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Abstract 
 
In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-
sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-
tured grids. The constructed auxiliary nodes for Q-QUICK/UQ-QUICK are composed of two neighboring 
nodes plus the next upwind node, the later node is generated from intersection of the line of current 
neighboring nodes and their corresponding interfaces. 2D unsteady advection-diffusion equation of pollut-
ants is conducted for their verifications on unstructured grids. The numerical results show that Q-QUICK 
and UQ-QUICK have similar computational accuracy to the central difference scheme and similar numerical 
stability to upwind difference scheme after applying the deferred correction method. In addition, their corre-
sponding CPU times are approximately equivalent to those of traditional difference schemes and their abili-
ties for adapting high grid deformation are robust. 
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Equation of Pollutants  

1. Introduction 
 

The physical processes of pollutant transportation in 
flowing water are mainly consisting of advection and 
diffusion, which are usually governed by advec-
tion-diffusion equation of pollutants. Generally, the ac-
tion of advection process would dominate the transporta-
tion of pollutants. Thereby, it is so important to improve 
the precision of convective flux approximation. Till to 
now, many works have been done for numerical simula-
tion of advection-diffusion equation of pollutants on 
structured grids [1−8]. The natural computational 
boundaries are irregular. If structured grids applied, the 
workload of CFD pretreatment would be increased and 
the numerical precision in the boundaries would be de-
creased. Unstructured grid can produce arbitrary geome-
try and can well fit to complex physical boundary. Pres-
ently, the computation based on unstructured grid be-
comes more and more popular. However, many 
high-precision schemes on uniform grid can not be ap-
plied to unstructured grids directly. It is significative to 
extend them to unstructured grid computation. In the past 
decade, a number of difference schemes to calculate 
convective flux were developed for incompressible flow 
simulation. They include upwind difference scheme  

(UDS), central differencing scheme (CDS), hybrid diff- 
erencing scheme (HDS), the quadratic upstream, quad-
ratic upstream extended and quadratic upstream extended 
revised difference schemes (QUICK, QUDSE, QUDSER 
as modified by Pollard and Siu [9]), the locally exact 
scheme (LEDS) (1972), and the power difference 
schemes (PDS) of Pantankar [10]. The unconditionally 
convergent schemes UDS/HDS/LEDS/PDS can be sig-
nificantly inaccurate under coarse grids, thus they require 
considerable grid refinement to produce acceptable re-
sults. This makes them expensive. Moreover, they im-
plicitly introduce the numerical diffusion term and distort 
the solution. In terms of accuracy and computational 
efficiency, it appears that the QUICK/QUDSE/QUDSER 
may offer the best compromise [11]. In uniform grids, 
they can have over second-order precision for convective 
flux approximation. However, QUICK/ QUDSE/ QUD-
SER need two nodes upstream. It is not so easy to apply 
these high-order schemes to unstructured grid directly, 
especially in three dimensional problems. Moreover, to 
find the exact locations of the next upwind node would 
require a very complex pointer system and consume 
more memory and CPU time. Davidson L. 1996 [12] 
introduced one method where the next upwind node is 
constructed by intersection from the line of two adjacent 
central nodes and its corresponding interface. Presently,  
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it is named Q-QUICK. According to the method, another 
similar scheme named UQ-QUICK is also introduced for 
comparative investigation. As for time discretization, the 
first-order and second-order schemes are taken into ac-
count. To this end, many compound schemes are formed 
and their corresponding numerical performances includ-
ing numerical precision, stability and CPU time are fully 
demonstrated in 2D unsteady advection-diffusion equa-
tion of pollutants. In order to accelerate convergence 
speed for linear equations, generalized Minimum Resid-
ual (GMRES) [13] method with the Incomplete LU 
(ILUT) precondition is used. 
 
