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Abstract. Within a broader context of mobile and embedded computing, the design of prac-
tical, secure tokens that can store and/or process security-critical information remains an
ongoing challenge. One aspect of this challenge is the threat of information leakage through
side-channel attacks, which is exacerbated by any resource constraints. Although any coun-
termeasure can be of value, it seems clear that approaches providing robust guarantees are
most attractive. Along these lines, this paper extends previous work on use of Yao circuits
via two contributions. First, we show how careful analysis can fix the maximum number of
traces acquired during a DPA attack, effectively bounding leakage from a Yao-based token:
for a low enough bound, the token can therefore be secured via conventional (potentially less
robust) countermeasures. To achieve this we use modularised Yao circuits, which also sup-
port our second contribution: the first Yao-based implementation of a secure authentication
payload, namely HMAC based on SHA-256.

Note: The primary version of this paper will be published in the proceedings for the Workshop
in Information Security Theory and Practice (WISTP) 2013.

1 Introduction

A vast range of challenges and opportunities has emerged as a result of the (ongoing) prolifera-
tion of mobile and embedded computing. On one hand, an increase in computational and storage
capability has enabled more complex application classes on which we now routinely and funda-
mentally depend. On the other hand, various supporting technologies and techniques need to keep
pace with such developments. We consider a motivating example within this context, namely the
establishment of a secure communication channel between some token and another party. Although
we limit our remit to tokens that are more capable than a (basic) smart-card (e.g., a mobile tele-
phone or USB token, with concrete examplars including the IBM ZTIC3), the secure, efficient
implementation of such a device is clearly of central importance.

Although well studied cryptographic techniques can satisfy varied requirements at a high level,
a diverse and expanding attack landscape means real-world security guarantees are still difficult
to achieve: the field of physical security in particular, including both active fault injection and
passive side-channel attacks, represents a central concern. Following an optional calibration phase,
a typical side-channel attack consists of an acquisition phase wherein monitoring by the attacker
yields profiles of execution, then an analysis phase that recovers a security-critical target value
(e.g., cryptographic key material) from the profiles. Although practical bounds on the number of
profiles collected or processed may exist (e.g., a limit on the duration of physical access), attacker
capability in this respect scales over time (e.g., with Moore’s law); ideally this should be catered
for by any countermeasure.

Our focus is the threat of side-channel attacks such as Simple (SPA) and Differential Power
Analysis (DPA) [11], including variations thereof; attacks based on electro-magnetic emission (stem-
ming from power consumption) fall into this category. We cater for timing side-channels, but ex-
plicitly deem (semi-)invasive or active attacks as outside the scope of this paper. In our scenario,

3 http://www.zurich.ibm.com/ztic/



profiles acquired take the form of traces that describe power consumption by the token. Devel-
opment of approaches to prevent attacks of this sort is an active field of research. One broad
class aims to produce an implementation of some primitive, then secure it by applying (typically
attack-specific) countermeasures at an algorithmic, software and hardware level (or combinations
thereof). Selected examples include schemes for hiding [18, Chapter 7] and masking [18, Chapter
10] input and/or intermediate values. An alternative class aims to formulate then implement a
primitive which is secure-by-design. Following a philosophy that says security should be treated
as a first-class goal [10, 26], alongside efficiency for example, this is an attractive direction in that
(more) robust guarantees can be provided. However, as the emerging field of leakage-resilient prim-
itives (see [28] for example) illustrates, difficulties remain. For instance, any such guarantees hinge
on accurate modelling of the underlying platform (i.e., the token). Most importantly still, leakage-
resilient cryptography has focused on assuring security provided leakage entropy remains below a
certain bound; unfortunately, no practical means of (provably) satisfying such a bound is currently
available.

This paper extends work on Yao circuits [32, 33, 17, 1, 6, 7, 16], especially their implementation
on tokens [9, 8] as a means of performing leakage-resilient computation within the motivating sce-
nario above. In our work the focus is practicality: to reduce manufacturing and verification cost, we
aim to keep the entire architecture as simple as possible. Careful analysis of said architecture places
a bound τ on the number of useful traces (resp. amount of leakage) an attacker can acquire. This
forces an attacker to focus on development of more effective attacks rather than simply using more
traces to cope with the signal-to-noise ratio; when combined with conventional countermeasures,
it potentially renders such attacks moot. One can view this process as playing a similar role to
key refresh [21, 20], but without the need for synchronization. In addition, we add the first secure
authentication payload, HMAC [23], to the list of applications implemented as Yao circuits. Both
contributions hinge on the use of modular circuit templates, held by the token, to form fresh Yao
circuits (meaning circuit generation can cater for run-time parameters such as message length).
The overall result is leakage-bounded implementations of both AES-128 and HMAC.

2 Background

An important aspect of formalising the ability of a side-channel attack(er) is the selection of a
model that describes the form of leakage from a token (and thus exploitable by the attacker). The
model proposed by Standaert et al. [27] can be directly applied to our scenario with just one minor
modification. In said model, adversarial success depends, among other factors, on the number of
oracle queries allowed per primitive independent of updates to secret values (e.g., use of key refresh
schemes). We therefore replace the number of oracle queries with the number of observable leakage
occurrences per secret value.

As an aside, we stress that all known leakage models implicitly focus on cryptographic primitives
and subsume the system dimension into the device leakage function. While the step from a leakage-
resilient primitive to a leakage-resilient system is trivial in a model, it represents a significant
practical obstacle. If other (hardware or software) system components are badly, designed the
system leaks despite the leakage-resilience of a particular cryptographic primitive. As such, we
emphasise that all practically relevant countermeasures, have to be composable: it must be possible
to compose a given countermeasure with other countermeasures for different leakage types and
countermeasures for different components; we will show that our countermeasure composes easily
with memory protection countermeasures.

