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Abstract 
 
Battery grade γ-MnO2 powder was investigated as an oxidant and an adsorbent in combination with Fe/Al 
coagulants for removal of arsenic from contaminated water. Simultaneous oxidation of As(III) and removal 
by coprecipitation/adsorption (one step process) was compared with pre-oxidation and subsequent removal 
by coprecipitation/adsorption (two step process). The rate of As(III) oxidation with MnO2 is completed in 
two stages: rapid initially followed by a first order reaction. As(III) is oxidised to As(V) by the MnO2 with a 
release of approximately 1:1 molar Mn(II) into the solution. No significant pH effect on oxidation of As(III) 
was observed in the pH range 4 - 6. The rate showed a decreasing trend above pH 6. The removal of As(V) 
by adsorption on the MnO2 decreased significantly with increasing pH from 4 to 8. The adsorption capacity 
of the γ-MnO2 with particle size 90% passing 10 µm was determined to be 1.5 mg/g at pH 7. MnO2 was 
found to be more effective as an oxidant for As(III) in the two step process than in the one step process. 
 
Keywords: Manganese Oxides, Iron Hydroxides, Arsenic Remediation, Fe/Al Coagulants, Contaminated 

Water 

1. Introduction 
 
Arsenic in contaminated groundwater occurs largely as 
arsenite (As(III)). [1] Effective and complete removal of 
arsenic by adsorption/coprecipitation methods requires 
pre-oxidation of As(III) to As(V). Oxygen or air is a 
cheap but kinetically slow oxidant for As(III). Various 
other oxidants for As(III) have been reported in the lit-
erature, including permanganate ( 4 ), [2-4] ozone 
(O3), [5] hydrogen peroxide (H2O2), [6] chlorine (Cl2), 
[7-10] or hypochlorite (ClO−), [11-13] catalyzed sul-
phite/O2 (air) mixture, [14,15] and UV catalyzed systems. 
[16-19] These oxidants are effective but are either costly, 
or need rigid process controls for efficient oxidation. In 
recent years, manganese oxides, in both synthetic and 
natural forms, have been investigated for oxidation of 
As(III) [20-26]. 

MnO

Oscarson et al. [27] found that the oxidation of As(III) 
by birnessite, cryptomelane, and pyrolusite obeyed the 
first-order rate law with the rate constants at 298 K being 
0.267, 0.189 and 0.44 × 10−3 h−1, respectively. However, 
Chen and Fang [28] reported that the oxidation rate of 
As(III) by MnO2 was rapid initially followed by a first- 

order kinetics with respect to As(III) concentration. The 
activation energies for the oxidation reaction by the 
MnO2 were measured to be in the range 26.0 - 32.3 
kJ/mol [27]. The oxidation process was reported to be 
limited by diffusion of the reactant As(III) to or the reac-
tion products away from the surface [27-29]. 

Scott and Morgan [29] proposed a surface mechanism 
that As(III) anion forms an inner-sphere complex fol-
lowed by electron transfer between the surface metal ion 
and As(III) anion. The adsorption of As(III) on the sur-
face was the slowest step. The surface mechanism was 
supported by the observation that the rate of As(III) oxi-
dation directly depended on the concentration of surface- 
bound As(III) [30]. A mechanism of production of an in- 
termediate reaction product, Mn(III) hydroxyl (MnOOH*), 
was proposed by Nesbitt et al. [31]. 

2MnO2 + H3AsO3 = 2MnOOH* + H3AsO4      (1) 

2MnOOH* + H3AsO3 = 2MnO + H3AsO4 + H2O  (2) 

Various forms of Mn oxides as adsorbent for arsenic 
removal have also been investigated, including pyrolusite 
and cryptomelane, [32] combination of pyrolusite with 
granular ferric hydroxide, [30] natural manganese oxides 
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in a packed bed or column, [33] ferruginous manganese 
ore (FMO), [34] Mn dioxide-coated sand (MDCS), [35, 
36] and Bi-enhanced Mn oxides [37]. Chiu and Hering 
[30] compared the adsorption capacities for different 
types of Mn oxides. They found that the surface satura-
tion for pyrolusite and cryptomelane at pH 6.5 for As(V) 
species were 0.75 and 1.87 mg/g, respectively. The dif-
ference in the adsorption capacity was attributed to their 
crystallinity and specific surface areas. Poorly crystalline 
birnessite and cryptomelane possess higher specific sur-
face areas than highly ordered pyrolusite [29]. 

