estimating design flow in 
ungauged basins which is frequently encountered in the 
design and planning of hydraulic and water resources en- 
gineering [2]. The hydrologic regionalization technique 
is to infer required data in ungauged catchments from 
neighbour catchments where hydrologic data have been 
collected (e.g. Nathan and McMahon, 1990; Bullock and 
Andrews, 1997; Hall and Minns, 1999). 

Runoff predictions in ungauged catchments are deter- 
mined by regionalization. Development of practical run- 
off prediction methods are important for assessing water 
resources in an ungauged or poorly gauged catchment 
which is usually located in headwater regions [2]. Excess 
runoff can lead to flooding, which occurs when there is 
too much precipitation. 

Catchment shows a wide range of response behaviour, 
therefore, Regionalization is utilized for searching the 
hydrological similarity of catchments to characterize each 
catchment [3]. 

2. Background and Related Work 

We present the related work with respect to two aspects 
i.e. the techniques used for regionalization in hydrology 
studies and the techniques of cluster ensemble. Subse- 
quently we describe the discriminant based cluster en- 
semble algorithm (RCDA) used in this work. 

2.1. Regionalization 
Hydrological similarity of catchments is identified and 
analyzed in the paper [3] by using the concept of Self- 
Organizing Maps (SOM). SOM are plotted by utilizing 
the hierarchical clustering algorithm of cluster analysis. 

A regional formula has been developed by the authors, 
using gauged flows and basin topographic characteristics 
in order to estimate the design flows in ungauged areas 
within the homogeneous region [1]. 

Principal component and cluster analyses were used to 
delineate into homogeneous regions. Statistical tests de- 
monstrate that the design flows are significantly related 
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to the topographic variables at 5% significance level and 
the delineation of homogeneous regions can enhance the 
performance of regional formulae to estimate design 
flow. 

Different regionalization methods were investigated in 
the paper [2], for modeling daily runoff in ungauged 
catchments for selecting donor catchments whose entire 
set of parameter values are used for target ungauged cat- 
chment by determine the spatial proximity, physical si- 
milarity and integrated similarity. 

Regionalization of runoff formation by aggregation of 
hydrological response units for the representative ele- 
mentary areas (REAs), which are defined as homogene- 
ous, the hydrologically effective parameters can be 
clearly assigned. Aggregation approaches were used to 
analyse the research regions which differ in the composi- 
tion of their natural attributes. The purpose of the re- 
gional comparison is to reveal to what extent it is possi- 
ble to apply the regionalization strategy independent of 
the region and scale [4]. 

These analyses substantiate the fact that it is possible 
to achieve plausible results with the regionalization ap- 
proaches which have been developed, provided that geo- 
information for the entire region is available. The com- 
parison shows that the regionalization approaches are 
independent of area and scale and these regionalization 
procedures significantly improve the quality of simula- 
tion of the water balance for large drainage basins, with a 
significant reduction of the relational-geometric configu- 
rations [4]. 

2.2. Cluster Ensemble Approach 

Motivation of Cluster Ensemble technique arises because 
of different clustering schemes that are obtained by ap- 
plication of different clustering algorithms, or by varying 
the parameters of the same clustering algorithm. For ex- 
ample, in k-means algorithm, which is one of the most 
used clustering algorithms, variations in results arise be- 
cause of the inherent randomization. Further, each algo- 
rithm performs differently depending upon the biases and 
assumptions associated with it. 

Under such circumstances, it is very difficult to ascer- 
tain suitability of an algorithm for an application. Cluster 
ensemble techniques aims to improve the clustering sche- 
me by intelligently combining multiple schemes. This 
technique has caught attention of researchers in computer 
science community as it has found to substantially im- 
prove the robustness, stability, accuracy and quality of 
resulting clustering scheme [5-9]. An informative survey 
of various cluster ensemble techniques can be found in 
[5]. The problem of cluster ensemble is formally defined 
below. 

Let D denote a data set of N, d-dimensional vectors Xi 
= 1 2, , d

i i iX X X  where i = 1, N, each representing an 

object. D is subjected to a clustering algorithm which 
delivers a partition (i.e. a clustering scheme) π  consi- 
sting of K clusters, i.e. ( π  = C1, C2, …, CK). Let λ' be 
the function of π; (  : -> {1,K}) that yields labeling for 
each of the N objects in D. Let  1 2  be H 
partitions of D obtained by applying either same cluster- 
ing algorithm on D or by applying H different clustering 
algorithms.  

