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Abstract 
 
A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural 
network (WNN) model was proposed in the current study and applied for time series modeling of river flow. 
The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by 
the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform 
and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. 
The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able 
to provide a good fit with the observed data, especially the peak values during the testing period. The 
benchmark results from WNN model applications showed that the hybrid model produced better results in 
estimating the hydrograph properties than the latter models (ANN and AR). 
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1. Introduction 
 
Water resources planning and management requires, 
output from hydrological studies. These are mainly in 
the form of estimation or forecasting of the magnitude of 
hydrological variables like precipitation, stream flow and 
groundwater levels using historical data. Forecasting of 
hydrological variables especially stream flow is utmost 
important to provide a warning of the extreme flood or 
drought conditions and helps to develop operation sys-
tems of multipurpose reservoirs. Similarly, groundwater 
level modeling is useful for consumptive use studies for 
better watershed management. 

Time series modeling for either data generation or fo-
recasting of hydrological variables is an important step 
in the planning and management of water resources. 
Most of the time series modeling procedures fall within 
the framework of multivariate Auto Regressive Moving 
Average (ARMA) model [1]. Traditionally, ARMA 
models have been widely used for modeling water re-
sources time-series modeling [2]. The time series models 
are used to describe the stochastic structure of the time 
sequence of a hydrological variable measured over time. 
Time-series models are more practical than conceptual 
models because it is not essential to understand the in-
ternal structure of the physical processes that are taking 

place in the system being modeled. Time series analysis 
requires mapping complex relationships between input(s) 
and output(s), since the forecasted values are mapped as 
a function of observed patterns in the past. On the other 
hand, classical non-linear techniques typically require 
large amounts of exogenous data, which are not always 
available [3]; some non-linear approaches outperform 
the linear techniques, as periodic gamma autoregressive 
processes (PGAR) for instance [4], but they can only be 
applied to a single site, i.e., they are limited to be uni-
variate models. Owing to the difficulties associated with 
non-linear model structure identification and parameter 
estimation, very few truly non-linear system theoretic 
hydrologic models have been reported [5-7]. It seems 
necessary that nonlinear models such as neural networks, 
which are suited to complex nonlinear problems, be used 
for the time series modeling of river flow. 

Artificial Neural Networks (ANN) has been used suc-
cessfully to overcome many difficulties in time series 
modeling of river flow. Time series modeling using 
ANN has been a particular focus of interest and better 
performing models have been reported in a diverse set of 
fields that include rainfall-runoff modeling [8-12] and 
groundwater level prediction [13-16]. It is also reported 
that ANN models are not very satisfied in precision for 
forecasting because it considered only few aspects of 
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time series property [17]. In order to raise the forecasted 
precision and lengthen the forecasted time, an alternative 
model should be envisaged. In this paper, a new hybrid 
model called wavelet neural network model (WNN), 
which is the combination of wavelet analysis and ANN, 
has been proposed. The advantage of the wavelet tech-
nique is that it provides a mathematical process for de-
composing a signal into multi-levels of details and anal-
ysis of these details can be done. Wavelet analysis can 
effectively diagnose signals of main frequency compo-
nent and abstract local information of the time series. In 
the past decade, wavelet theory has been introduced to 
signal processing analysis. In recent years, the wavelet 
transforms has been successfully applied to wave data 
analysis and other ocean engineering applications 
[18,19]. 

In recent years, wavelet theory has been introduced in 
the field of hydrology [17,20-22]. Wavelet analysis has 
recently been identified as a useful tool for describing 
both rainfall and runoff time-series [21,23-26]. By cou-
pling the wavelet method with the traditional AR model, 
the Wavelet-Autoregressive model (WARM) is devel-
oped for annual rainfall prediction [27]. Coulibaly [28] 
used the wavelet analysis to identify and describe vari-
ability in annual Canadian stream flows and to gain in-
sights into the dynamical link between the stream flows 
and the dominant modes of climate variability in the 
Northern Hemisphere. Due to the similarity between 
wavelet decomposition and one hidden layer neural net-
work, the idea of combining both wavelet and neural net-
work has resulted recently in formulation of wavelet neu-
ral network, which has been used in various fields [29]. 
Results show that, the training and adaptation efficiency 
of the wavelet neural network is better than other net-
works. Dongjie [30] used a combination of neural net-
works and wavelet methods to predict ground water levels. 
Aussem [31] used a Dynamical Recurrent Neural Network 
(DRNN) on each resolution scale of the sunspot time se-
ries resulting from the wavelet decomposed series with the 
Temporal Recurrent Back propagation (TRBP) algorithm. 
Partal [32] used a conjunction model (wavelet-neuro- 
fuzzy) to forecast the Turkey daily precipitation. The ob-
served daily precipitations are decomposed to some sub 
series by using Discrete Wavelet Transform (DWT) and 
then appropriate sub series are used as inputs to neuro- 
fuzzy models for forecasting of daily precipitations.  