2.1 Yao circuits at a high level

Consider some functionality f . A concrete implementation of f as a standard Boolean circuit,
say Bf , can be evaluated using an input x to give an output r = Bf (x). One can specialise the
implementation wrt. some fixed input; we use Bfx to denote such an implementation, and retain a
similar form for evaluation r = Bfx(·). At a high level, Yao circuits can be described in a similar
manner: they simply represent a non-standard implementation of f , say Y f , which allows the
associated evaluation to be secure.
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Agree f
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Fig. 1. A high-level, generic description of Yao circuit generation and evaluation. Note that all inputs and
outputs are implicitly defined wrt. f , and that depending on the scenario a) one or more of f , mG and mE
could alternatively be provided as input to the protocol, and b) subsequent use of r could be included.

Use of a given Yao circuit can be described formally as a secure two-party computation protocol.
The parties involved are a circuit generator G who (given f and x) produces Y fx , and a circuit
evaluator E who (given Y fx ) computes r = Y fx (·); both are illustrated in Figure 1. We use Yao
circuits to shift the side-channel attack surface away from an individual cryptographic primitive
f , and onto the task of generating a Yao circuit Y f[mG ,mE ] (where we can give strong bounds on

leakage). This differs from the original usage as a two-party computation protocol. For example,
we do not need oblivious transfer to communicate the circuit inputs mE ,mG , and the token G is
trusted so may learn the inputs from E . Note that in theory G could evaluate Y f[mG ,mE ] as well as

generating it, but we deem it more economic in most cases to let E do the evaluation.
Imagine gk refers to some k-th truth table wlog. describing a 2-input, 1-output Boolean function

(e.g., AND, OR) or gate instance within Bf . Both the inputs to and outputs from said gate are
provided on wires indexed using a unique wire identifier (or wire ID): we write mi for the value
carried by the i-th such wire, with the wire ID therefore being i. Note that the output wire ID can
act to identify a given gate instance (i.e., acts as a gate ID). Figure 2a is a trivial starting point
outlining how such a gate can be evaluated.

Yao circuits are constructed by taking each Boolean gate instance in Bf , then forming a cor-
responding “garbled” Yao gate instance in Y f . Both inputs to and outputs from the Yao gate are
altered to mask their underlying value: this means each underlying value on mi is replaced by ci,
an encryption of the former. Given Encx(y) denotes the encryption of y under the key x using
some symmetric cipher (with a κ-bit key and β-bit block size), Figure 2b illustrates a Yao gate
corresponding to the above. Note that
– the public ci and cj inputs (whose secret underlying values are mi and mj) are provided on

wires with public indices i and j,
– the public ck output (whose secret underlying value is mk) is provided on a wire with public

index k,
– the standard gate functionality is gk, and
– πi, πj and πk act as secret permutation bits on the rows of the truth table.

During evaluation of the gate, E gets ci and cj meaning it cannot recover the underlying values
of mi and mj since it does not know πi and πj . However, ci and cj index one entry of the truth
table and allow only this entry to be decrypted (since they determine the associated cipher key)
and yield ck. The central idea is that a Yao gate reveal nothing about a) the gate functionality nor
b) underlying values, iff. it is evaluated at most once.

2.2 Abstract realisation of Yao circuits

Wire labels The illustrative example above has a major shortcoming: the effective cipher key
size is just two bits (since all wire IDs are public), meaning the key is inherently susceptible to
exhaustive search. To combat this, given a security parameter λ one replaces the Boolean value
communicated on each wire with a randomised λ-bit wire label. Let

wcii = ρi ‖ (mi ⊕ πi) = ρi ‖ ci (1)
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0 0 mk = gk(mi,mj)
0 1 mk = gk(mi,mj)
1 0 mk = gk(mi,mj)
1 1 mk = gk(mi,mj)
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(a) An example Boolean gate.

ci = mi ⊕ πi cj = mj ⊕ πj
0 0 Enc[0,0,k](ck = gk(mi,mj)⊕ πk)
0 1 Enc[0,1,k](ck = gk(mi,mj)⊕ πk)
1 0 Enc[1,0,k](ck = gk(mi,mj)⊕ πk)
1 1 Enc[1,1,k](ck = gk(mi,mj)⊕ πk)

ci

cj

ck

(b) An illustrative example of the corresponding Yao gate.

ci = mi ⊕ πi cj = mj ⊕ πj
0 1 Enc[w0
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(c) The corresponding Yao gate with wire labelling and Garbled Row Reduction (GRR) [22]
applied (noting that each ci forms part of the associated wi per Equation 1).

Fig. 2. A step-by-step comparison of a 2-input, 1-output Boolean gate (whose function is described by gk),
and the associated Yao gate construction before and after optimisation.

denote the i-th such wire label in the general case where mi ⊕ πi = ci for ci ∈ {0, 1}, ρi
$← Zλ−12

and πi
$← Z2. Note that the combination of ρi and πi could be viewed as a λ-bit ephemeral key,

implying κ = 2λ + ε where ε is the number of bits used to encode wire IDs, and that Equation 1
caters for two optimisations outlined below.

The Garbled Row Reduction (GRR) optimisation The GRR trick was introduced by Naor
et al. [22]. In short, by carefully selecting

wckk = w
g(mi,mj)⊕πk

k = Enc[w0
i ,w

0
j ,k]

(γ) (2)

for ci = cj = 0 and a suitable public constant γ, the first truth table entry can be eliminated (as
illustrated by Figure 2c). This is attractive since it permits up to a 25% reduction in communication
of the Yao circuit from G to E , plus reduces the amount of storage required.