π ,π , ,   πH

Before combining the schemes, it is necessary to es- 
tablish the correspondence between the clusters of dif- 
ferent schemes and relabel the corresponding clusters. 
Let {λ1, λ2, , λH} be the set of corresponding labeling 
of H clustering schemes on D. The problem of cluster 
ensemble is to derive a consensus function Γ, which 
combines H partitions and delivers a clustering πf with a 
promise that πf is more robust than any of constituent H 
partitions and best captures the natural structures in D. 
Figure 1 shows the process of construction of cluster 
ensemble. 



It is the design of Γ that distinguishes different cluster 
ensemble algorithms to a large extent. Hyper graph parti- 
tioning [5] voting approach [10], mutual information [5, 
11], co-associations [12-14] are some of the well-estab- 
lished approaches for building consensus functions. 

2.3. RCDA (Robust Clustering Using  
Discriminant Analysis) 

RCDA [15] is a recent algorithm for generating a robust 
clustering scheme using discriminant analysis. Robust 
Clustering Using Discriminant Analysis (RCDA) algo- 
rithm takes H partitions as input with K clusters in each 
partition and delivers a robust partition with same num- 
ber of clusters, and noise, if any. It operates in three 
phases. In the first phase clusters in each partition are 
relabeled to establish correspondence in H partitions. In 
the second phase the algorithm constructs a discriminant 
function for each partition, thereby resulting in H dis- 
criminant functions. Cluster label of each tuple in dataset 
D is predicted by each of the H discriminant functions 
 

 

Figure 1. The process of cluster ensemble. 

Copyright © 2012 SciRes.                                                                               JWARP 



S. AHUJA 562 

resulting in N X H label matrix (L). This is a compute 
intensive phase of the algorithm and needs no user pa- 
rameter. Finally, in the third phase tuples with consistent 
labels are assigned to clusters in the final partition. Tu- 
ples with low consistency are refined and the leftover 
tuples are reported as noise. Different phases of RCDA 
algorithm is shown pictorially in Figure 2. 

3. Regionalization Using RCDA 

In this study the hydrological similarity of a catchment 
area has been investigated with respect to their response 
behaviour by using RCDA Algorithm. The goal is to 
identify, analyse and describe hydrologically similar 
catchments/regions by using the catchment characteris- 
tics such as Elevation, Precipitation, Aridity Index, Slope, 
Field Capacity and Stream Density. 

Data from Godavari basin is processed using RCDA 
algorithm in order to regionalize the river basin. The data 
consists of 331 tuples and six attributes viz., Elevation, 
Precipitation, Aridity Index, Slope, Field Capacity and 
Stream Density respectively. 

Since the numbers of regions are not known, the data 
is pre-processed using domain knowledge to estimate the 
number of clusters. Intuitively, the regions with same 
runoff/Catchment Area ratio should fall in same cluster. 
Based on this idea, runoff/Catchment Area ratio was 
computed for all tuples. The mnemonics for the bins for 
bin-widths (0.08 and 0.04) are represented in Table 1 
and Table 2 respectively. The frequency charts for two 
bin-widths (0.08 and 0.04) respectively were constructed 
as shown in Figure 3 and Figure 4.  

It can be seen from the Figure 3 that last three bins 
(numbered 6, 7 and 8 along x-axis) consists of only 0,1 
and 2 tuples respectively. So, we eliminated the three 
noisy tuples and also it can be seen from the Figure 4 
that last six bins (numbered (11, 12, 13, 15), 14, 16) con- 
sists of only 0, 1, 2 and 3 tuples respectively. So, we 
eliminated the six noisy tuples.  

This analysis indicates that either there are five or nine 
regions in the Godavari basin. We applied RCDA algo- 
rithm to cluster 328 tuples after removing three noisy 
tuples in case of five regions and cluster 325 tuples after 
removing six noisy tuples in case of nine regions. 
 

 

Figure 2. Three phases of RCDA algorithm. 

 

Figure 3. Frequency Chart for runoff/Catchment Area ratio 
with bin width of 0.08. 
 

 

Figure 4. Frequency Chart for runoff/Catchment Area ratio 
with bin width of 0.04. 
 
Table 1. Description of data sets—mnemonics used for Bins. 