2. Q-Quick and UQ-Quick 
 
QUICK [14] is the third order approximation of the con-
vection term. However, this high-order scheme is not 
easy to apply to unstructured grid directly. To find the 
exact location of the next upwind node would increase 
the geometrical complexity and consume relative more 
memory and CPU time. For a compromise, DAVIDSON 
L. introduced a modified QUCIK scheme in the end of 
his paper [12]. However, little work has been done later 
for this recommended scheme. Thus, it is necessary for 
fully studying its numerical characteristics including 
numerical precision, convergent stability and CPU time. 
As for comparison, another modified QUICK scheme is 
also introduced, namely UQ-QUICK. 
 
2.1. QUICK 
 
In a uniform grid (Figure 1 for definitions of points WW, 
W, P, E, EE etc.), the quadratic upstream difference scheme 
of Leonard [14] at the east cell-face can be written as 
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It is a third order approximation of the convection 
term. 
 
2.2. Q-QUICK 
 
Considering Figure 2(a), the next upwind node U is con-
structed by intersection of line

______

PA  and its correspond-
ing interface. A better way is probably to use reconstruc-
tion schemes, namely to compute the gradient in node P 
and use Taylor expansion to obtain the value at point U. 
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For present study, the second order approximation is 
considered. Thus the first two terms from the right of the 
equation are kept. And then, it is imperative to estimate  
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Figure 1. QUICK scheme in uniform grid. 
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Figure 2. The next upwind node reconstruction for Q-QUICK. 
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Figure 3. The next upwind node reconstruction for UQ-QUICK. 
 
the face value at interface f .In doing this, it is assumed 
that the flow direction is from right to left. To this 
end,the face value can be interpolated by QUICK method 
as the same way acted on the structured grid. So the 
normal face value 

f  is derived according as 

1 2 ( )f P P PU A P I Iff r f r            
     (3) 

where,
1 ( )( ) / /f z y y x x z    ;  0 2y 

If the flow direction is inverse (see Figure 2(b)), the 
same Formula (3) can be derived. 
 
2.3. UQ-QUICK 
 
The reconstruction method of NQ-QUICK has no intrin-
sic difference to that of Q-QUICK except that the three 
auxiliary nodes , 'U P  and 'A  (see Figure 3) in a line are 
perpendicular to interface f . In addition, the node values 

of 'P  and 'A  should be obtained first before interpola-
tion by QUICK method. However, a tough problem here 
is that the relative positions of nodes ,U 'P  and 'A  are 
not as simple as those of Q-QUICK. In present study, 
two cases are summarized as follows. 
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' )P

 Case 1 
If  (see Figure 3(a)) 0u n 

 

' ' '1 2( ) (f UP P A
f f                (4) 

where, 
1 ( )( ) / /f z y y x x z    ; 

2 ( ) / / ( )f y y x z z x    

If  (see Figure 3(b)), similar to that of case 1 
( ). 

0u n 
 

0u n 
 

 Case 2 
If  (see Figure 3(c)) 0u n 

 

' ' '

' '
1 2( ) (f UP P A

f f ' )P
                (5) 

where, '
1 11 2f f f   ; '

2 2f f , 
1f and

2f have the same 

formulas as written in (4).  
On high twisted grid, the coefficients of 

1f  and 
2f  in 

(5) may be much larger, which can cause the face value 
abnormal and result in the whole computation failure. So 
some flexible method should be implemented for the 
whole computational continuity. A better way for mending 
the defect may use the linear interpolation method for as-
suring a second-order precision at least. Then, the inter-
face value can be written as 

' (1 )f 'P A
                  (6) 

where,   is the linear interpolation factor. 

To this end, the coefficients of '

1
f and '

2
f are as follows 

'
1 0f  ; '

2 1f                (7) 

If  (see Figure 3(d)), similar to that of case 
2( ). 

0u n 
 

0u n 
 

 
3. Numerical Verification 
 
In present study, a two-dimensional advection-diffusion 
equation of pollutants is discretized by compounds of dif-
ferent time schemes and different convective flux schemes. 
The former includes UDS and Crank-Nicolson and the later 
consists of UDS, CDS, HDS, PDS, Q-QUICK and 
UQ-QUICK. To this end, comprehensive comparisons for 
their numerical performances are investigated, including 
relative errors, CPU time and numerical stability. 
 