In this paper, an attempt has been made to forecast the 
time series of Daily River flow by developing wavelet 
neural network (WNN) models. Time series of river flow 
was decomposed into wavelet sub-series by discrete 
wavelet transform. Then, neural network model is con-
structed with wavelet sub-series as input, and the origi-
nal time series as output. Finally, the forecasting per-

formance of WNN model was compared with the ANN 
and AR models. 

 
2. Methods of Analysis 

 
2.1. Wavelet Analysis 
 
The wavelet analysis is an advance tool in signal proc-
essing that has attracted much attention since its theo-
retical development [33]. Its use has increased rapidly in 
communications, image processing and optical engi-
neering applications as an alternative to the Fourier 
transform in preserving local, non-periodic and multis-
caled phenomena. The difference between wavelets and 
Fourier transforms is that wavelets can provide the exact 
locality of any changes in the dynamical patterns of the 
sequence, whereas the Fourier transforms concentrate 
mainly on their frequency. Moreover, Fourier transform 
assume infinite-length signals, whereas wavelet trans-
forms can be applied to any kind and size of time series, 
even when these sequences are not homogeneously sam-
pled in time [34]. In general, wavelet transforms can be 
used to explore, denoise and smoothen time series, aid in 
forecasting and other empirical analysis. 

Wavelet analysis is the breaking up of a signal into 
shifted and scaled versions of the original (or mother) 
wavelet. In wavelet analysis, the use of a fully scalable 
modulated window solves the signal-cutting problem. 
The window is shifted along the signal and for every 
position the spectrum is calculated. Then this process is 
repeated many times with a slightly shorter (or longer) 
window for every new cycle. In the end, the result will 
be a collection of time-frequency representations of the 
signal, all with different resolutions. Because of this col-
lection of representations we can speak of a multiresolu-
tion analysis. By decomposing a time series into time- 
frequency space, one is able to determine both the do-
minant modes of variability and how those modes vary 
in time. Wavelets have proven to be a powerful tool for 
the analysis and synthesis of data from long memory 
processes. Wavelets are strongly connected to such 
processes in that the same shapes repeat at different or-
ders of magnitude. The ability of the wavelets to simul-
taneously localize a process in time and scale domain 
results in representing many dense matrices in a sparse 
form. 
 
2.2. Discrete Wavelet Transform (DWT) 
 
The basic aim of wavelet analysis is both to determine the 
frequency (or scale) content of a signal and to assess and 
determine the temporal variation of this frequency content. 
This property is in complete contrast to the Fourier analy-
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sis, which allows for the determination of the frequency 
content of a signal but fails to determine frequency time- 
dependence. Therefore, the wavelet transform is the tool 
of choice when signals are characterized by localized high 
frequency events or when signals are characterized by a 
large numbers of scale-variable processes. Because of its 
localization properties in both time and scale, the wavelet 
transform allows for tracking the time evolution of proc-
esses at different scales in the signal. 

The wavelet transform of a time series f(t) is defined as 

   1
,

t b
f a b f t dt

aa






   
    (1) 

where ( )t  is the basic wavelet with effective length (t) 
that is usually much shorter than the target time series 
f(t). The variables are a and b, where a is the scale or 
dilation factor that determines the characteristic fre-
quency so that its variation gives rise to a ‘spectrum’; 
and b is the translation in time so that its variation repre-
sents the ‘sliding’ of the wavelet over f(t). The wavelet 
spectrum is thus customarily displayed in time-frequency 
domain. For low scales i.e. when 1a  , the wavelet 
function is highly concentrated (shrunken compressed) 
with frequency contents mostly in the higher frequency 
bands. Inversely, when 1a  , the wavelet is stretched 
and contains mostly low frequencies. For small scales, 
we obtain thus a more detailed view of the signal (also 
known as a “higher resolution”) whereas for larger scales 
we obtain a more general view of the signal structure. 

