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Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a 
wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important 
part of forest management and wildlife conservation. However, cavity trees are relatively rare and their 
abundance can vary dramatically among forest stands, even when the stands are similar in most other re-
spects. This makes it difficult to model and predict cavity tree density. We utilized data from the Missouri 
Ozark Forest Ecosystem Project to show that it is virtually impossible to accurately predict cavity tree 
occurrence for individual trees or to predict mean cavity tree abundance for individual forest stands. 
However, we further show that it is possible to model and predict mean cavity tree density for larger spa-
tial areas. We illustrate the prediction error monotonically decreases as the spatial scale of predictions in-
creases. We successfully explored the utility of three classes of models for predicting cavity tree probabil-
ity/density: logistic regression, neural network, and classification and regression tree (CART). The results 
provide valuable insights into methods for landscape-scale mapping of cavity trees for wildlife habitat 
management, and also on sample size determination for cavity tree surveys and monitoring. 
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Introduction 

Spatial prediction (mapping) of rare forest components such 
as cavity trees is an important topic in resource management 
and planning intended to conserve wildlife habitat. Cavity trees 
are live or dead trees with holes that occur naturally or that are 
excavated by certain wildlife species. In Missouri, more than 89 
wildlife species require cavity trees or snags (Titus, 1983), and 
cavity tree availability is one of the most important factors for 
success of populations of cavity-nesting birds (McClelland & 
Frissell, 1975).  

Extensive analyses regarding factors contributing to cavity 
tree formation and abundance prediction in oak forests have 
been reported previously (Fan et al., 2003a, 2003b, 2004a, 
2004b, 2005). The biggest obstacle in cavity tree prediction for 
individual trees, for inventory plots (typically 0.1 to 0.2 ha in 
size), and for forest stands (typically 5 to 20 ha in size) results 
from the rareness of cavity trees and their large spatial and 
temporal variation. This large variation occurs because forma-
tion of cavities is predominately the consequence of a set of 
random or semi-random events such as fire, insect attack, dis-
ease, animal excavation, mechanical or chemical injury, and 
subsequent decay (Carey, 1983). However, at large spatial 
scales cavity tree probability and abundance can be predicted 
with reasonable accuracy using tree and stand attributes as in-
dicators of the underlying cavity tree formation processes or 
causes (Fan et al., 2004a, 2005). 

At the individual tree level, there are numerous statistical 
methods such as logistic regression, neural network, and classi-
fication and regression tree (CART) analysis that can be used to 

predict the probability that a given tree is a cavity tree and/or to 
identify contributing factors associated with cavity abundance. 
CART has been shown to be especially promising for estimat-
ing cavity tree abundance at multiple spatial scales (Fan et al., 
2004b, 2005). For cavity tree estimation, CART can explicitly 
identify significant contributing tree and/or plot (stand) factors 
(and their critical threshold values) and potential interactions in 
a hierarchical (nested) structure. CART identifies categories of 
observations (nodes) that maximize the separation of cavity 
trees from trees without cavities. Nodes quantify cavity tree 
probabilities, but they also identify discrete categories that can 
be used with aggregation or resampling methods to predict 
cavity tree abundance at any spatial scales greater than individ-
ual trees (e.g., plots, stands, small or large landscapes) (Fan et 
al., 2004a). 

The accuracy of cavity tree abundance or density predictions 
made by aggregating individual-tree-level CART models over 
plots, stands, or larger spatial scales generally depends on two 
factors: 1) how accurately the CART model distinguishes cav-
ity trees from non-cavity trees; and 2) the spatial scale (and 
number of cases) over which CART is aggregated. Tradition-
ally, prediction/classification of events of interest (cavity trees 
in this study) is accomplished by a single “best” (i.e., most 
accurate) model. Recent research suggests that an alternative to 
the selection of a single “best” model is to employ ensembles of 
models. Breiman (1996) reports that “bootstrap-aggregated” 
combinations of models (called Bagged models below) built 
from different re-sampled (with replacement) versions of the 
original data set, may have significantly lower errors than the 
single “best” model, particularly when the models like neural 
network and CART are unstable in the sense that different *Corresponding author. 
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re-sampled versions of the original data set will result in models 
that are substantially different.  