This paper reports the investigation of MnO2 as an 
oxidant for As(III) and as adsorbent in combination with 
Fe/Al coagulants for As(V) removal. The adsorption 
capacity of MnO2 for As(V) was compared with com-
monly used iron and aluminium hydroxide adsorbents 
under similar experimental conditions. Simultaneous 
oxidation and coprecipitation/adsorption (one step proc-
ess), and pre-oxidation followed by coprecipitation/ad- 
sorption (two step processes) were investigated for vari-
ous combinations of MnO2 with in-situ formed Fe/Al 
hydroxides. The objectives of this work were to deter-
mine the suitability of MnO2 as an oxidant and adsorbent 
in combination with Fe/Al hydroxide for arsenic re-
moval. 
 
2. Materials and Methods 
 
First, Battery grade -MnO2 powder with particle size 
90% passing 10 µm, supplied by Aldrich Australia, was 
used for all the experiments. All the other chemicals used 
were of AR grade without further treatment. As(III) 
stock solution was prepared from As2O3 in accordance 
with the procedure provided by Vogel [38]. As(V) stock 
solution was prepared by dissolving Na2HAsO4 in de-
monized water. Fe(III) and Al(III) stock solutions were 
prepared from their chloride salts. Solution pH was ad-
justed with dilute HCl and NaOH solutions.  

All the experiments were conducted at 25˚C in 250 ml 
conical flasks equipped with magnetic stirring units for 
liquid-solid mixing. In the one step process, a dose of 
MnO2 and a desired volume of equal molar Fe(III)/Al(III) 
solution were simultaneously added to water containing 
known amount of As(III) or As(V). Solution pH was 
adjusted and maintained at the desired value throughout 
the experiment. Samples were taken and filtered through 
a 0.2 µm membrane filter. The filtrate was analysed for 
As(III) and As(V) by hydride generation followed by 
inductively coupled plasma and atomic emission spec-
troscopy (ICP-AES), and for total soluble Mn by ICP- 
AES at the Marine and Freshwater Research Institute, 
Environmental Science, Murdoch University, Western 
Australia. For the two step process, the arsenic bearing 

solution was first treated with MnO2 followed by adsorp-
tion/precipitation with Fe(III)/Al(III) coagulants at pH 7. 
All the other procedures were the same as the one step 
process. 
 
3. Results and Discussion 
 
3.1. Oxidation of Arsenic(III) by MnO2 

 
3.1.1. Stoichiometry of Oxidation of As(III) 
The stoichiometry of oxidation of As(III) by MnO2 was 
determined by measuring residual reactants and reaction 
products after 2 hours contact of one gram of the MnO2 
powder with initial 1 ppm As(III) solution at pH 7 in the 
absence of oxygen maintained by bubbling nitrogen gas 
through the solution. The analysis results for residual 
concentrations of As(III), As(V) and Mn(II) in the final 
solution are given in Table 1. The important observa-
tions are: 

No As(III) remained in the solution, indicating that all 
the As(III) was oxidized to As(V). 

The residual arsenic in the solution accounted for only 
80% of the amount initially present in the reaction mix-
ture. 

The solid phase contained the remaining 20% of the 
arsenic which could be assumed to be As(V). 

The solution contained Mn(II) as much as would be 
expected if all the reacted MnO2 were converted to Mn(II) 
during its reaction with As(III). Thus, the oxidation of 
As(III) was accompanied by a reduction of MnO2 yield-
ing Mn(II) into solution at an approximately equal molar 
stoichiometry with respect to the total oxidized As(III): 

Mn(IV) + As(III) = Mn(II) + As(V)      (3) 

 
3.1.2. Rate of Oxidation of As(III) 
The rate of As(III) oxidation are plotted in Figure 1 and 
analyzed with respect to the first order rate law: 

Ln[As(III)]/[As(III)] = kt           (4) 

where [As(III)] is the initial As(III) concentration (mg/L), 
[As(III)] the concentration at time t (min), k the rate con-
stant (min–1) which is a function of MnO2 dose and tem- 
 
Table 1. Concentrations of reaction products in the final 
solutions after 2 hour contact time at pH 7 and 25˚C. Initial 
1 ppm As(III), 1 g/L MnO2. 