The original signal X(n) passes through two comple-
mentary filters (low pass and high pass filters) and 
emerges as two signals as Approximations (A) and De-
tails (D). The approximations are the high-scale, low 
frequency components of the signal. The details are the 
low-scale, high frequency components. Normally, the 
low frequency content of the signal (approximation, A) 
is the most important part. It demonstrates the signal 
identity. The high-frequency component (detail, D) is 
nuance. The decomposition process can be iterated, with 
successive approximations being decomposed in turn, so 
that one signal is broken down into many lower resolu-

tion components (Figure 1). 
 
2.3. Mother Wavelet 
 
The choice of the mother wavelet depends on the data to 
be analyzed. The Daubechies and Morlet wavelet trans-
forms are the commonly used “Mother” wavelets. Dau-
bechies wavelets exhibit good trade-off between parsi-
mony and information richness, it produces the identical 
events across the observed time series and appears in so 
many different fashions that most prediction models are 
unable to recognize them well [35]. Morlet wavelets, on 
the other hand, have a more consistent response to simi-
lar events but have the weakness of generating many 
more inputs than the Daubechies wavelets for the predic-
tion models. 

An ANN, can be defined as a system or mathematical 
model consisting of many nonlinear artificial neurons 
running in parallel, which can be generated, as one or 
multiple layered. Although the concept of artificial neu-
rons was first introduced by McCulloch and Pitts [36], 
the major applications of ANN’s have arisen only since 
the development of the back-propagation method of 
training by Rumelhart [37]. Following this development, 
ANN research has resulted in the successful solution of 
some complicated problems not easily solved by tradi-
tional modeling methods when the quality/quantity of 
data is very limited. ANN models are ‘black box’ models 
with particular properties, which are greatly suited to 
dynamic nonlinear system modeling. The main advan-
tage of this approach over traditional methods is that it 
does not require the complex nature of the underlying 
process under consideration to be explicitly described in 
mathematical form. ANN applications in hydrology vary, 
from real-time to event based modeling.  

The most popular ANN architecture in hydrologic 
modeling is the multilayer perceptron (MLP) trained 
with BP algorithm [8,9]. A multilayer perceptron net-
work consists of an input layer, one or more hidden lay-
ers of computation nodes, and an output layer. The 
number of input and output nodes is determined by the  

 

 

Figure 1. Diagram of multiresolution analysis of signal. 
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

nature of the actual input and output variables. The num- 
ber of hidden nodes, however, depends on the complex-
ity of the mathematical nature of the problem, and is de-
termined by the modeler, often by trial and error. The 
input signal propagates through the network in a forward 
direction, layer by layer. Each hidden and output node 
processes its input by multiplying each of its input values 
by a weight, summing the product and then passing the 
sum through a nonlinear transfer function to produce a 
result. For the training process, where weights are se-
lected, the neural network uses the gradient descent me-
thod to modify the randomly selected weights of the 
nodes in response to the errors between the actual output 
values and the target values. This process is referred to as 
training or learning. It stops when the errors are mini-
mized or another stopping criterion is met. The BPNN 
can be expressed as 

Y f WX                  (2) 

where X = input or hidden node value; Y = output value 
of the hidden or output node; f (.) = transfer function; W 
= weights connecting the input to hidden, or hidden to 
output nodes; and θ = bias (or threshold) for each node. 
 
3. Method of Network Training 
 
Levenberg-Marquardt method (LM) was used for the 
training of the given network. Levenberg-Marquardt 
method (LM) is a modification of the classic Newton 
algorithm for finding an optimum solution to a minimi-
zation problem. In practice, LM is faster and finds better 
optima for a variety of problems than most other meth-
ods [38]. The method also takes advantage of the internal 
recurrence to dynamically incorporate past experience in 
the training process [39]. 

The Levenberg-Marquardt algorithm is given by 

  1

1
T T

k kX X J J I J


    e   (3) 

where, X is the weights of neural network, J is the Jaco-
bian matrix of the performance criteria to be minimized, 
 is a learning rate that controls the learning process and 
e is residual error vector. 

If scalar  is very large, the above expression ap-
proximates gradient descent with a small step size; while 
if it is very small; the above expression becomes Gauss- 
Newton method using the approximate Hessian matrix. 
The Gauss-Newton method is faster and more accurate 
near an error minimum. Hence we decrease  after each 
successful step and increase only when a step increases 
the error. Levenberg-Marquardt has great computational 
and memory requirements, and thus it can only be used 
in small networks. It is faster and less easily trapped in 
local minima than other optimization algorithms. 