Bins Mnemonic 

0.03 - 0.11 1 

0.11 - 0.19 2 

0.19 - 0.27 3 

0.27 - 0.35 4 

0.35 - 0.43 5 

0.43 - 0.51 6 

0.51 - 0.59 7 

0.59 - 0.67 8 

4. Experimental Section 

RCDA (Robust Clustering Using Discriminant Analysis) 
algorithm was implemented in Windows environment as 
multi-threaded C++ program. R package (V 2.13.0) was 
used for statistical functions. Dual core Intel(R) machine 
(2.20 GHz, 4 GB RAM) was used for executing pro- 
grams. In this section we describe the goals and metho- 
dology of experiments. 

Having determined two possibilities for the number of 
clusters in Godavari basin data, we applied RCDA algo- 
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Table 2. Description of data sets—mnemonics used for Bins. 

Bins Mnemonic 

0.03 - 0.07 1 

0.07 - 0.11 2 

0.11 - 0.15 3 

0.15 - 0.19 4 

0.19 - 0.23 5 

0.23 - 0.27 6 

0.27 - 0.31 7 

0.31 - 0.35 8 

0.35 - 0.39 9 

0.39 - 0.43 10 

0.43 - 0.47 11 

0.47 - 0.51 12 

0.51 - 0.55 13 

0.55 - 0.59 14 

0.59 - 0.63 15 

0.63 - 0.67 16 

 
rithm to get the clustering schemes. We describe the re- 
sults in two sections for the two possibilities.  

Validation of results is performed both at computa- 
tional and domain level. Computational validation of re- 
sults is performed by comparing the SSE (Sum of Squ- 
ared Error) of the clustering scheme obtained by RCDA, 
with another cluster ensemble method available in R 
software and the best of the constituent clustering sche- 
me. The scheme with the lowest SSE is the best cluster- 
ing scheme (optimum partition). The domain level vali- 
dation is performed by comparing the purity and NMI of 
the obtained scheme with the frequency distribution 
shown in Figure 3 and Figure 5, which is taken as gold 
standard. In subsequent sections, we detail the computa- 
tion of SSE and Purity. 

4.1. Computing SSE 

For measuring the quality of clustering, we use the Sum 
of Squared error (SSE), which is also known as scatter. 
In other words, we calculate the error of each data point, 
i.e. its eucleidean distance to the closest centroid, and 
then compute the total sum of squared errors. If we have 
two different sets of clusters by two different algorithms 
(schemes), we prefer the one with the smallest squared 
error. The SSE [16] is formally defined as  

 2

1

SSE
i

K

i
i x C

dist x x
 

             (1) 

where dist is the standard Euclidean distance between the 
two objects in eucleidean space, Ci = ith cluster, x is a 
point in Ci and ix  is the mean (centroid) of the ith clus- 

 

Figure 5. Comparison of SSE of RCDA, Clue and Best of 
K-means (Km) algorithm for K = 5. 
 
ter1. 

4.2. Computing Purity 

For each cluster, the class distribution of the data is cal-
culated first, i.e. for cluster j we compute pij, the prob-
ability that a member of cluster i belongs to belong j as 
pij = mij/mi, where mi is the number of objects in cluster i 
and mij is the number of objects of class j in cluster i.  

The purity of cluster i is defined in [16] as 

 max iji
j

pp                (2) 

The overall purity of a partition is  

1

Purity
K

i
i

i

m
p

m

             (3) 

In general, larger value of purity indicates better quality 
of the solution.  

4.3. Computing NMI (Normalized Mutual  
Information) 

Intuitively, the optimal combined clustering should share 
the most information with the original clusterings. Thus 
NMI has been used by researchers to measure cluster 
quality [11].  

Let A and B be the random variables described by the 
cluster labeling λ(a) and λ(b) with k(a) and k(b) groups 
respectively. Let I(A,B) denote the mutual information 
between A and B, H(A), H(B) denote the entropy of A 
and B respectively. Then normalized mutual information 
(NMI) is defined as follows  

NMI(A,B) = 2 I(A,B)/(H(A) + H(B))    (4) 

Clearly, the value lies between [0, 1] and NMI(A,A) = 
1. 

Equation (4) is estimated by the sampled entities pro-
vided by the clustering. Let n(h) be the number of objects 
in cluster ch according to λ(a) and let ng be the number of 
objects in cluster cg according to λ(b). Let g

hn  be the 
1Here, in our case x is the tuple consists of six attributes (catchment 
characteristics) viz., Elevation, Precipitation, Aridity Index, Slope, Field 

Capacity and Stream Density and ix  is the centroid of the ith cluster.