Elements In solution (µM) In solid (µM) Total (µM)

As(III) <0.05 (DL) - - 

As(V) 10.7 2.7 13.4 

Mn(II) 14.0 - 14.0 

Reaction product ratio As:Mn  1 
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perature. As can be seen in Figure 1, the oxidation of 
As(III) by MnO2 could be characterized by very fast ki-
netics within the first 30 minutes, followed by a first or-
der rate which is indicated by the fact that Ln[As(III)]/ 
[As(III)] vs reaction time t is graphically linear. The rate 
increases with MnO2 dose, suggesting that the reaction 
depends on surface area or available reaction sites on the 
surface of MnO2. This two stage kinetic feature was also 
observed by Chen and Fang [28]. The slow-down in the 
rate at later stage of the reaction is indicative of competi-
tion for active adsorption sites between As(III) and 
As(V). 
 
3.1.3. Effect of pH on Oxidation of As(III) 
The pH effect was investigated by varying solution pH in 
the range 4 - 8 and measuring the residual As(III) in so-
lution after 2 hour contact time for each fixed pH. The 
initial As(III) concentration was 6 mg/L. It was observed 
that about 80% of the As(III) ions was oxidized for each 
pH in two hours in the pH range 4 - 6. Above pH 6, a 
decreased trend occurred up to pH 8. This is likely to be 
caused by formation of manganese hydroxide on the 
surface which blocks some sites for reaction with As(III) 
on the surface. 
 
3.2. MnO2 as Adsorbent 
 
3.2.1. Effect of pH on As(V) adsorption on MnO2 
Figure 2 shows that the %As(V) adsorption decreases 
linearly when solution pH increases from pH 4 to pH 8. 
This effect can be explained by the surface charge char-
acteristics of the MnO2 phase. The point of zero charge 
(PZC) of chemically or electrochemically prepared MnO2 
materials such as α-MnO2, γ-MnO2 and δ-MnO2 lies in 
the pH range 1.5 - 4.15 [39,40]. Therefore, it is not sur-
prising to observe the decreasing effect because the ad- 
sorption of As(V) species must overcome the increased 
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Figure 1. Ln [As(III)]/[As(III)]˚ vs time. Initial 5 mg/L 
As(III), pH 7, 25˚C. 
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Figure 2. Effect of solution pH on adsorption of As(V) on 
the MnO2. 
 
repulsion force as pH rose above the PZC. Additionally, 
the proportion of the more negatively charged As(V) spe- 
cies increases as the solution pH increases, e.g. 2 4H AsO  

inate in pH range 2 - 6.5. The 2
2 4H AsOions dom   ions 

er hand dominate in pH range 6.5 - 11.8. This 
should also contribute to the observed pH effect. 
 

on the oth

.2.2. Effect of As(V) Concentration 
As(V) adsorption 

Ce/Qe = 1/bQ˚ + Ce/Q         (5) 

where, Ce (mmo

 

ison, the adsorption capacities of com-
m

3
The effect of As(V) concentration on 
was investigated by varying initial As(V) concentration 
at a fixed dose of 1 g/L MnO2 at pH 7. As shown in Fig-
ure 3, the results reasonably fit the Langmuir isotherm 
model: 

l/L) is the equilibrium concentration in 
the solution, Qe (mmol/g) is the amount adsorbed on the 
adsorbent at equilibrium, Q˚ and b are the Langmuir 
constants related to adsorption capacity and binding en-
ergy of adsorption respectively. From the slope of best fit,
the adsorption capacity of the γ-MnO2 is determined to 
be 1.5 mg/g. 

For compar
only used iron and aluminum hydroxide adsorbents 

were also similarly studied and the reagents summarized 
in Table 2. The published data from the literature are 
also included in the table. As seen, the adsorption capac-
ity of MnO2 increased in the order -MnO2 < -MnO2 < 
-MnO2 << δ-MnO2. Clearly, the capacity depended on 
the form of MnO2 and its preparation method which de-
termine the crystalline properties and surface area. For 
example, the amorphous δ-MnO2 possesses highest sur-
face area and thus highest adsorption capacity compared 
with other well crystalline forms of MnO2. However, the 
capacity of the amorphous δ-MnO2 is found to be sig-
nificantly lower than the amorphous iron hydroxide (fer-
rihydrite). The capacity of As(V) removal also depends 
on the method used. The removal of As(V) by adsorp-   
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apacity of Mn oxides with iron oxides. 

 Hydroxides/oxides Capacity (mg/g) pH Ref 

Table 2. Comparison of adsorption c

Crypto 2) melane (-MnO 1.87 6.5 [41] 
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2 Th k 
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Figure 3. Langmuir plot for adsorption of As(V) on the 

on/precipitation in-situ with Fe(III) or Fe(III)/Al(III) 
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he efficiency of As(III) removal by adsorption on Fe/Al 

eous addition 
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ss: this involved pre-oxidation of 
A

process 
e 4, the residual arsenic in solution 

de

MnO2 at pH 7. 
 
ti
coagulants is much more effective and efficient than the 
preformed ferrihydrite (Table 2). 
 