3.1. Selection of Network Architecture 
 
Increasing the number of training patterns provide more 
information about the shape of the solution surface, and 
thus increases the potential level of accuracy that can be 
achieved by the network. A large training pattern set, 
however can sometimes overwhelm certain training al-
gorithms, thereby increasing the likelihood of an algo-
rithm becoming stuck in a local error minimum. Conse-
quently, there is no guarantee that adding more training 
patterns leads to improve solution. Moreover, there is a 
limit to the amount of information that can be modeled 
by a network that comprises a fixed number of hidden 
neurons. The time required to train a network increases 
with the number of patterns in the training set. The criti-
cal aspect is the choice of the number of nodes in the 
hidden layer and hence the number of connection 
weights. 

Based on the physical knowledge of the problem and 
statistical analysis, different combinations of antecedent 
values of the time series were considered as input nodes. 
The output node is the time series data to be predicted in 
one step ahead. Time series data was standardized for 
zero mean and unit variation, and then normalized into 0 
to 1. The activation function used for the hidden and 
output layer was logarithmic sigmoidal and pure linear 
function respectively. For deciding the optimal hidden 
neurons, a trial and error procedure started with two hid-
den neurons initially, and the number of hidden neurons 
was increased up to 10 with a step size of 1 in each trial. 
For each set of hidden neurons, the network was trained 
in batch mode to minimize the mean square error at the 
output layer. In order to check any over-fitting during 
training, a cross validation was performed by keeping 
track of the efficiency of the fitted model. The training 
was stopped when there was no significant improvement 
in the efficiency, and the model was then tested for its 
generalization properties. Figure 2 shows the multilayer 
perceptron (MLP) neural network architecture when the 
original signal taken as input of the neural network ar-
chitecture. 
 
3.2. Method of Combining Wavelet Analysis 

with ANN 
 
The decomposed details (D) and approximation (A) were 
taken as inputs to neural network structure as shown in 
Figure 3. In Figure 3, i is the level of decomposition 
varying from 1 to I and j is the number of antecedent 
values varying from 0 to J and N is the length of the time 
series. To obtain the optimal weights (parameters) of the 
neural network structure, LM back-propagation algorithm 
has been used to train the network. A standard MLP with 
a logarithmic sigmoidal transfer function for the hidden 
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Figure 2. Signal data based multilayer perceptron (MLP) 
neural network structure. 
 

 

Figure 3. Wavelet based multilayer perceptron (MLP) neural 
network structure. 
 
layer and linear transfer function for the output layer 
were used in the analysis. The number of hidden nodes 
was determined by trial and error procedure. The output 
node will be the original value at one step ahead. 
 
3.3. Linear Auto-Regressive (AR) Modeling 
 
A common approach for modeling univariate time series 
is the autoregressive (AR) model: 

1 21 2t t t t ppX X X X
tA            (4) 

where Xt is the time series, At is white noise, and 

1

1
p

i
i

 


 
  
 

   (5) 

where   is the mean of the time series. An autoregres-
sive model is simply a linear regression of the current 
value of the series against one or more prior values. AR 
models can be analyzed with linear least squares tech-
nique. They also have a straightforward interpretation. 
The determination of the model order can be estimated 
by examining the plots of Auto Correlation Function 

(ACF) and Partial Auto Correlation Function (PACF). 
The number of non-zero terms (i.e. outside confidence 
bands) in PACF suggests the order of the AR model. An 
AR (k) model will be implied by a sample PACF with k 
non-zero terms, and the terms in the sample ACF will 
decay slowly towards zero. From ACF and PACF analy-
sis for river flow, the order of the AR model is selected 
as 1. 

1) Performance Criteria 

The performance of various models during calibration 
and validation were evaluated by using the statistical 
indices: the Root Mean Squared Error (RMSE), Correla-
tion Coefficient (R), Coefficient of Efficiency (COE) and 
Persistence Index (PI). 

2) Study Area 

In this paper, a hybrid model wavelet neural network 
(WNN) used to forecast the river flow of the Malaprabha 
River basin (Figure 4) in Karnataka state of India. The 
river Malaprabha is one of the tributary of river Krishna, 
originated from Kanakumbi in the Western Ghats at an 
altitude of 792.48 m in Belgaum district of Karnataka 
State. The river flows in an easterly direction and joins 
the River Krishna. The Malaprabha river upto Khanapur 
gauging station was considered for the present study.  It 
is having a total catchment area of 520 Sq.km. and lies 
between 150 30' to 150 50' N latitude and 740 12'  to 740 

32'  E longitude. About 60% of the basin was covered 
with forests covering upstream area of the basin and 
northern part of the basin is used for agricultural purpose. 
Major portion of the catchment is covered with tertiary 
basaltic rock, whereas, the sedimentary rocks have con-
fined to the southeastern part of the catchment. Most of 
the rainfall of the basin experiences from southwest 
monsoon. The average annual precipitation is 2337 mm 
from seven rain gauges, which are uniformly distributed 
throughout the basin (Figure 4). The average daily river 
flow data of 11 years (1986-1996) used for the current 
study. The maximum value of the testing data set is fall 
within the training data set limit. This means that the 
trained neural network models do not face difficulties in 
making extrapolation. 
 