The “free XOR” optimisation There is no need for explicit inclusion of NOT gates in a Yao
circuit, since their influence can simply be folded into any Yao gate which would normally use the
associated output. Similarly, Kolesnikov and Schneider [12] describe a further optimisation which
realises XOR gates (almost) for free. Given a global (i.e., one for each instance of Y f ), secret
constant ∆ ∈ Zλ−12 they select w1

i as in Equation 1, then define

w0
i = w1

i ⊕ (∆ ‖ 1) = (ρi ⊕∆) ‖ (πi ⊕ (mi ⊕ 1)) (3)

to allow computation of XOR gates via the relationships

w0
i ⊕ w1

i = w1
i ⊕ (∆ ‖ 1)⊕ w1

j = w1
i ⊕ w0

j = w1
k

w0
i ⊕ w0

i = w1
i ⊕ (∆ ‖ 1)⊕ w1

j ⊕ (∆ ‖ 1) = w1
i ⊕ w1

j = w0
k = w1

k ⊕ (∆ ‖ 1)



2.3 Token implementations of Yao circuits

As far as cryptographic primitives are concerned, previous work (with the exception of [13]) focus
on use of AES-128 as the functionality f . Other functionalities considered relate to higher level
applications, e.g., database search [6, 16] or bioinformatics [7], rather than tasks required of a cryp-
tographic token. Pinkas et al. [24] provide the first feasibility results (using software) of Yao-based
constructions; since they relate more directly to the chosen scenario, we detail work by Järvinen
et al. [9, 8] below which both implement Yao circuits on tokens but do not use modularisation.

Secure computation via One-Time Programs (OTPs) In this work, Järvinen et al. [9]
consider a scenario wherein E is a hardware token, and G is a trusted party during a setup stage.
The idea is that G as token issuer stores One-Time Memories (OTMs) for a fixed number x of
OTPs represented by Y f on the token. At run-time, the token owner uses one set of OTMs to form
the input labels corresponding to his data, and the token evaluates the Yao circuit before finally
releasing the result.

The advantage of this scenario is that very little protection against side-channel attacks is
required. However, the major disadvantage is the limited number of Yao circuits: a real-life scenario
where the token is a credit card rendered unusable after some number of uses make this problematic.
In addition, a generic framework without this disadvantage is given at the cost of loosing the
leakage-resilient circuit generation. Our work can be seen as a leakage-resilient, more flexible version
of the framework.

Secure computation via out-sourcing In this work, Järvinen et al. [8] consider a scenario
wherein E is a cloud computing provider; the role of G is split between a secure hardware token GS
and some other party GU (e.g., a desktop workstation). The idea is for GU to generate Bf , which
is passed to GS and translated (securely) into Y f . The Y f can then be evaluated by E , with the
overall effect of securely out-sourcing computation from GU to E .

This scenario is advantageous in the sense it allows a flexible choice of f (wrt. the token) and
is very speed- and memory-efficient. However, it has a relatively high hardware requirement: in
addition to the SHA-256 core it requires at least one AES-128 core, [8] uses two, which all have to
be free from leakage.

3 Supporting alterations to traditional Yao circuits

To support our design in Section 4, we first outline two supporting concepts: detail relating to
their realisation and utility is deferred until later. While neither represents a significant change
to underlying theory, we posit that both significantly ease the practical task of constructing and
using Yao circuits.

3.1 Circuit modularisation

Existing limitations Consider a typical iterative block cipher design, with s rounds in total
(e.g, AES-128 with s = 10). The functionality for round i is described by fi, which implemented
as a Boolean circuit is Bfi . The s different round functionalities can be the same or different as
required, with the overall cipher thus described by the functionality

f = fs−1 ◦ · · · ◦ f1 ◦ f0.

One can implement this either combinatorially, whereby instances of each Bfi are “unrolled” to
form the resulting circuit, or iteratively, whereby instances of each unique Bfi are “looped over”
in steps under control of some auxiliary logic. Put another way, the former roughly describes
the monolithic circuit whereas the latter describes iterated application with a need for only one
circuit instance and some control logic. Traditional Yao circuits must adopt the former approach:
no sequential elements (e.g., latches, clock signals) allowed because each gate can be evaluated at
most once (to ensure security). One cannot reuse the resulting Yao circuit unless rerandomisable
constructions [5] are considered; typically these incur a prohibitive overhead.
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Fig. 3. A high-level illustration of Yao circuit modularisation: on the right the traditional (e.g., [17, 1, 9,
8]) monolithic scenario, on the left the modular alternative.

One impact of this restriction is that previous work almost exclusively focuses on AES-128 (as
far as cryptographic primitives are concerned) which a) has a fixed s and can hence be unrolled, and
b) has a fairly compact hardware implementation. We know of only one implementation of another
cryptographic primitive [13], wherein an (insecure) implementation of 256-bit RSA is described.
Even with such small operands, the resulting Yao circuit is ≈ 8500 times larger than their AES-128
circuit, in part as a result of the requirement to unroll the loop representing a binary, modular
exponentiation.

Modularised Yao circuits To address this issue, we make use of modular Yao circuits. Similar
concepts have been used recently4 in [7, 16] to achieve efficiency gains for large circuits, but only
[16] mentions the possibility of using run-time parameters to control circuit assembly.

The concept is illustrated by Figure 3. Traditionally (right) each monolithic Boolean circuit
(internally composed of one or more modules, i.e., each Bfi) must be translated into the corre-
sponding Yao circuit by G each time the latter needs to be evaluated. In our alternative (left),
G holds a static set of Boolean circuit templates which are instantiated at run-time to form an
evaluatable Yao circuit. The main advantage of doing so is that G holds only the description of
each template Bfi (and associated meta-data), instantiating them to form Y f without holding the
entirety of the corresponding (potentially large) Bf . Generation of the corresponding Y f can be
streamed in that G communicates one part at a time to E .

In short, this technique permits a quasi-loop: given s at run-time (rather than being fixed), the
token approximates an iterative approach in that one circuit template can be unrolled, at run-time,
to form the resulting Yao circuit. The resulting reduction in resource requirement and increased
flexibility allows us to implement HMAC.

3.2 Updating ∆ between template instances

In previous work [24, 9, 8] where the free XOR trick [12] is used, the authors argue that for cor-
rectness ∆ must remain constant within a given Yao circuit. Indeed, if an XOR gate is evaluated
using different constants ∆1 and ∆2, the result is incorrect as

w0
i ⊕ w1

j = (w1
i ⊕ (∆1 ‖ 1))⊕ w1

j 6= w1
i ⊕ (w1

j ⊕ (∆2 ‖ 1)) = w1
i ⊕ w0

j

w0
i ⊕ w0

j = (w1
i ⊕ (∆1 ‖ 1))⊕ (w1

j ⊕ (∆2 ‖ 1)) 6= w1
i ⊕ w1

j

4 A year earlier, [6] proposed a different kind of modularity, namely mixing Yao circuits and homomorphic
operations. The cost associated with additional hardware required to support homomorphic operations
means we do not adopt this approach.
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Fig. 4. An example of updating ∆ between two template instances, with the heavy dashed line denoting
the boundary between use of ∆t and ∆t+1.

shows. Despite this, a crucial observation is that ∆ can be changed if said change is applied
consistently. Although doing so has no functional benefit, we use it to directly formulate a leakage
bound within Section 5.