3

Fe(III)/Al(III) Coagulants 

T
hydroxides was investigated in two ways: 

One step process: this involved simultan
 MnO2 oxidant and the Fe or Fe/Al coagulant followed 

by pH adjustment. 
Two step proce

s(III) by MnO2 and subsequent removal of As(V) by 
coprecipitation/adsorption on in-situ formed Fe or Fe/Al 
hydroxides. 
 One step 

As shown in Figur
creased exponentially from 0.2 mg/L to 0.02 mg/L as 

the MnO2 dose increased from 0.1 g/L to 0.5 g/L. A dose 
of 1 g/L of MnO2 was needed to lower the residual arse-
nic to 0.01 mg/L (standard drinking water limit by US 
Environmental Protection Agency). This reflects the 
relative inefficiency of the one step process for removal  
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Figure 4. Effect of MnO2 dose on removal of arsenic by co- 
precipitation with Fe/Al coagulant. Initial 1 mg/L As(III), 

 Two step processes 
ized as follows: 

ctive adsorbent for As(V) (<0.01 
m 0.24 mg/L, 
Ex

atively poor adsorbent for As(V) (Expt. 
Co

e resid-
ua

e 1) than the 
on

 both one-step and two-step processes. 
 

cess (Expt. 
Co

pH 7, molar ratio (Fe:Al = 1:1):As = 50:1. 
 
of very low level of arsenic. 


The results can be summar
Fe/Al alone is an effe
g/L, Expt. Code 5) but poor for As(III) (
pt. Code 4). 
MnO2 alone is effective for As(III) oxidation (Expt. 

Code 6) but rel
de 7) compared with Fe/Al adsorbent. 
Combination of MnO2 with Fe/Al in the one step 

process with initial As(III) effectively lowered th
l As to 0.01 - 0.02 mg/L (Expt. Code 2). 
The two step process is more effective for arsenic re-

moval (<0.01 mg/L residual As, Expt. Cod
e step process (0.01 - 0.02 mg/L residual As, Expt. 

Code 2), but requires additional 2 hours for pre-oxida- 
tion. 

Soluble Mn(II) was effectively removed from the sys-
tem in

The arsenic removal is not affected when MnO2, Fe/Al,
and As(V) are co-present in the one step pro

de 3). 
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r compared with the two step process. T
fa

The As(III) removal by the one step process is rela-
tively poo wo 

ctors are likely to affect the removal process. First, the 
in-situ formed amorphous Fe/Al ‘hydroxide’ may par-
tially cover the surface of MnO2, which slows down the 
diffusion process of As(III) to its surface. Second, the 
As(III) initially adsorbed on the surface of Fe/Al “hy-
droxide” is desorbed by As(V) ions, establishing a new 
equilibrium. As(III), which is known to occur as union-
ised H3AsO3 in the pH range 2 - 9 is weakly bonded on 
the surface of ferrihydrite compared with As(V) which 
occur as 2 4H AsO , 2

2 4H AsO  . The As(V) species is 
strongly bonded on the surface via specific inner sphere 
adsorption more, the As(III) adsor- 
bed on the surface of ferrihydrite may need further 
treatment to oxidize the As(III) to As(V) for safe dis-
posal. The cost for this treatment may not justify using 
the one step process in real applications where safe dis-
posal is the prime objective. 
 
4. Conclusions 

mechanism. Further

to As(V) by the γ-MnO2 with alm
qual molar stoichiometric release of Mn(II) into so

dgment 
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As(III) is oxidized ost 

lu-e
tion. The rate of the oxidation is characterised by an ini-
tial fast kinetics followed by a first order rate reaction. 
No significant variation in the oxidation rate occurs in 
the pH range 4 - 8, except for a decreased trend at pH 
above 6, is observed. The adsorption of As(V) with the 
γ-MnO2 is favored in low pH 4 and decreases rapidly 
where the pH rises to 8. The adsorption capacity of 
MnO2 (90% passing 10 µm) is 1.5 mg (As(V)/g at pH 7. 
The MnO2 is more efficient when used as an oxidant in 
the two step process than in the one step process. All the 
soluble Mn(II) ions are removed in the solution in both 
the processes. 
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