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ABSTRACT 

Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great sci-
entific significance and has considerable value in its applications. To make mineral exploration less expensive, more 
efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and 
intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning 
(CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an 
intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, 
metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were 
performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The re-
sults show that the prediction accuracy of the CBR is higher than that of the WOE. 
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1. Introduction 

Mineral prospectivity analysis and quantitative resource 
estimation have been recognized as important when inte-
grating multi-source geology spatial data in recent years 
[1]. The statistical and mathematical approaches devel-
oped recently for multi-resources geological spatial data 
integration include weights-of-evidence (WOE) [2-8], 
and the logistic regression [9,10]. The fuzzy logic [11, 
12], artificial neural networks [13,14] and the Fractal 
method [15] have been applied in the assessment of min-
eral resources potential. Although these methods promote 
the efficiency and effectiveness of mineral resource 
prospecting, their algorithms are unable to accumulate 
knowledge, and lack intelligent reasoning. Meanwhile, 
similar deposit types occur in similar geological condi-
tions and spatial distributions. The metallogenic geo-
logical conditions and spatial distribution of discovered 
and typical deposits can be used to construct a historical 
case-base for mineral prospectivity analysis. Traditional 
analysis methods cannot mine the depth of information 
or make intelligent inferences. In recent years, some re-
searchers have begun applying case-based reasoning 
(CBR) to the environment, urban planning, and land use. 

Lekkas et al. [16] suggested using CBR to predict air 
pollution levels; Holt and Benwell [17] tried using CBR 
to classify soil; Ye et al. [18] integrated CBR and GIS for 
urban planning approval; and Du et al. [19] applied CBR 
for land use change prediction. CBR is a branch of artifi-
cial intelligence that began in the research of Schank and 
Abelson [20]. CBR does not require a precise domain 
model, and it solves new cases by using historical know- 
ledge. Its application is based on two assumptions about 
the objective world: (1) similar problems have similar 
solutions, and (2) similar problems may recur. CBR uses 
the principle of similarity to find strategies for new cases; 
it also offers a method that resembles the human prob-
lem-solving approach of extracting and storing expertise. 
From a methodological point of view, CBR proposes a 
comprehensive, problem-oriented approach to analysis 
that is more adaptable than rule-based and model-based 
reasoning. CBR is particularly suitable for areas in which 
it is difficult to summarize, abstract, and express exper-
tise; this makes CBR useful for solving ambiguous prob-
lems. CBR can do quantitative analysis and prediction 
without a careful mechanism study, and it has advantages 
in the simplification of knowledge acquisition, the im- 
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provement of efficiency and quality, and the accumula- 
tion of knowledge. Additionally, CBR and the identifica- 
tion process are highly automated and reusable. CBR is 
an effective method in cases in which prior knowledge is 
lacking or for constructing complex issues in quantitative 
models. 

In this paper, a method for mineral prospectivity map-
ping was proposed integrating multi-sources geology 
spatial data sets and case-based reasoning, including a 
metallogenic case representation model that combines 
spatial and attribute features, the metallogenic case-fea- 
ture weights-determining model, metallogenic case-based 
storage organisation, and a metallogenic case-similarity 
retrieval model. The experiment was performed in the 
eastern Kunlun Mountains, China to predict the existence 
of potential iron deposits using case-based reasoning and 
weights-of-evidence, respectively. 

2. Methodology 

The mineral prospectivity mapping method using case- 
based reasoning include three main components: a met- 
allogenic case representation model, metallogenic case 
storage, and a metallogenic case retrieval model. Figure 
1 describes the flow of mineral prospectivity mapping 
method using CBR. 

2.1. Metallogenic Case Representation Model 

Generally, a case in a traditional CBR model is com- 
posed of both attribute and goal features. Because of the 
spatial distribution and regional laws of geological enti- 
ties, the case representation is different from a traditional 
one. The features of a metallogenic case include both 
spatial and attribute features, which are selected or ex- 
tracted from metallogenic entities. 