4. Development of Wavelet Neural Network 

Model 
 
The original time series was decomposed into Details 
and Approximations a certain number of sub-time series  

 1 2, , , ,P PD D D A  by wavelet transform algorithm.  

These play different role in the original time series and 
the behavior of each sub-time series is distinct [17]. So 
the contribution to original time series varies from each  
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Figure 4. Location of study area. 
 

other. The decomposition process can be iterated, with 
successive approximations being decomposed in turn, so 
that one signal is broken down into many lower resolu-
tion components, tested using different scales from 1 to 
10 with different sliding window amplitudes. In this 
context, dealing with a very irregular signal shape, an 
irregular wavelet, the Daubechies wavelet of order 5 
(DB5), has been used at level 3. Consequently, D1, D2, 
D3 were detail time series, and A3 was the approximation 
time series. 

An ANN was constructed in which the sub-series {D1, 
D2, D3, A3} at time t are input of ANN and the original 
time series at t + T time are output of ANN, where T is 
the length of time to forecast. The input nodes are the 
antecedent values of the time series and were presented 
in Table 1. The Wavelet Neural Network model (WNN) 
was formed in which the weights are learned with Feed 
forward neural network with Back Propagation algorithm. 
The number of hidden neurons for BPNN was deter-
mined by trial and error procedure. 
 
5. Results and Discussion 
 
To forecast the river flow at Khanapur gauging station of 
Malaprabha River (Figure 4), the daily stream flow data 
of 11 years was used. The first seven years (1986-92) 

data were used for calibration of the model, and the re-
maining four years (1993-96) data were used for valida-
tion. The model inputs (Table 1) were decomposed by 
wavelets and decomposed sub-series were taken as input 
to ANN and the original river flow value in one day 
ahead as output. ANN was trained using backpropaga-
tion with LM algorithm. The optimal number of hidden 
neurons was determined as three by trial and error pro-
cedure. 

The performance of various models estimated to fore-
cast the river flow was presented in Table 2. From Table 
2, it was found that low RMSE values (8.24 to 18.60 
m3/s) for WNN models when compared to ANN and AR 
(1) models. It was observed that WNN models estimated 
the peak values of river flow to a reasonable accuracy 
(peak flow during the study was 774 m3/s). From Table 2, 
it was observed that the WNN model having four ante-
cedent values of the time series, estimated minimum 

 
Table 1. Model inputs. 

Model I 

Model II 

Model III 

Model IV 

Model V 

X (t) = f (x [t-1]) 

X (t) = f (x [t-1], x [t-2]) 

X (t) = f (x [t-1], x [t-2], x [t-3]) 

X (t) = f (x [t-1], x [t-2], x [t-3], x [t-4]) 

X (t) = f (x [t-1], x [t-2], x [t-3], x [t-4], x [t-5]) 
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Table 2. Goodness of fit statistics of the forecasted river flow for the calibration and validation period. 

Calibration Validation 

RMSE R COE (%) PI RMSE R COE (%) PI Model 

(cumecs) (cumecs) 

WNN         

Model I 
Model II 
Model III 

Model IV 
Model V 

17.76 
8.66 
9.44 

6.07 
5.90 

0.952 
0.989 
0.986 

0.995 
0.994 

90.76 
97.80 
97.38 

98.91 
98.97 

0.627 
0.911 
0.894 

0.956 
0.959 

18.60 
10.46 
10.33 

8.18 
10.01 

0.931 
0.979 
0.979 

0.987 
0.980 

86.69 
95.78 
95.89 

97.38 
96.14 

0.395 
0.809 
0.814 

0.881 
0.825 

ANN         

Model I 
Model II 
Model III 
Model IV 
Model V 

26.09 
25.39 
26.07 
25.96 
25.32 

0.894 
0.900 
0.895 
0.896 
0.901 

80.07 
81.13 
80.10 
80.27 
81.23 

0.195 
0.238 
0.196 
0.203 
0.242 

23.45 
23.15 
23.17 
23.16 
23.73 

0.889 
0.893 
0.893 
0.898 
0.887 

78.86 
79.40 
79.36 
79.37 
78.35 

0.039 
0.064 
0.062 
0.062 
0.061 

AR 1 28.30 0.876 76.55 0.053 23.26 0.890 79.05 0.046 

 
RMSE (8.24 m3/s), high correlation coefficient (0.9870), 
highest efficiency (> 97%) and a high PI value of 0.881 
during the validation period. The model IV of WNN was 
selected as the best-fit model to forecast the river flow in 
one-day advance. 