In some modularised Yao circuit, imagine the t-th template instance uses ∆t. The next, (t+1)-
th instance can then use ∆t+1 (as illustrated by Figure 4) iff. each connecting wire is updated
appropriately. The simplest approach is to consider a dedicated 1-input, 1-output update gate
with the identity functionality, i.e., gk(x) = x. Given

wckk = wmi⊕πk

k = Enc[w0
i ,w

0
i ,k]

(γ)

by definition, and that mi = mk since the gate updates ∆ rather than change the underlying input
value, Equation 2 means the associated wire labels are

w0
i = w1

i ⊕ ( ∆t ‖ 1 )
w0
k = w1

k ⊕ ( ∆t+1 ‖ 1 )

However, this suggests that any non-XOR gate can be used to perform the update without cost:
the existing GRR-optimised Yao gate truth table only needs to have ∆t+1 folded into the label

w
gk(mi,mj)⊕πk

k instead of ∆t where appropriate. Selecting between the approaches is essentially a
trade-off, governed in part by circuit structure: use of dedicated update gates incurs more overhead,
but can be avoided iff. existing gates that generate the output from an instance are non-XOR.

4 Token design

We consider a scenario wherein G is a hardware token that needs to be secured against SPA and
DPA attacks, and E is some other party to which computation is outsourced. The idea is to put
a bound on the number of times secret values are used for any computation and leakage can be
observed before the value – akin to key refresh – is updated. The known, residual leakage can then
be accommodated by careful use of conventional countermeasures.

To do so, G holds a fixed set (limited only by memory) of circuit templates constituting Bf ,
which can be locally translated into a fresh Y f subsequently evaluated by E . This scenario is less
flexible in terms of choice of f than [8], however the goal is to weaken both the token a) security
and b) resource requirements, and hence produce a more practical result.

4.1 Cipher construction

To instantiate the symmetric cipher required to encrypt wire labels, we follow existing work [24,
8, 9] by using a one-time pad like construction

Enc
[w

ci
i ,w

cj
j ,k]

(wckk ) = SHA-256(wcii ‖ w
cj
j ‖ k)⊕ wckk



where the SHA-256 output is implicitly truncated to λ bits to match the wire label size. We reuse
SHA-256 as a secure Pseudo-Random Number Generator (PRNG), splitting the SHA-256 into two
128-bit values

[x, y]← SHA-256(seedt−1)
seedt ← seedt−1 ⊕ y
rand← x

so x = rand is used as a wire label for example, while y is used exclusively to update the seed.
Note SHA-256 is therefore the only significant cryptographic core required by the token. This
construction is certainly secure if the PRNG is modelled as a random oracle which is a weaker
model than the one we have for our Yao circuits. Intuitively however, some form of correlation
robustness should be sufficient. Research on the correlation robustness of hash functions is still
developing, see [12, 3] for example, and therefore we defer the exact security requirements to future
work.

4.2 Describing circuit templates and functionalities

We use a VHDL5 dialect and associated compiler, both of our own design, to describe structural
and behavioural circuit templates. There are two major differences between our VHDL dialect and
standard VHDL, namely
– we disallow concurrency since Yao circuits are strictly sequential, and
– we adapt the syntax of generate statements to allow run-time data, such as the number of

message blocks, to determine the number of loop iterations.
To deploy a token, each VHDL entity in some input description is translated into a circuit template
Bfi and then stored in the token memory; a range of semantic checks are applied. Appendix A
houses annotated examples of input, which expand on the description of functionalities using our
VHDL dialect.

For each functionality composed of these templates, the token memory holds additional meta-
data pointing to the corresponding top-level entity and the input data mG . The functionality
itself resembles a tree with the root node represented by the top-level entity, internal nodes by
structural Bfi entities, and leaf nodes by behavioural Bfi entities. In order to reconstruct (or
unroll) the functionality, the token processes this tree in depth-first order by unrolling child nodes
in the sequence specified by the VHDL input.

4.3 Operational protocol and token architecture

The communication between the token G and the evaluator E is shown in Figure 5. E can, for
example, be a local untrusted work station or an untrusted but more powerful chip within a mobile
phone; in most cases it will not be the authentication partner. We assume a physical connection
between the parties, and hence focus on optimising their workload rather than the number of
communication rounds.

Initially, in step 0, E requests a functionality f (e.g., HMAC or AES-128) and both parties need
to have (or generate) corresponding inputs mG and mE . Step 1, from a theoretic perspective, is
the same as the monolithic communication in Figure 1 despite now supporting the modularised
approach. Specifically, G generates the Yao circuit Y f based on the circuit templates Bfi and sends
it step-by-step to be evaluated. Note that modularisation forces three important checks:
1. step 1d checks if all input values (from both mG and mE) have been used,
2. step 1e checks if all gates have evaluated, and
3. step 4 checks if all output values (specified by E) are valid, i.e., if woj ∈ {w0

oj , w
1
oj} for each oj .

When a check condition can not be satisfied the token aborts immediately, meaning in particular
that it does not reach step 5 where the result r = f(mG ,mE) = Y f[mG ,mE ] is revealed, and that seed

values of the PRNG are not accidentally reused.

5 Previous work has used domain-specific languages (e.g. SFDL [17, 1]) to implement the payloads. While
this may ease implementation, it reduces control over the actual circuit layout. Standard Hardware De-
scription Languages (HDLs) are, in fact, well suited to payload description: they simply lack the protocol
aspect of Yao circuits. Therefore we aim to reap benefits of familiarity, design and code portability, and
control by harnessing VHDL instead.