3.1. Governing Equation and Initial Condition 
 
In general, a two-dimensional advection-diffusion equa-
tion of pollutants can be written as 

x y

C C C C C
u v D D

t x y x x y y
S

                       
      (8) 

where, C is concentration of pollutants, u and v are ve-
locities along x and y directions; Dx and Dy are diffusive 
coefficients;SØ is the source item.  

The initial computational condition is governed by a 
unit Gauss impulse within a rectangular plane. It is de-
picted as follow: 

Table 1. Definition of H
fF . 
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H
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Its corresponding resolution is [15] 
2 21 ( 0.5 ) ( 0.5

( , , ) exp
4 1 (4 1) (4 1)x y

)x ut y vt
C x y t

t D t D t

    
      

  (10)
 

where, Dx = Dy= 0.01m2/s; u=v=0.8m/s; x and y are de-
fined as 0 2x   m, 0 y 2 

0.00625t

 m (see Figure 4(a)); 

the time step is set as   s. 
 
3.2. Numerical Discretization 
 
Generally, the advection-diffusion equation of pollutants 
can be first integrated over a control volume and then 
using the Gauss’s divergence theorem, finally the com-
mon form over a CV is 

t c d
f f f V

f f f

F F F S d   V            (11) 

where, t

fF is listed for time discretization; c

fF  

( ) f fAu n C 
 

, (d

f CF A C n) f   


n

 standing for the con-

vection and diffusion fluxes through one interface f re-
spectively, and


is the surface outwardly normal vector. 

In the following section, the first-order and second-order 
schemes for time discretization are both considered and the 
corresponding common equations for convenience of pro-
gram compiling are also illuminated. In addition, over - 
relaxed approach [16−18] is adopted for cross derivative 
term approximation in the numerical computation. 

First-order time discretization (UDS) 
A common form for first-order time discretization 

along with different schemes for convective flux discre-
tization can be derived as follow: 
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where,
f f f fF u n A 

  ;   /Cf f APff
AD d 

 , and


k


are the 

splitting vectors; /f f fP F D ; H
fF  has different form for 
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each scheme and its definition is tabulated in Table 1. 

Second-order time discretization (Crank-Nicolson) 
A common form for Crank-Nicolson can be written as  

P P nb nb
nb

a C a C b  P             (13) 

where, different coefficients are as a follow 
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The definition of H
fF  is the same as above, superscript 

‘0’ denotes the last time step. 
 
3.3. Numerical Results 
 
The verification of Q-QUICK/UQ-QUICK has been in-
vestigated on three values of unstructured mesh numbers: 
454, 1770 and 3955 with quadrilateral grids only. As it 
can be seen from Figure 4, the computational Grid 1 and 
Grid 2 are intentionally twisted along the pollutant 
downstream. Generalized Minimum Residual (GMRES 
(30)) method with the Incomplete LU (ILUT) precondi-
tion is used to accelerate the convergence of the linear 
equation. The numerical precision is indicated by relative 
errors defined as follow: 

0i i i
i

C C C    0
i

           (14) 

If t=1.25s, the relative errors and CPU time of differ-
ent schemes are listed in Table 2, concentrations of each 
scheme along line y=x are also illuminated in Figure 5. 
 Numerical precision: At the same scheme of time 

discretization, the numerical precision of Q-QUICK/ UQ- 
QUICK/ CDS are much better than UDS/HDS/PDS, as for 
Q-QUICK/ UQ-QUICK/ CDS themselves, Q-QUICK/ 
UQ-QUICK exhibit a little lower relative errors that those 
of CDS especially on sparse grids. In addition, Q-QUICK 
and UQ-QUICK show a similar numerical precision. Fur-
thermore, with the increasing mesh numbers, Q- QUICK/ 
UQ-QUICK/CDS can fit well to the benchmarks quickly 
and on Grid 3 they can perform a perfectly match. 
 CPU time: Q-QUICK and UQ-QUICK consume a 

slight longer CPU times than those of other schemes. As 
for comparison by them, Q-QUICK seems a little econo- 
mical. This is reasonable for its little auxiliary nodes in 
scheme reconstruction. 
 Numerical stability: After applying the deferred correc-

tion method for Q-QUICK/UQ-QUICK and over-relaxed 
approach for cross derivative term approximation, most of the 
schemes can keep a good numerical stability except that CDS 
has a little vibration on relative sparse grids. In addition, these 
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Figure 4. Computational domain and grids. 
 