An analysis to assess the potential of each of the mod-
el to preserve the statistical properties of the observed 
flow series was carried out and reveals that the flow se-
ries computed by the WNN model reproduces the first 
three statistical moments (i.e. mean, standard deviation 
and skewness) better than that computed by the ANN 
model. The values of the first three moments for the ob-
served and modeled flow series for the validation period 
were presented in Table 3 for comparison. In Table 3, 
AR model performance was not presented because of its 
low efficiency compared to other models. Table 3 de-
picts the percentage error in annual peak flow estimates 
for the validation period for both models. From Table 3 
it is found that the WNN model improves the annual 
peak flow estimates and the error was limited to 18%. 
However, ANN models tend to underestimate the peak 
flow up to 55% error in peak estimation. 

Figure 5 shows the observed and modeled hydro-
graphs for WNN and ANN models. It was found that 
values modeled from WNN model correctly matched 
with the observed values, whereas, ANN model underes-
timated the observed values. The distribution of error 
along the magnitude of river flow computed by WNN 
and ANN models during the validation period has been 
presented in Figure 6. From Figure 6, it was observed 
that the estimation of peak flow was very good as the 
error is minimum when compared with ANN model. 
Figure 7 shows the scatter plot between the observed 
and modeled flows by WNN and ANN. It was observed 

that the flow forecasted by WNN models were very 
much close to the 45 degrees line. From this analysis, it 
was worth to mention that the performance of WNN was 
much better than ANN and AR models in forecasting the 
river flow in one-day advance. 
 
6. Conclusions 
 
This paper reports a hybrid model called wavelet based 
neural network model for time series modeling of river 
flow. The proposed model is a combination of wavelet 
analysis and artificial neural network (WNN). Wavelet 
decomposes the time series into multi-levels of details 
and it can adopt multi-resolution analysis and effectively 
 
Table 3. Statistical moments of the observed and modeled 
river flow series during validation period. 

Statistical moments Year Observed 
(cumecs) 

WNN ANN 

Mean 1993 
1994 
1995 
1996 

45.84 
64.23 
30.92 
31.08 

46.00 
63.78 
31.98 
31.21 

46.06 
63.12 
31.25 
33.02 

Standard deviation 1993 
1994 
1995 
1996 

65.67 
85.32 
54.89 
40.94 

63.83 
82.14 
56.39 
40.38 

61.01 
77.36 
53.76 
44.69 

Skew ness 1993 
1994 
1995 
1996 

2.85 
1.98 
3.20 
2.21 

2.79 
1.81 
3.29 
2.27 

2.09 
1.45 
2.84 
2.26 

%Error in peak estimation
Peak value 1993 

1994 
1995 
1996 

432.00 
430.61 
360.65 
224.65 

−0.49 
−9.23 
−17.36

2.50 

−28.53
−35.62
−30.88
−54.80
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 (a)  (b) 

Figure 5. Plot of observed and modeled hydrographs for (a) WNN and (b) ANN model for the validation period. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Distribution of error plots along the magnitude of river flow for (a) WNN model and (b) ANN model during valida-
tion period. 
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Figure 7. Scatter plot between observed and modeled river 
flow during validation period. 
 
diagnose the main frequency component of the signal 
and abstract local information of the time series. The 
proposed WNN model was applied to daily river flow of 
Malaprabha river basin in Belgaum district of Karnataka 
State, India. The time series data of river flow was de-
composed into sub series by DWT. Each of sub-series 
plays distinct role in original time series. Appropriate 
sub-series of the variable used as inputs to the ANN 
model and original time series of the variable as output. 
From the current study it is found that the proposed 
wavelet neural network model is better in forecasting 
river flow in Malaprabha basin. In the analysis, original 
signals are represented in different resolution by discrete 
wavelet transformation, therefore, the WNN forecasts are 
more accurate than that obtained directly by original 
signals. 
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