Step G E

0a)

0b) Select mG Select mE

while true

1a)

1b) Generate Y fi[mG ,mE ]

1c) Evaluate Y fi[mG ,mE ]
(·)

1d) Check all data processed

1e) Check all gates processed

end while

2) Request wire labels

3) Send wire labels

4) Check all wire labels valid

5) Optional: Reveal result

Agree f

mEl·i , . . . ,mEl·(i+1)−1

Y fi[mG ,mE ]

o0, o1, . . .

wo0 , wo1 , . . .

r

Fig. 5. The two-party computation protocol reflecting circuit modularisation. Note that E does not com-
municate mE in one block, but rather in multiple l-bit blocks. Output wires of the Yao circuit (i.e. the
wires carrying results from the functionality) have wire IDs o0, o1, . . ..

Example 1: HMAC. Despite the invulnerability of SHA-256 itself to side-channel attacks (due to
the absence of a security-critical target value), it is well known that MAC constructions based on
hash functions are vulnerable; see e.g. [14, 19] which use DPA successfully against HMAC and [4] for
traditional protections of HMAC. In this example, we use the flexibility afforded by modularisation
to allow for messages of arbitrary length. The functionality for HMAC is modelled by

r = SHA-256
(

(auth⊕ pad2) ‖ SHA-256
(
(auth⊕ pad1) ‖ mE ‖ padding

))
We did not implement the message padding for our HMAC implementation as this can be done
more efficiently via a non-Yao pre-processing step. Let cv denote the SHA-256 chaining variable,
m denote an l = 512-bit message block, and sha cf denote the SHA-256 compression function. It
seems more economic to not implement the two round function iterations that process the padded
authentication keys, but rather use pre-computed cv1, cv2 instead. Thus, we have the following
correspondences with Figure 5:

0b) [cv1, cv2]↔ mG
0b) [m0, . . . , ms−1]↔ mE
1a) mi ↔ mE0 , . . . ,mEl−1

1b) sha cf↔ Bsha cf  Y sha cf

After s rounds mEi , the input from E , is exhausted but the token still has to process cv2. This
signals the beginning of the second SHA-256 function, i.e. the final instantiation, this time without
evaluator input, of sha cf. Only when this is finished, the token will proceed to step 2.

Example 2: AES-128. In this example, we use the flexibility afforded by modularisation to avoid the
need for G to hold an entire unrolled implementation of AES-128 (cf. [24, 9, 8]), but rather to iterate
over the round functions. We omitted implementation of the key schedule as we believe it to be
more economic to store all round keys in the token memory. We used the Boolean formulas given by
Boyar et al. [2] to implement the S-box. Let rk denote a round key, m the 128-bit message and aes rf

the round function consisting of aes ark, aes sub and aes mix where the latter implements both
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Fig. 6. A block diagram of our proposed token architecture. Only the area within the dashed box (right)
has requirements for conventional side channel countermeasures (e.g., secure logic styles).

ShiftRow and MixColumn operations. For step 1 of Figure 5 we have the following correspondences:

0b) [rk1, . . . , rk11]↔ mG
0b) m↔ mE
1a) m↔ mE0 , . . . ,mEl−1

1b) aes rf↔ Baes rf  Y aes rf

After a specified nine iterations of aes rf, the check in step 1d will show that mE has been
exhausted (which happened in the first iteration) but that mG still contains the two data blocks
rk10, rk11. Also, there are additional gates that need to be processed (step 1e): aes ark, aes sub

and another aes ark. Once these last gates are processed, mG is exhausted as well and the token
can proceed to step 2.

To support the protocol outlined above, Figure 6 outlines a proposed token architecture. The
main components and their roles are as follows:
– A general-purpose micro-controller manages the communication protocol in Figure 5, control-

ling assembly of Y f from the Bfi circuit templates and performing other tasks (such as message
padding for HMAC). A separate input/output core is shown, but this role could also be assumed
by the micro-controller.

– A general-purpose memory holds the circuit templates, micro-controller program and other
public run-time variables values which only require correctness.

– Storage of and computation using secret values is limited to the Yao core, which consists of:
• A SHA-256 core, used to encrypt wire labels and also as a PRNG.
• Control logic used for auxiliary operations such as wire label generation and encryption.
• A secure memory, split into two parts: a non-volatile part holds mG and seed, while a

volatile part holds ∆t, ∆t+1 and, for each wire i, the tuple {w0
i , w

1
i }. Note that ∆t+1 = 0

unless the token is processing update gates, and that a crucial role of the secure memory
as a whole is to prevent read-out or other leaks of values such as mG and seed.

5 Analysis and results

5.1 Security analysis

This section attempts to explore security aspects of the proposal outlined in Section 4. After
a statement of general assumptions, we deal specifically with potential attack vectors exploited
during an SPA or DPA attack, or by a malicious adversary within the operational protocol.

Security assumptions An adversary is successful if the input xG held by the token is recovered.
Two main strategies seem obvious: one can attempt to recover xG directly (e.g., via a DPA attack),
or try to “ungarble” the Yao circuit YxG ,xf

E
(or part thereof). In showing neither strategy is viable,

we make some important assumptions:



A-1 An authentication protocol that prevents man-in-the-middle attacks against mE in step 1d of
the Yao protocol must be selected (if this threat is deemed relevant).

A-2 The control-flow of the token, managed by the micro-controller, is tamper-proof: counter-
measures against fault injection must be implemented. This implies countermeasures against
manipulation of the general-purpose memory. Although this is a strong requirement, it is no
more strong than any other design.

A-3 The hash function used for encryption of wire labels (in our case SHA-256) must be circular-2-
correlation robust. This assumption stems from the security proofs for semi-honest adversaries
(see Choi et al. [3]).

A-4 The token cannot be reset, and no randomness reused. In case of an error (e.g., a failed check)
the token must abort and generate new randomness: this prevents an adversary forcing the
token to regenerate the same Yao circuit with the same randomness, then reevaluating it with
different inputs.