The objective of this study was to compare the predic-
tion/classification accuracy of binary cavity tree data using 
CART and two other commonly used statistical methods: neu-
ral network and logistic regression. We compared the single 
“best” model from each method with one another as well as 
with 50 Bagged models for neural network and CART. The 
logistic regression model is relatively stable with respect to data 
bootstrapping, so we did not use it to build Bagged models. 
However, we still investigated the prediction accuracy of its 
single “best” model because it is one of the most commonly 
used generalized linear models for binary data. From a model- 
selection perspective, we quantitatively evaluated the effec-
tiveness of aggregating the single “best” CART model and the 
50 Bagged CART models at multiple spatial scales. The infor-
mation is specifically useful in mapping and monitoring the 
cavity tree resource for wildlife. More generally the findings 
demonstrate how rare, natural phenomena can be quantified and 
predicted by a variety of single and bagged modeling tech-
niques. 

Methods 

Study Site and Data 

The Missouri Ozark Highlands are dominated by second- 
growth oak-hickory and oak-pine forests which originated 
when native forests were heavily harvested in the early 1900s. 
Since then, most forests have experienced periodic partial har-
vesting and frequent low-intensity fires. White oak (Quercus 
alba L.), black oak (Quercus velutina Lam.), scarlet oak 
(Quercus coccinea Muenchh.), post oak (Quercus stellata 
Wangenh.), shortleaf pine (Pinus echnina Mill.), blackgum 
(Nyssa sylvatica Marsh.), and hickory (Carya) species account 
for over 94 percent of trees in the forest canopy in terms of 
importance value. For management purposes, forests are or-
ganized into “stands” which are reasonably homogenous, con-
tiguous groups of trees that are typically 2 to 20 ha in extent. 
The majority of forest stands in the study area are dominated by 
trees at least 60 years old. The Missouri Ozark Forest Ecosys-
tem Project (MOFEP), initiated by the Missouri Department of 
Conservation in 1989, is a century-long, landscape-scale ex-
periment to examine the effects of alternative forest manage-
ment practices on multiple ecosystem attributes. MOFEP uses a 
randomized complete block design with nine sites (experimen-
tal units with multiple stands) that range from 314 to 516 ha in 
size and are organized into three blocks (Sheriff & He, 1997, 
Sheriff 2002). The MOFEP woody vegetation inventory sur-
veyed more than 50,000 individual trees >11 cm dbh and their 
associated environmental factors including slope, aspect, geo- 
landform, soil, and ecological land type (ELT). The measured 
trees were on 648 permanent 0.2-ha circular plots across the 
nine experimental sites and were measured both before and 
after treatment alternatives were applied (Brookshire & Shifley, 
1997; Sheriff & He, 1997). The tree species, diameter at breast- 
height (dbh), crown class, decay class (for dead trees, called 
snags), and cavity presence/absence were recorded for each tree. 
For this study, a cavity was defined as a hole with a diameter no 
less than 2.5 cm that appeared dark inside (Jensen et al., 2002). 
Based on prior findings of Fan et al. (2003a), we used the fol-
lowing four covariates to predict cavity tree probability: species 
group (ten groups), decay class (from I to VII indicating in-

creasing level of decomposition), diameter at breast height (dbh, 
measured in cm at a height of 1.4 m above ground level), and 
tree status (live or dead). 

Statistical Modeling 

Predicting Cavity Tree Probability at Individual Tree-Level  
Given a training data set T ={(xi, yi), i = 1, , n = n0 + n1} = 

{(xi, 0), i = 1, , n0} {(xi, 1), i = 1, , n1}, we would like to 
develop the assignment rules for future unknown objects using 
the explanatory vector x. In the case of binary classification, 
they could be viewed as methods to estimate the condition 
probability, 

    1| 1 0 | f x P y x P y x           (1) 

where x is any point in the 4-dimensional state space of the four 
covariates mentioned above. In this study, we used three types 
of classification models: neural networks, logistic regression, 
and classification and regression tree (CART) to predict cavity 
tree probability at the individual-tree level. The three models 
applied in the study are outlined in the following sections. De-
tailed descriptions of the general modeling techniques can be 
found in many textbooks (e.g., Ripley, 1996). 

Neural Networks (NN) 
There are many kinds of neural networks (see Hertz et al., 

1991 for an introduction), but in this paper we restrict ourselves 
to only supervised, feedforward, single-hidden-layer neural 
networks with a logistic output activation function. The esti-
mate of  f x  is 
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input layer, h hidden units at the middle hidden layer, and 1 
output unit at the output layer. Such networks are very general 
and we denote them by the notation 4-h-1 NN. It has been 
shown by many authors that, for sufficiently large h, any con-
tinuous real-valued function  f x  in the 4-dimensional space 
can be approximated by these 4-h-1 NN to any desirable degree 
of accuracy. The number of hidden units h is found by cross 
validation to prevent model overfitting. 