During the construction of a metallogenic case repre- 
sentation model, each grid of a certain size is taken as a 
representative object. First, typical feature attributes re-
lated to ore control that are contained in vector grids of 
existing mineral points are extracted. Then, the corre- 
sponding names of mines in vector grids and relevant 

result values are determined. The extracted-features at- 
tribute, the corresponding names, and the relevant results 
are all described by the rules of case expression. To ex- 
tract spatial features, the orientation relations, the metric 
relations, and the topology relations related to ore control 
in each vector grid are extracted, and spatial relations are 
transformed to attribute mode. Therefore, a metallogenic 
case consists of general attributes and spatial-relation 
property items. The basic expression is as follows: 

 1 2 1 2, , , , , , ,a a ak s s smC A A A A A A Result     (1) 

where Aai is the general feature property item, Asj is the 
spatial-relation feature property item, and Result repre-
sents the result of the case. To solve a new case, existing 
cases can be extracted by spatial relations under certain 
rules (e.g., spatial coding). After that, candidates for a 
historical case set are obtained. 

2.2. Metallogenic Case Storage 

After a typical metallogenic case is constructed, it is 
stored in a spatial database in database tables or into 
document systems in a text file. The stored cases are then 
indexed to improve the efficiency of the metallogenic 
case-similarity retrieval model. 

2.3. Metallogenic Case Retrieval Model 

Because a metallogenic case has spatial features, it is 
different than a traditional CBR model. First, during the 
construction of a metallogenic case retrieval model, all 
vector grids are set as unsolved cases under the metal- 
logenic case representation model. In other words, each 
case describes typical attribute and spatial features, and 
the results description (i.e., the case-determining attribute) 
is set to blank. Second, a similarity-measure threshold is 
set, and each unsolved case is retrieved for similarity. 
After a similar case is found, its result is assigned to the 
unsolved case according to the threshold and the strategy 
given. If the case obtained is unsatisfactory, it can be 
modified by expertise. Its result can then be assigned to 
the unsolved case. The retrieval unsolved cases in all 
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Figure 1. The flow of mineral prospectivity mapping method using CBR. 
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vector grids are then completed. Third, the typical cases 
obtained or modified can be stored into the case base for 
expansion and update. 

After a metallogenic case base is constructed, the met- 
allogenic case retrieval model (Figure 2) can use it to 
compare existing metallogenic cases with new ones. The 
similarity measurement formulas for existing and new 
cases are as follows: 
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where “S%” is similarity ranged between 0% and 100%; 
“distance” is the weighted sum of the squares of “disti” 
ranged between 0 and 1; “searchedWeightsSum” is the 
sum of the weights, with the new case feature and the 
actual case feature both being non-empty; “totalWeig- 
htsSum” is the sum of the weights of all case features; 
“disti” is the distance between the new case feature and 
the actual case feature, in which the value is the smaller 
of either 1 or the Euclid distance between the new case 
feature and the actual case feature; “newCaseValue” is 
the new case feature value; “caseValue” is the actual case 
feature value; “maxValue” and “minValue” are the case 
corresponding feature’s maximum and minimum values; 
and “infinityConstant” is a large constant. 

To measure similarity, each new case is compared with 

all cases in the case base. The return value is based on 
the selection strategies of the maximum, threshold, or K 
nearest neighbors. If the value is unsatisfactory, it can be 
modified by the return value and relevant expertise. The 
typical cases obtained and the cases modified can be 
stored into the case base for expansion. 

3. Experiments 

To verify the effectiveness of the proposed method, the 
experiments of mineral potential prediction for iron de- 
posits were performed in the eastern Kunlun Mountains, 
using the metallogenic CBR model and the weights-of- 
evidence model, respectively. All of the data sets used in 
this paper were derived from our established multisource 
geology spatial database, which contains geological, 
geophysical, geochemical, and remote-sensing data. The 
metallogenic CBR model was implemented with C# based 
on ArcEngine GIS components. The weights-of-evidence 
model was performed with Arc-SDM [21]. 

3.1. Geological Setting of Study Area 

The eastern Kunlun Mountains are within Qinghai Prov- 
ince, China, and are shown as an insertion from left to 
right to the provincial map (Figure 3). The Mountains 
are within latitudes 34˚57′ and 37˚56′N, and longitudes 
90˚31′ and 100˚04′E. Of the study area, the eastern Kun- 
lun orogenic belt is attached to the southern margin of 
the Qaidam Basin. 