Copyright © 2012 SciRes.                                                                               JWARP 



S. AHUJA 564 

number of objects in cluster ch according to λ(a) as well 
as in cluster cg according to λ(b). The normalized mutual 
information criteria φ(NMI) is computed as follows 

          

 
  

, 1 1

2
log

h
k k ga bNMI h

k kg a b hh ga b
g

n n
n

n n n 
 

 
    

   (5) 

In our context, k(a) = k(b) = k.  

4.4. Results with 5 Clusters 

We experimented the dataset with RCDA cluster ensem- 
ble algorithm [15] for K (number of clusters = 5) with 
varying the number of partitions (H = 2, 4, 6, 8, 10, 12, 
14, 16 and 18) respectively. Here, we get the optimum 
partition H = 8, because at this value of partition, we ob- 
tained the lowest value of SSE (Sum of Squared Error) 
and maximum (improved) clustering quality. The com- 
parison of the RCDA algorithm with Best of K-means 
(Km) and Clue Ensemble obtained from R software [17] 
have been done by determining the centroids as shown in 
Table 3 and Total SSE (Sum of Squared Error) of each 
algorithm as shown in Figure 5. Moreover, comparisons 
of RCDA algorithm with Best of K-means (Km) and 
Clue Ensemble obtained from R software [17] have been 
done in terms of measuring Purity and NMI (Normalized 
Mutual Information) as shown in Figure 6. 

Table 3 shows the centroids of each cluster of RCDA 
and Clue algorithm for K = 5 number of clusters. ELV, 
PPT, AI, Sl, FC and SD in Table 3 represents the Eleva- 
tion, Precipitation, Aridity Index, Slope, Field Capacity 
and Stream Density respectively. 

4.5. Results with 9 Clusters 

Similarly, we experimented the dataset with RCDA clus-
ter ensemble algorithm [15] for K (number of clusters = 
9) with varying the number of partitions (H = 2, 4, 6, 8, 
10, 12, 14, 16 and 18) respectively. Here, we get the op-
timum partition H = 8, because at this value of partition, 
we obtained the lowest value of SSE (Sum of Squared 
Error) and maximum (improved) clustering quality. 

The comparison of the RCDA algorithm with Best of 
K-means (Km) and Clue Ensemble obtained from R soft- 
ware [17] have been done by determining the centroids 
as shown in Table 4 and total SSE of the each algorithm 
as shown in Figure 7. Moreover, comparisons of RCDA 
algorithm with Best of K-means (Km) and Clue Ensem- 
ble obtained from R software [17] have been done in 
terms of measuring Purity and NMI (Normalized Mutual 
Information) as shown in Figure 8. 

5. Discussion of Results 

We observed from the Figure 5 and Figure 7 that total 
SSE of RCDA algorithm is less than as compared to the 

 

Figure 6. Comparison of purity and NMI of RCDA, Clue 
and Best of K-means (Km) algorithm for K = 5. \label 
{Fig_PN5}. 
 

 

Figure 7. Comparison of SSE of RCDA and Clue algorithm 
for K = 9. 
 

 

Figure 8. Comparison of purity and NMI of RCDA, Clue 
and Best of K-means (Km) algorithm for K = 9. 
 
total SSE of Clue Algorithm which clearly describes that 
variability reduces in case of RCDA algorithm as com- 
pared to clue algorithm which is the characteristics of 
good quality clustering.  

Moreover, the Purity and NMI of RCDA algorithm 
improves as compared to Best of K-means (Km) and Clue 
cluster Ensemble obtained from R software as shown in 
Figure 6 and Figure 8. 

Finally, from the above it is concluded that K = 9 with H 
= 8 and 325 number of tuples is the optimum case. Since, 
SSE for both the cases K = 5 and K = 9 of RCDA algo- 
rithm is less as compared to Clue and Best of K-means 
(Km) algorithm, but the SSE is very less in K = as shown 
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Table 3. Centroids of each cluster for RCDA, Clue and Best 
of K-means (Km) algorithm for K = 5. 