Logistic Regression (LG) 
The model is 

  
4
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1
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where  log log
1

z
it z

z



,  

and β’s are the parameters to be estimated via maximum like-
lihood (Myers, 1990). 

Classification and Regression Tree (CART) 
A classification and regression tree partitions the 4-dimen- 

sional space of explanatory variables into locally constant/ho- 
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mogeneous regions, often hypercubes parallel to the variable 
axes. There are many different schemes for estimating classifi-
cation trees. The basic idea is to recursively choose a variable 
or combination of variables and to split the variable’s space on 
a carefully chosen value. These schemes differ in allowing 
multi-way splits or restricting binary splits and in deciding how 
the best split is completed. Also, they differ in when to stop 
growing the tree and how to prune it back for generalization. 
The conditional probability ˆ ( )f x  is estimated to be the pro-
portion of y = 1 observations among those in the terminal node 
containing the prediction point x. We used the Splus tree classi-
fier which is based on the well-known Breiman’s CART (Bre-
iman et al., 1984). For a given training data set, we fit two 
kinds of trees: a full-grown tree with no pruning and a pruned 
classification tree obtained from the full-grown tree by snipping 
off the least important splits according to a cost-complexity 
factor (Venables & Ripley, 1994). 

Prediction Assessment for Individual Cavity Trees 

We measured the 10-fold cross validation error rate to assess 
both the single “best” model and the 50 Bagged models using 
the following five commonly accepted statistical criteria: Re-
ceiver Operating Characteristic (ROC) area, Misclassification 
Rate (MR), Mean Absolute Deviation (MAD), Root Mean 
Square Error (RMSE), and Kullback-Leibler (KL) Distance. 
The first two are measures of discrimination and the last three 
are measures of calibration. MR, MAD, and RMSE are widely 
used in regression analyses and readily interpretable in most 
applied research. We describe ROC area and KL distance be-
low. 

ROC Area 
In the binary case, let class 0 be termed negative outcomes 

and class 1 as positive outcomes. A new case is classified as 
positive if  f̂ x  is larger than or equal to a pre-chosen 
threshold value; otherwise, the case is classified as negative. An 
ROC curve is a plot of the true positive rate versus the false 
positive rate of a classification rule as the threshold value varies 
from 0 to 1. The true positive rate is defined as the number of 
positives correctly classified, divided by the total number of 
positives; the false positive rate is defined as the number of 
negatives incorrectly classified, divided by the total number of 
negatives. An ideal model would have an ROC area equal to 
1.0 (completely separable) since the true positive rate is 1 and 
the false positive rate is 0 regardless of the threshold value. By 
comparing ROC areas, dominance relationships between classi-
fiers can be defined. The dominance relationship is clear when 
the ROC curve from one model is always above the curve of 
another, and the two curves do not intersect. When they do 
intersect, one model is superior in some regions and another 
elsewhere. The area under the curve becomes an average col-
lective overall comparison between models. Accordingly, a 
model with a larger ROC area is better than a model with 
smaller ROC area.  

KL Distance 
KL distance measures the closeness between the observed yi 

given ix  and the predicted  ˆ
if x  for all i, via 
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     (4) 

The smallest distance is obviously 0 which happens 
when  ˆ ,i if x y i  . Discrimination and calibration are two 
related yet different measures. Although a model with good 
discrimination tends to have good calibration and vice versa, a 
model may appear to be strong in one measure but weak in the 
other. Harrell et al. (1996) recommended that good discrimina-
tion be preferred to good calibration since a model with good 
separability can always be recalibrated, but the rank orderings 
of probabilities cannot be changed to improve separation. 
Therefore, we used ROC as the guiding measure for model 
assessment.  

Predicting Cavity Tree Density (CTD) at Different 
Spatial Scales over Plot Size 

Spatial scale is a crucial factor in the prediction accuracy of 
CTD (Fan et al., 2005). In general, the prediction accuracy of 
mean cavity tree density increases with increasing area (e.g., 
increasing plot size or stand area), but managers faced with 
conservation decisions desire methods that provide a good bal-
ance between spatial resolution (finer is preferable) and predic-
tion accuracy (higher is preferable). To compare how the en-
semble of Bagged CART models differ from the single “best” 
CART model in predicting CTD at different spatial scales, we 
split the 648 plots into two groups: a construction set and a 
validation set, respectively. We used the construction set to 
build the single “best” CART model and a set of 50 Bagged 
CART models. Given cavity tree probability ( ip ) for the total 
number (ni) of trees (cavity trees and non-cavity trees) classi-
fied into terminal node i of the CART model specified by tree 
species, dbh, decay class and their threshold values, then the 
single “best” CART estimate of CTD for a forest area of size A 
(ha) can be predicted as the mean of all s terminal nodes as 
follows,  