The area consists of three major deep crustal-scale faults 
that divide the area roughly from north to south into sub- 
tectonic belts (Figure 4). Kunbei (“Kun” is short for 
Kunlun. “bei” means north in Chinese) belt is in the north. 
It belongs to the Kunbei Caledonian back-arc basin situ-
ated mainly in the northwestern part of the Kunlun 
Mountains. The belt is made of early Palaeozoic folding 
belts dominated by the Ordovician marine sediments 

 

 

Figure 2. Metallogenic case similarity retrieval model. 
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Figure 3. Eastern Kunlun Mountains within Qinghai Province, China 
 

 
Note: Showing major lithologic units, stratigraphic units, and crustal-scale faults. The east Kunlun orogenic belt is subdivided into 
the Kunbei belt, and the Kunnan belt. 

Figure 4. A simplified geological map of the eastern Kunlun Mountains, China. 
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and low-grade metamorphic rock. Kunzhong (“zhong” is 
middle in Chinese) belt is the basement of an uplift belt 
and a granitic belt. It is made predominantly of the mid- 
dle to late Proterozoic metamorphic sequences, and Pa- 
laeozoic and Mesozoic granitic rock. The Devonian con- 
tinental sandstones, conglomerate, and volcanic rock, and 
Carboniferous marine limestone and sedimentary rock lie 
over the metamorphic and plutonic basement. The com- 
position of Kunnan (“nan” means south in Chinese) belt 
is geologically similar to that of the Kunzhong belt, but it 
consists of numerous Triassic successions. As of today, 
there are 81 known sites of iron formation within the area. 
Their locations are shown as black dots in Figure 3. 

Within the study area, regions exposed mainly by 
lithologic and stratigraphic units are displayed in Figure 
4. The Jinshuikou Group is the oldest crystalline base- 
ment that comprises gneiss, amphibolite rock, migmatite, 
and marble. It belongs to a suite of middle-to-high grade 
of metamorphic rock [22]. The Tanjianshan Group of the 
Ordovician-Cambrian period is composed of intermedi- 
ate-mafic volcanic rock, and phyllite crystalline limestone 
and sandstone. The Elashan Formation of the Triassic 
time consists basically of volcanic rock that is intermedi- 
ate-acid. The rock is with sandstone intercalation. The 
Wanbaogou Group of the New Mesoproterozoic period is 
subdivided into an upper unit and a lower one, compris- 
ing mainly carbonate rock and intermediate-mafic vol- 
canic rock. Both types of rock belong to the pre-Cambrian 
folding basement with a low-grade of metamorphism 
[23]. The volcanic rock and carbonaceous slate of the 
Wanbaogou Group serve as important ore beds of pre- 
cious metal (e.g., gold) and non-ferrous metals (copper, 
cobalt, and nickel) in the Kunnan belt [24]. The Nachitai 
Group of the Ordovician period consists largely of schist, 
mafic volcanic rock, chert, and crystalline limestone. The 
Maoniushan Formation of the Devonian time is com- 
posed of an intermediate-acid volcanic rock underlain by 
clastic rock. The Variscan-Indosinian granite is closely 
associated with the metalliferous mineralization in the 
region when the granite occurs extensively, diversely and 
permanently [25]. Known iron mineralization occurred 
mainly in the Yemaquan metallogenic belt located in the 
western part of the Mountains, whereas the Dulan-Elashan 
metallogenic belt lies in the east. 

3.2. Data Preprocessing and Metallogenic  
Case Construction 

The best ore-controlling variable and threshold were de- 
termined using proximity analysis of the weights-of- 
evidence model. On the basis of a correlation analysis 
among evidence variables, the authors selected vector 
ore-controlling data of stratum, unconformity, fault, re- 
gional geochemical data, remote-sensing mineralization 
information, Bouguer gravity data, aeromagnetic data, 

and mineral occurrence for this experiment. Before con- 
structing the specific metallogenic case, the region was 
partitioned into 96,576 grids, each one being 1 km by 1 
km. All of the evidence-variable data were spatially joined 
to a grid polygon, and each grid had corresponding fea-
ture-attribute values. The unconformity, fault, and min-
eral occurrences were buffered by with distances of 3000 
m, 300 m, and 1000 m, respectively. 