Catering for power analysis adversaries SPA attacks attempt to recover the security-critical
target value using one (or at least very few) traces; for example, this might imply examination
of data-dependent control-flow. Either way, note that the potency of such an attack is largely
independent from the number of traces collected. There are two possible attack vectors:

SPA-1 For each i-th input wire, the token must send either w0
i or w1

i to the evaluator depending
on the underlying value of mi. To succeed, the adversary must be able to determine whether
mi ∈ xG is 0 or 1 (for all i).

SPA-2 Gates such as AND and OR are biased towards 0 or 1 in their output: if the adversary
determines during computation of

Enc
[w

ci
i ,w

cj
j ,k]

(
w
g(mi,mj)⊕πk

k

)
which truth table row contains the minority output, they can reverse the permutations (i.e.,
πi and πj) and recover the underlying values of almost all output wire labels from non-XOR
gates.

Both SPA attack vectors concern choice, realised concretely using multiplexer components. For
hardware implementations, the data dependency of the power consumption is usually already
hidden well enough without countermeasures (e.g., [18, Appendix A.3]). Even if this is not the case,
traditional countermeasures (e.g., random masking of the multiplexer select with corresponding
permutation of the multiplexer inputs) are efficient.

In contrast, DPA attacks attempt to recover the security-critical target value by applying
statistical distinguishers to a large set of traces; issues of signal-to-noise ratio, as well as explicit
countermeasures, determine the exact number. More formally, let k be the target value, v be a
variable value and r the result of some generic operation �. A common example is the XOR
operation, representing addition of the state and a round key in the first round of AES-128. A DPA
adversary collects traces relating to execution of ri ← k � vi for many different v1, v2, . . . , vσ. The
potency of a DPA attack is then judged by σ, the number of traces required to be reliably recover
k. Our approach is to have a design-time constant bound τ � σ instead of allowing the adversary
to control it. Put another way, we bound the leakage such an adversary can utilise in a DPA attack:
if the application of conventional countermeasures can prevent attacks with said leakage level, the
token is secure.

DPA-1 The token must compute
w0
i ← w1

i ⊕ (∆t ‖ 1)

for every wire. As such we have

τDPA-1 = max(δ1, δ2, . . .)

where δt denotes the number of wires using ∆t. If the technique in Section 3.2 is used correctly,
τDPA-1 is a constant determined by the token designer (instead of the attacker).



DPA-2 For each gate, the four values of w
{0,1}
{i,j} are each used twice as input to

SHA-256(w
{0,1}
i ‖ w{0,1}j ‖ k).

Focusing on one label, wlog. wi say, and one external value, wlog. 0 say, the attacker gets two
traces for each gate where w0

i is used as input. Therefore, we have

τDPA-2 = 2 ·max
∀k

(Gk)

where Gk represents the fan-out of the k-th gate (and input wires are also considered as being
driven by imaginary gates). Note that a similar attack vector exists when the token processes
an XOR gate. Such a gate must compute w0

k and w1
k, and one possible approach is to compute

w0
k ← w0

i ⊕ w0
j

w1
k ← w0

i ⊕ w1
j

(4)

in which case τDPA-2 conveniently covers this attack vector as well.

Concrete, non-optimised examples for these bounds are given in Section 5.2. If our design is used
to protect against DPA attacks, functionalities that were inherently secure against SPA clearly
inherit any SPA vulnerabilities of the underlying Yao circuit approach. We suggest that preventing
SPA attacks on our design using conventional countermeasures is, broadly speaking, easier than
preventing DPA attacks on the functionality in question: the cost of preventing the former is easily
justified by the improvement offered wrt. the latter.

Catering for timing analysis adversaries The execution time associated with generating of
a Yao circuit is inherently independent of the inputs to that Yao circuit: it depends only on the
circuit size. As far as the architecture is concerned, we do not use a cache for the micro-processor
in order to avoid cache-based timing attacks. Working without a cache is a common decision for
cryptographic tokens and therefore not an exceptional burden of our design.

Catering for malicious adversaries One advantage of Yao circuits is the availability of related
security proofs. For semi-honest adversaries, Figure 5 preserves security proofs already given by [12,
24, 8, 9, 3]. This is a direct result of the loop (over steps 1a to 1e) being equivalent to the single
generate-evaluate step from previous protocols.

However, we also need to consider malicious adversaries. Lindell et al. [15] show how a two-party
computation protocol using Yao circuits can cover the case of malicious G (to ensure that Y f is
the required functionality) using a cut-and-choose approach. Our scenario is far less complex, since
Y f is generated by the token which is implicitly trusted: we disallow a malicious G. Therefore we
only have to consider a malicious E , and show it cannot learn anything about xG not implied by
the result r = f(xG , xE).

In summary, it remains to be shown that any possible protocol deviation by E is harmless. E
has two options (which we expand on below): it can either a) provide faulty input or b) perform
variants on early termination.

Faulty data. The only steps where E can provide faulty data are 1a and 3. As mE in step 1a is the
input of the functionality, sending a faulty mE has no impact on the security of the Yao protocol:
it can only influence the output of the functionality f . In contrast, sending faulty woj in step 3 is
potentially a problem if the adversary sends labels from intermediate wires instead of the output
labels. However, this is prevented by the check in step 4 which ensures that for each output wire
oj , exactly one wire label w

coj
oj ∈ {w0

oj , w
1
oj} has been sent before the result is revealed.