  1ˆCTD #/ ha
A

s

i i
i

p n



           (5) 

with respect to the 50 Bagged CART models, CTD for the en-
semble of 50 models can be predicted as, 

 

50

1 1ˆCTD #/ ha  
50A

is

ij ij
i j

p n
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

         (6) 

where si is the number of terminal nodes for model i.  
We randomly merged the plots in the validation group to 

represent forest areas of increasing size, A, by groups of multi-
ple plots. We calculated the observed and the predicted CTD, 
respectively, corresponding to each size of A. We ran the 
merging process 100 times for the validation group by picking 
different starting plots and merging the remaining plots in a 
different order. We plotted relative error (predicted-observed)/ 
observed) against spatial scale, A, to visualize the effect of 
spatial scale on prediction accuracy, via the single “best” model 
and the ensemble of 50 Bagged models.  

Results 

At the individual tree level, logistic regression was superior 
among the “best” classification models, for it had larger ROC 
area but smaller KL distance than both neural network and 
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CART. Results for RMSE, MAD and MR did not differ greatly 
among the methods. Bagging improved prediction accuracy for 
neural network models, but the improvement was marginal for 
the CART model (Table 1 and Figure 1). The single “best” 
models and the ensembles of bagged models for each estima-
tion technique were more accurate than a mean (average) ref-
erence model determined by randomly assigning trees to classes. 
This indicates that chosen covariates (predictors) were, in fact, 
associated with cavity formation processes or causes and ap-
propriate for this study. 

models always outperformed the single “best” model at spa-
tial scales ranging from 1 to 70 ha, and particularly at small 
spatial scales (e.g., <10 ha). Although CART was not particu-
larly useful at the individual tree level to predict single cavity 
trees, the bagged CART ensemble was the best model to predict 
CTD on the landscape level. The difference in relative error 
between the single and bagged CART models remains statisti-
cally significant at 70 ha, the largest scale we examined, even 
though differences tend to decrease as the spatial scale in-
creases (Figures 2-4). 

Discussion 

The scarcity of cavity trees and their great spatial and tem-
poral variation present real challenges to managers interested in 
monitoring the cavity tree resource and to those who attempt to 
create models or tools to assist managers (Fan et al., 2003b; 
Eskelson et al., 2009). Cavity trees are difficult to be accurately 
observed from the ground (Jensen et al., 2002) and costly to 
inventory. Techniques to predict the dynamics and distribution 
of cavity trees as a function of known tree or forest characteris-
tics and environmental gradients are needed to improve the 
efficiency of conservation practices. There are practical limits 
to the spatial resolution of cavity tree models that can be ap-
plied to hardwood forests, even when models are based on ex-
ceptional data sets such as those created by the MOFEP ex-
periment.  
 
Table 1. 
Comparison of modeling methods for cavity tree probability. Models 
(rows) are neural network (NN), 50 Bagged neural network (NN.bagg), 
logistic (LG), classification and regression tree (CART), 50 Bagged 
CART (CART.bagg), and mean model (Average). Evaluation statistics 
(columns) are receiver operating characteristic (ROC area), misclassi-
fication rate (MR), mean absolute deviation (MAD), root mean square 
error (RMSE), and KL distance. The “Average” model uses the average 
y value to predict future new cases, i.e., it ignores the 4 covariates in the 
model building process. 

Model 
ROC 
area 

MR MAD RMSE 
KL 

distance

NN 0.730 0.0355 0.0532 0.174 1.759 

NN.bagg 0.856 0.0356 0.0511 0.172 0.118 

LG 0.859 0.0355 0.0580 0.172 0.117 

CART 0.713 0.0356 0.0618 0.176 0.132 

CART.bagg 0.733 0.0356 0.0621 0.175 0.130 

Average* 0.485 0.0356 0.0686 0.185 0.154 

We found logistic regression was most accurate with an ROC 
In this study we explored three commonly used classification 
models for binary data: neural network, logistic regression and 
CART and evaluated their prediction accuracy by five criteria. 
area of 0.859, CART was the least accurate with an ROC area 
of 0.713, and neural network was intermediate with an ROC 
area of 0.730. But none of the methods were able to account for 
the majority of variation of cavity tree occurrence and distribu-
tion at the individual-tree level.  