Table 2. Relative errors and CPU time. 

 
schemes are in sensitive to high grid deformation. 

For further clearly representing the numerical preci-
sion by each scheme, the distributions of concentration at 
1.25s within the whole computational domain are also 
illustrated in Figure 6 (Grid 1, Crank-Nicolson). As ref-
erenced to analytic solution, the suggested scheme 
Q-QUICK or UQ-QUICK can keep pollutant cloud 
shape well more similar to that of benchmark, UDS and 
HDS numerically dissipate a lot and the corresponding 
shape almost distort, UDS exhibits better than the former 
two schemes, however, its shape shows not so matching 
especially in the left part. 
 

4. Conclusions 
 
In present study, two modified QUICK namely Q-QUICK 
and UQ-QUICK are introduced and their verifications 
were conducted on 2D unsteady advection-diffusion equa-
tion of pollutants. The main conclusions are as follow: 

1) For comparisons in relative error and computational 
time amongst various schemes on unstructured grids, it 
can be seen that Q-QUICK and UQ-QUICK have similar 
computational accuracy to the central difference scheme 
and similar numerical stability to upwind difference 
scheme after applying the deferred correction method.  

2) Q-QUICK and UQ-QUICK’s corresponding CPU 
times are approximately equivalent to those of traditional 
difference schemes and their abilities for adapting high 
grid deformation are robust. 

Grid1 Grid2 Grid3 Time 
Discretiz-

ation 

Convective 
Flux Discre-

tiz- 
ation 

Errors
CPU 
Time 
(s) 

Errors 
CPU 
Time 
(s) 

Errors
CPU
Time 
(s)

UDS 0.6758 0.36 0.5042 1.85 0.4087 5.30

CDS 0.3794 0.34 0.1726 1.69 0.1463 4.50

HDS 0.6001 0.28 0.3700 1.36 0.2371 3.81

PDS 0.6037 0.37 0.3835 1.78 0.2780 4.86

Q-QUICK 0.2395 0.41 0.1597 1.93 0.1450 5.47

UDS 

UQ-QUICK 0.2483 0.41 0.1585 1.97 0.1454 5.55

UDS 0.6562 0.32 0.4625 1.50 0.3494 4.10

CDS 0.3720 0.31 0.1011 1.39 0.0410 3.66

HDS 0.5737 0.28 0.3039 1.22 0.1330 3.17

PDS 0.5764 0.34 0.3201 1.52 0.1858 4.03

Q-QUICK 0.1570 0.35 0.0507 1.58 0.0298 4.26

Crank-
Nicolson

 

UQ-QUICK 0.1600 0.36 0.0508 1.64 0.0309 4.38
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(a) Grid1, first-order  (time)  (d) Grid1, Crank-Nicolson  time) 
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(b) Grid2, first-order  (time)  (e) Grid2, Crank-Nicolson  (time) 
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(c) Grid3, first-order  (time)  (f) Grid3, Crank-Nicolson  (time) 

Figure 5. Illustration of comparisons of concentration along 
line y=x at t=1.25s. 

 

 
Analytic Solution                    UDS 

 
HDS                          CDS 

 
Q-QUICK                   UQ-QUICK 

Figure 6. Illustration of comparisons of concentration in the 
plane at t=1.25s. (Grid1, Crank-Nicolson). 

3) It is so promising to apply the suggested schemes to 
simulate pollutant transportation in shallow water with 
the merit of higher numerical precision. 
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