To extract the spatial features of the metallogenic case, 
the fault’s direction (orientation relationship), the short- 
est distance between mineral occurrence and faults (met- 
ric relationship), the disjoint relationship between min- 
eral occurrence and faults, and the unconformities (to- 
pology relationship) were computed and extracted in 
each grid polygon. The spatial relationships were then 
transformed into attributes and stored in the attribute 
tables of each grid polygon. This process paved the way 
for metallogenic case retrieval. In this way, the metal- 
logenic representation model combined with spatial and 
attribute features was constructed. Each grid polygon 
became a case representation object. By analyzing each 
grid layer’s attribute table in tandem with ore-controlling 
factors, the authors established the metallogenic case’s 
attribute features by using lithological characters, chro- 
nostratigraphy, unconformity, fault, regional chemical ano- 
maly, remote-sensing mineralisation anomaly, Bouguer 
gravity anomaly, and aeromagnetic anomaly. In this way, 
specific genetic types became object attributes. The met- 
allogenic case representation model in this research is as 
follows: 

C = (unconformity, regional geochemical anomaly, 
Bouguer gravity anomaly, aeromagnetic anomaly, chro- 
nostratigraphy, lithological characters, remote-sensing 
mineralisation anomaly, fault characters, fault directions, 
short distance to fault, distance to unconformity, disjoint 
fault, disjoint unconformity, genetic type). 

Prior to analysis, the attribute and spatial features of 
the above case are set corresponding weights, which are 
determined and assigned based on the Analytic Hierarchy 
Process (AHP) [26]. On the basis of expert knowledge, 
the importance of AHP case features is as follows: re- 
gional geochemical anomaly > fault directions > short 
distance to fault = disjoint fault > fault characters = re-
mote-sensing mineralisation anomaly > chronostratigra-
phy = lithological characters > distance to unconformity 
= disjoint unconformity > unconformity characters = 
Bouguer gravity anomaly = aeromagnetic anomaly. Ta-
ble 1 shows the comparison matrix of metallogenic CBR 
features by AHP. The matrix is equalised and simplified 
to seven features. After calculating, uniformity has been 
passed and each feature weight determined; identical, 
important features have the same weights (Table 2). 

To grid the polygonal layers that are overlapped by at-
tribute and spatial features, the authors analysed each grid 
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Table 1. The CBR features comparison matrix by AHP. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

B1 1 1/7 1 1 1/3 1/3 1/4 1/4 1/6 1/5 ½ 1/5 1/2 

B2  1 7 7 7/3 7/3 7/4 7/4 7/6 7/5 7/2 7/5 7/2 

B3   1 1 1/3 1/3 1/4 1/4 1/6 1/5 ½ 1/5 1/2 

B4    1 1/3 1/3 1/4 1/4 1/6 1/5 ½ 1/5 1/2 

B5     1 1 3/4 3/4 3/6 3/5 3/2 3/5 3/2 

B6      1 3/4 3/4 3/6 3/5 3/2 3/5 3/2 

B7       1 1 4/6 4/5 4/2 4/5 4/2 

B8        1 4/6 4/5 4/2 4/5 4/2 

B9         1 6/5 6/2 6/5 6/2 

B10          1 5/2 1 5/2 

B11           1 2/5 1 

B12            1 5/2 

B13             1 

B1: unconformity; B2: regional geochemical anomaly; B3: Bouguer gravity anomaly; B4: aeromagnetic anomaly; B5: chronostratigraphy; B6: lithological 
characters; B7: remote-sensing mineralisation anomaly; B8: fault characters; B9: fault directions; B10: short distance to fault; B11: distance to unconformity; 
B12:disjoint fault; B13:disjoint unconformity. 
 

Table 2. The CBR equivalent property features comparison matrix and weights determined by AHP. 