Small-scale statistical modeling approaches (e.g., based on 
individual tree, plot, or stand scales) are overwhelmed by the 
variation inherent in the cavity tree resource. Understanding the 
magnitude of this variability is essential to understanding cavity 
tree resource dynamics. It is virtually impossible to accurately 
predict whether or not an individual tree will be a cavity a tree 
or to accurately predict the number of cavity trees per acre for a 
given inventory plot or stand (Fan et al., 2003b). However, at 
large spatial scales (e.g. >30 ha), it is possible to derive esti-
mates of mean cavity tree abundance that are useful to manag-
ers (Fan et al. 2004b). Based on our findings for CART models 
(Figures 2 and 3), relative error of cavity tree estimates de-
creases sharply as the minimum area used in estimation in-
creases to 30 ha (i.e., as the model resolution decreases), and 
relative error continues to decrease as the minimum area in-
creases to 70 ha (the largest area and coarsest resolution we 
examined), which agrees with Fan et al. (2004a).  

Bagging to derive ensembles of equally likely models that 
“vote” on an outcome can improve the performance of neural 
network and CART models, but the ROC area of bagged neural 
network and CART models was still less than logistic regres-
sion (Table 1, Figure 1). Based on the other four criteria, the 
bagged and the single “best” models were nearly identical. 

It is important to develop appropriate statistical models that 
accurately quantify cavity tree distribution at sampling scales 
useful for managers (e.g., Lawler & Edwards, 2002). Consider-
ing the simplicity (summation as illustrated by Equations (5) 
and (6)) and applicability (trees are grouped into one of the 
limited number of groups explicitly specified by tree attributes) 
of three models in aggregation over scales, we found the CART 
to be especially amenable to predictions of CTD across a range 
of different spatial scales. 

The relative prediction errors exponentially decrease as spa-
tial scale increases for both the single “best” model and ensem-
bles of 50 bagged CART models (Figures 2 and 3). The asso-
ciation between relative error and spatial scale provides essen-
tial information for applying cavity tree models and interpreting 
results. Figures 2 and 3 describe the relationship between 
model resolution (i.e., for sampling areas up to 70 ha in size) 
and relative error. This provides an error-defined criteria for 
selecting a modeling and mapping resolution for large-scale 
cavity tree monitoring, mapping, and management. For high 
resolution spatial mapping, monitoring, and predicting cavity 
trees (e.g., pixel size < 30 ha), using the bagged models instead 
of the single CART model can improve prediction/mapping 
accuracy. But at lower resolution level (e.g., pixel size > 30 ha), 
the difference between the bagged and the single “best” esti-
mates gradually decreases. In this study, even at the largest 
spatial scale (70 ha) the bagged model is statistically different 
from the single “best” model, but at that large spatial scale the 
practical significance of those differences is not obvious. The- 
refore, for management applications the advantages of bagged 
ensembles of models appears to be limited to models and map- 
ping resolutions finer than 30 ha. 
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Figure 1.  
Receiver operating characteristic (ROC) area of logistic regression, neural network and 
CART in cavity tree probability prediction. 
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Figure 2. 
Change of relative errors with spatial scale (from 1 to 20 ha) for 
single and Bagged CART models for predicting cavity tree density. 

Figure 3. 
Change of relative errors with spatial scale (from 20 to 70 ha) for 
single and Bagged CART models for predicting cavity tree density. 



S. S. LEE, Z. F. FAN 

0.021 0.022 0.023 0.024 0.025

0.
02

1
0.

02
2

0.
02

3
0.

02
4

0.
02

5
Sampling Area is 70 ha

50 Bagged Model Relative Error

S
in

gl
e 

M
od

el
 R

el
at

iv
e 

E
rr

or

t test p-value < 10^-9

 
Figure 4. 
Scatter plot of relative errors of single and 50 Bagged models at a 
spatial scale of 70 ha. 

Conclusion 

This study constructs three classes of tree-level models to es-
timate probabilities of cavity presence: logistic regression, neu-
ral networks, and CART. The estimated probabilities are com-
bined with known tree counts within covariate classes to predict 
mean cavity tree density at different spatial scales, with or 
without bootstrap aggregation (bagging). Although logistic 
regression was the best model to predict cavity probabilities at 
the individual tree level, the bagged CART outperformed other 
models in predicting mean cavity tree density at the landscape 
scale (e.g., >10 ha). Prediction accuracy, measured in terms of 
relative error continues to decrease with spatial scale and the 
difference between the bagged CART ensemble and single 
CART model remains significant statistically at largest spatial 
scale (70 ha) tested in the study. This is largely due to the 
non-stationary nature of CART. In addition, the tree profile and 
explicit deposition of important covariates in a one-after-an- 
other manner of CART make it more useful for landscape level 
cavity tree mapping. 
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