Early termination. Since E can not learn anything from one of the partial circuits (i.e., a given

Y fi[mG ,mE ]
) until the protocol is finished (i.e., until G reveals the result), E cannot profit from

straight early termination. However, if the functionality f requires s iterations of a loop to form
f = fs−1◦· · ·◦f1◦f0, per the description of AES-128 in Section 3.1 for instance, the adversary could



#blocks #∆ #XOR #non-XOR #SHA-256 RAM |Bfi | |mG,sec| |mG,pub| τDPA-1 τDPA-2

AES 1 1 19088 5760 24578 245.9kB 12318B 176B – 7296 11

AES U1 1 2 19088 5888 25091 263.4kB 13628B 176B – 3776 11

AES U9 1 10 19088 6912 29195 262.3kB 12845B 176B – 960 11

HMAC

1 1 148080 129680 556866 1883.6kB 121942B 64B 32B 167824 19
2 1 222120 194520 835170 2489.8kB 121942B 64B 32B 251608 19
3 1 296160 260384 1113474 3069.0kB 121942B 64B 32B 335392 19
4 1 370200 324200 1391778 3671.4kB 121942B 64B 32B 419176 19

HMAC U

1 3 148080 130192 558916 1911.0kB 122981B 64B 32B 84040 19
2 4 222120 195288 835170 2500.8kB 122981B 64B 32B 84040 19
3 5 296160 260384 1117574 3113.4kB 122981B 64B 32B 84040 19
4 6 370200 325480 1396903 3724.6kB 122981B 64B 32B 84040 19

Table 1. Efficiency metrics and leakage bounds for our token design and a range of payload implementa-
tions. The block size for AES-128 is 128 bits, for HMAC it is 512 bits (including the padding in the last
block).

potentially gain information from terminating the loop early, i.e., to get f ′ = fs′−1 ◦ · · · ◦ f1 ◦ f0
for 0 < s′ < s: this would be analogous to a reduced-round attack. To prevent this, we require the
token to check (in steps 1d and 1c) whether the Yao circuit for f has been completely generated

or whether some Y fi[mG ,mE ]
is missing.

5.2 Experimental results and analysis

For the evaluation of our proposed design, we implemented a VHDL compiler (per Section 4.2),
a token simulator G, an evaluator E as well as two payloads functionalities, namely AES-128 and
HMACSHA-256. As the use of a simulator suggests, our goal is to study gross, indicative metrics and
trade-offs rather than focus on absolute figures that could be improved via incremental optimisa-
tion.

For each payload, we considered variants that differ in their frequency of ∆ update: for AES-128
three variants are used, for HMACSHA-256 two variants. The variants are as follows:

AES Baseline AES-128 implementation without updating of ∆.

AES U1 AES-128 with a ∆ update after the fifth iteration of the round function.

AES U9 AES-128 with a ∆ update after every iteration of the round function.

HMAC Baseline HMAC implementation without updating of ∆.

HMAC U HMAC with ∆ being updated after every iteration of the compression function.

Table 1 details efficiency metrics for implementation of these variants on the platform described
and shows the two associated bounds τDPA-1 and τDPA-2. The first three columns specify the
payload, the number of input blocks from E and the number of ∆ values being used at run-time.

Efficiency The columns #XOR and #non-XOR in Table 1 give the number of gates in the
resultant Yao circuit. Compared to [24, 9] we have considerably smaller AES-128 circuits, which
is mainly due to omission of key scheduling and, to a less extent, use of more optimised S-box
formulas of Boyar et al. [2]. The omission of key scheduling implies a small penalty of having to
store all round keys mG,sec in secure ROM.

The column #SHA-256 shows the number of distinct uses of the SHA-256 core, for a one-block
hash in each case: this figure is directly related to the number of non-XOR gates and the number
of inputs wires to the Yao circuit. Ignoring the absolute simulation time, we feel this metric best
represents the execution time of a concrete token since the SHA-256 core will most likely be the
throughput bottleneck. [8] use a SHA-256 core which requires 67 cycles per 512 bit block at 66
MHz. Based on these numbers, a crude time estimation (based only on calls to the SHA-256 core)
is 24ms for AES and 1418ms for HMAC U with 4 message blocks.

A significant issue is the amount of RAM required at run-time. To assess this, we measured the
simulator heap and stack usage using the Valgrind massif tool [31]. We note that the tool itself is



not perfect, and that the result includes overhead of up to 20% relating to performance and security
counters (esp. for the per-wire counters used to determine τDPA-2). Even so, the indicative RAM
requirement is large: it remains within the capability of devices in our remit, but clearly beyond
smart-cards or RFID tokens for example. The requirement stems in the most part from storing all
wire labels {w0

i , w
1
i } in RAM. One possible trade-off would be to store only w0

i and recompute w1
i

when needed. This would reduce the RAM usage by a factor of two, but increase the number of
traces available by a factor similar to the maximum fan-out. [8] chose a keyed PRNG which allows
recomputation of w0

i when needed, thus reducing the RAM requirements drastically. However, any
keyed PRNG is vulnerable to DPA attacks with unlimited τ which negates our aim of bounding
the leakage.

An interesting observation can be made about the RAM usage of AES U1 and AES U9. Intuitively,
one would expect the RAM usage to always grow in line with the number of ∆t used: intuitively,
AES U9 should need more RAM than AES U1. However, the opposite is true. This happens because
AES U1 applies the ∆ updating within the top-level entity (which also accounts for the larger |Bfi |),
requiring more wires for which RAM is allocated during the entire run-time. AES U9 performs the
updating at the end of the round function entity instead, and the RAM for additional wires can
be deallocated as soon as each round function instance of has been completed.

The size of the templates, |Bfi | (stored in unsecured ROM), profits directly from modularisa-
tion. As predicted, the size of |Bfi | for HMAC does not depend on the number of message blocks
being processed as it would have for the traditional approach.

Security Having explained τDPA-1 and τDPA-2 in Section 5.1, we note that our ∆ updating tech-
nique limits τDPA-1 as predicted; note esp. the HMAC U payload, where updating ∆ fixes previously
unlimited leakage to a constant chosen by the token designer.

The result for τDPA-2 is an absolute upper bound, i.e., for all output wires we counted how often
it gets used while processing the follow-up gates. As explained in Section 5.1, if a wire is used as
input to a non-XOR gate each label gets used twice; for XOR gates Equation 4 gives the numbers
relevant to our implementation. For an attacker it will be very difficult to combine traces from
two different operations like this but we prefer to err on the side of security by overestimating the
attacker. However, as the numbers for τDPA-1 dwarf the numbers for τDPA-2 by several orders of
magnitude, DPA-2 is almost irrelevant as an attack vector. Having a low τDPA-2 was an explicit
aim of our work: τDPA-2 is the only possible attack vector on the SHA-256 core, and therefore
τDPA-2 is the crucial factor to determine the level of conventional countermeasures needed to
protect the SHA-256 core. Compared to the SHA-256 core, protecting the XOR from DPA-1 to
match a much higher τDPA-1 is inexpensive.