 B1 B2 B3 B4 B5 B6 B7 Weights 

B1 1 7 7/3 7/4 7/6 7/5 7/2 0.250 

B2  1 1/3 ¼ 1/6 1/5 1/2 0.036 

B3   1 ¾ 3/6 3/5 3/2 0.107 

B4    1 4/6 4/5 4/2 0.143 

B5     1 6/5 6/2 0.214 

B6      1 5/2 0.179 

B7       1 0.071 

B1: regional geochemical anomaly; B2: Bouguer anomaly; B3: chronostratigraphy; B4: remote-sensing mineralization anomaly; B5: fault directions; B6: short 
distance to fault; B7: distance to unconformity. 
 
layer’s attribute table, selected all the records in which 
the field showing the genetic type of mineral occurrence 
was non-empty, and exported those records for further 
analysis. The final records were stored in a text file in 
which all attribute values were separated by tabs. The 
corresponding genetic type case base was then con- 
structed. The attribute tables of relevant grid polygon 
layers were exported and stored in a text file, and each 
unsolved case set was constructed (each grid represents 
an unsolved case object). Each grid in the polygon layers 
corresponds to an unsolved metallogenic case. After a 
similarity measurement, each grid was assigned a genetic 
type, and the similarities were assigned values between 0 
and 100%. In this way, the classification strategy auto- 
matically outlined a regional metallogenic prediction map 
showing high, medium, and low potentials. 

3.3. Mineral Potential Prediction Results and 
Analysis 

Based on the data-processing and metallogenic CBR model 

described above, an experiment regarding mineral poten-
tial prediction for iron deposits was performed in the 
eastern Kunlun Mountains, China. Figure 5 reports, re-
spectively, the curves representing the relationships be-
tween (1) posterior probability based on the WOE and 
cumulative mineral occurrence, and (2) posterior prob-
ability and cumulative areas. Table 3 and Figure 6 shows 
the favorable metallogenic potential regions (i.e., areas of 
high and medium potential) extracted using weights-of- 
evidence model. High- and medium-potential areas oc-
cupy 21% of the study area and contain 62 points of 81 
known deposit points (i.e., 77% of known deposit points). 
High-potential areas occupy 11% of the total area and 
include 45 known deposit points (i.e., 56% of known de- 
posit points). Medium-potential areas occupy 10% of the 
total area and include 17 known deposit points (i.e., 21% 
of known deposit points). 

Table 3 and Figure 7 presents the potential prediction 
results for iron deposits using the proposed metallogenic 
CBR method. Favorable metallogenic regions (i.e., high- 
and medium-potential areas) account for 21% of the 
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Table 3. The contrast of prediction results using CBR and WOE. 

Method 
high potential 

(number, percent) 
medium-potential 
(number, percent) 

low-potential 
(number, percent) 

WOE 45, 56% 17, 21% 19, 23% 

CBR 68, 84% 5, 6% 8, 10% 

 

 

Figure 5. Variation of cumulative area with sum of weights and cumulative deposits using WOE. 
 

 

Figure 6. Potential prediction map for iron deposits using WOE in eastern Kunlun Moutains, China. 
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Figure 7. Potential prediction map for iron deposits using CBR in eastern Kunlun Mountains, China. 
 
study area, with high-potential areas accounting for 10% 
of the total area and the medium-potential areas accounting 
for 11% of the total area. The prediction results show that 
known mineral occurrence is highly consistent with the 
high-potential areas, as analysis predicts that 68 of 81 
known mineral occurrences fall into the high-potential 
areas (84%), 5 fall into the medium-potential areas (6%), 
and 8 fall into the low-potential areas (10%). Overall 
prediction accuracy (high- and medium-potential areas 
account for 90%) is significantly higher than the accu-
racy of the traditional weights-of-evidence model (i.e., 
77%). 

4. Conclusion 

The metallogenic CBR method for regional mineral pros- 
pectivity mapping is a new and intelligent prediction 
method. It makes full use of multisource massive geol- 
ogy spatial data. It also surpasses traditional mineral- 
prediction approaches to improve the intelligence, effi- 
ciency, and accuracy of mineral prediction. This paper takes 
spatial features of geology data into account and proposes 
an integral metallogenic CBR method, which includes 
the metallogenic case representation model, metallogenic 
case storage, and the metallogenic case similarity retrieval 
model. Finally, an application of mineral potential pre- 
diction for iron deposits was performed in the eastern 
Kunlun Mountains, China, using a metallogenic CBR and 
WOE, respectively. The results indicated that the predic-
tion accuracy of the metallogenic CBR is significantly 
higher than the accuracy of the traditional weights-of-evi- 
dence model. 
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