Algorithm ELV PPT AI 

Cluster 1 

RCDA 454.686098 1009.700488 2.565610 

Clue 368.907349 992.352289 2.683614 

Km 396.710660 1051.251892 2.455225 

Cluster 2 

RCDA 253.862644 1250.008851 2.045402 

Clue 213.641786 1337.895000 1.872857 

Km 396.643784 200.416216 2.243243 

Cluster 3 

RCDA 499.338548 1317.570484 1.987419 

Clue 583.356491 1384.648246 1.699649 

Km 474.658000 1046.805333 2.417000 

Cluster 4 

RCDA 415.963750 895.337083 2.923333 

Clue 49.666623 753.095065 3.082857 

Km 369.956111 1303.237222 1.856111 

Cluster 5 

RCDA 385.400625 1010.806250 2.802187 

Clue 264.685556 1363.166667 2.305556 

Km 386.476792 1170.911321 2.347453 

 
Table 4. Centroids of each cluster for RCDA, Clue and Best 
of K-means (Km) algorithm for K = 9. 

Algorithm ELV PPT AI 

Cluster 1 

RCDA 304.728148 1251.386667 2.077407 

Clue 568.021707 1367.127073 1.738049 

Km 528.729299 801.104068 2.666991 

Cluster 2 

RCDA 551.496296 834.513889 2.880556 

Clue 597.165897 825.544615 2.799231 

Km 324.264769 1265.239846 2.049538 

Cluster 3 

RCDA 316.341481 1000.493333 2.691111 

Clue 274.213509 1093.276491 2.508772 

Km 340.568000 1360.779143 1.784286 

Cluster 4 

RCDA 462.077500 922.229583 2.862708 

Clue 253.567727 1398.051591 1.763409 

Km 450.545429 808.076286 3.167714 

Cluster 5 

RCDA 236.166197 1297.978310 1.970845 

Clue 503.114103 686.310256 3.327949 

Km 420.485789 782.421053 3.460000 

Cluster 6 

RCDA 565.201000 814.138000 2.709000 

Clue 711.091818 1375.290000 1.617273 

Km 295.265294 1331.299412 1.807647 

Continued 

Cluster 7 

RCDA 759.509375 1237.728125 1.816250 

Clue 181.243784 1262.656486 1.998649 

Km 481.933000 940.910500 2.678000 

Cluster 8 

RCDA 473.920000 1597.883810 1.528571 

Clue 391.232727 1784.505455 1.730909 

Km 671.832353 1312.657647 1.675294 

Cluster 9 

RCDA 382.813333 1079.631667 2.767500 

Clue 409.789348 938.381739 2.843696 

Km 223.790179 1234.093929 2.076786 

 
Algorithm Sl FC SD 

               Cluster 1  

RCDA 0.019019 15 0.370370 0.103417 

Clue 0.031683 17 7.814634 0.071464 

Km 0.016468 14 5.872376 0.103357 

Cluster 2 

RCDA 0.015907 152.312963 0.110959 

Clue 0.018077 189.923077 0.095857 

Km 0.021815 151.692308 0.102434 

Cluster 3 

RCDA 0.013370 261.585185 0.024368 

Clue 0.017737 179.547368 0.056450 

Km 0.026857 156.571429 0.096325 

Cluster 4 

RCDA 0.013375 155.39375 0 0.014827 

Clue 0.024159 154.565909 0.045808 

Km 0.013571 147.714286 0.013118 

Cluster 5 

RCDA 0.018718 144.225352 0.009158 

Clue 0.012051 150.769231 0.071786 

Km 0.015737 142.105263 0.014265 

Cluster 6 

RCDA 0.019100 312.000000 0.174771 

Clue 0.046545 177.21818 0.095623 

Km 0.035353 174.705882 0.010749 

Cluster 7 

RCDA 0.046688 178.993750 0.107478 

Clue 0.018703 145.945946 0.033421 

Km 0.018950 283.905000 0.142880 

Cluster 8 

RCDA 0.058810 160.952381 0.061680 

Clue 0.028091 154.545455 0.062202 

Km 0.067765 183.182353 0.083542 

Cluster 9 

RCDA 0.015667 236.850000 0.102557 

Clue 0.015348 206.369565 0.068397 

Km 0.014125 135.000000 0.008019 
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in Figure 5 and Figure 7. Similarly, the Purity and NMI 
of RCDA algorithm for both the cases K = 5 and K = 9 is 
more as compared to Clue and Best of K-means (Km) 
algorithm, but it improves much more in case of K = 9 
which indicates that more homogeneous catchments are 
clustered using RCDA algorithm with K = 9 number of 
clusters. 
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