As a reference one may look at the Power-Trust micro-processor of Tillich et al. [30], which has
parts of the ALU implemented within a secure zone. For evaluation purposes they implemented
the secure zone in three different logic styles (namely CMOS, iMDPL [25] and DWDDL [34]) and
performed a DPA attack against an AES-128 software implementation using the secure zone. While
it is difficult to directly extrapolate from a design as different from ours, this at least gives an esti-
mate: there is no reason why secure logic styles such as iMDPL and DWDDL should fare worse for
our token. For the DPA attack on the secure zone to be successful, Tillich et al. required 130, 000
traces against the (unprotected) CMOS implementation, 260, 000 traces against the iMDPL imple-
mentation and 675, 000 traces against the DWDDL implementation. With τDPA-1 = 7296 in the
worst case for AES-128 and τDPA-1 = 84040 for HMAC U we surmise that both iMDPL and DWDDL
would have successfully thwarted the DPA attack from Tillich et al. against an implementation of
our token. It is important to note, that for both bounds we did not yet try to find the absolute
minimum. For example it is possible to add additional gates to achieve fan-out = 2 and thus
τDPA-2 ≤ 4 while τDPA-1 can be easily reduced by updating ∆ more often within the round resp.
compression functions, not just at their end.

Potential improvements: Based on these results, we have some improvements to suggest.

1. RAM usage: The compiler should put annotations into the Bfi to tell the token the earliest
possible point to deallocate RAM for wires.



2. Execution time: With additional SHA-256 cores in the Yao core, parallelized entity processing
is possible. Again, the compiler should put annotations into the Bfi telling it which entities
can be parallelized. With two SHA-256 cores we would expect the time needed to generate

Y AES-128 to be halved.
3. τDPA-2: If the token supports more than one ∆ at a time, then different ∆ can be used for

parallelized Bfi . Thus τDPA-2 can be reduced even further than described above.
4. Secure memory: Integration of memory masking into Yao circuits will be an important step in

order to secure the token’s memory and bus against leakage.

6 Conclusions

In essence, this paper has demonstrated that an embedded token can be designed which gives
strong bounds on the number of useful traces a power analysis adversary can collect. Our design
methodology
1. is generic in that it works for all payloads and use-cases (cf. PIN block schemes),
2. does not impose limits on the token lifetime,
3. does not require synchronization (cf. key update schemes),
4. is easily verifiable, and
5. can successfully thwart side-channel attacks in connection with conventional countermeasures.

In relation to the former point, we have already extended previous work through support for a Yao
circuit for HMAC. Exploration of further primitives based on modularisation (including methods
and trade-offs to further reduce the leakage bound), plus incremental optimisation of both the
token design and operational protocol (especially the RAM requirement) are interesting avenues
for further work. In relation to the latter point, the clear next step is to produce experimental
results from a concrete implementation of the token. This would, for example, allow investigation
of the concrete leakage and, given a τ , whether the implementation can definitively be secured
using conventional countermeasures as expected. Special considerations should also be given to
higher order attacks ([18, Chapter 10]); it is clear that the number of leakage occurrences available
to an adversary will be bounded as well, but the exact τ may include implementation specific
additional higher order events that can not be detected by formal analysis as presented here.

As a final note, we want to highlight the fact that our countermeasure easily combines with
memory masking (see e.g. [29, 30]) or memory encryption countermeasures; instead of unmasking
(resp. decrypting) a value before it is being encoded for the Yao circuit, unmasking (resp. decryp-
tion) can be easily integrated into the Yao circuit. This does not solve the issue of storing the
masks (resp. keys used for memory encryption) but that issue exists independently of our tech-
nique. However, combining both countermeasures has the interesting result of a system where long
term keys never have to exist unmasked (resp. unencrypted) within the token.
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A VHDL examples

In Section A.1 the top level entity of our HMAC implementation is shown and in Section A.2 the
top level entity of our AES-128 implementation is shown. Despite having only binary values, the
signals are defined as std logic and std logic vector to allow reuse of existing VHDL code with
as little effort as possible. For both implementations, the top level entities are the most interesting
ones; all other instantiated entities are pretty much straight forward implementations of their
functionalities. Line 58 of the AES-128 example show cases the ∆ updating.

A.1 HMAC

1 entity hmac i s
2 port (
3 padding : in s t d l o g i c v e c t o r ( 255 downto 0 ) ; −− p r o v i d e d b y t o k e n
4 auth : in s t d l o g i c v e c t o r ( 255 downto 0 ) ; −− p r o v i d e d b y t o k e n
5 −− 256 = l e n g t h o f one b l o c k
6 m: in s t d l o g i c v e c t o r ( 511 downto 0 ) ; −− p r o v i d e d b y e v a l u a o r ;
7 −− 512 = l e n g t h o f one b l o c k
8 r : out s t d l o g i c v e c t o r ( 255 downto 0) −− r e s u l t
9 ) ;

10 end hmac ;
11
12 architecture s t r u c t u r a l of hmac i s
13
14 component sha256 c f
15 port (
16 stateOld : in s t d l o g i c v e c t o r ( 255 downto 0 ) ;
17 msg : in s t d l o g i c v e c t o r ( 511 downto 0 ) ;
18 stateNew : out s t d l o g i c v e c t o r ( 255 downto 0)
19 ) ;
20 end component ;
21
22 signal w1 : s t d l o g i c v e c t o r ( 255 downto 0 ) ;
23
24 begin
25
26 w1 <= auth ; −− P r o c e s s i n g t h e f i r s t b l o c k f r om a u t h .
27
28 −− The f i r s t SHA c om p u t a t i o n :
29 msgLoop : for i in 0 to <m> generate −− The number o f i t e r a t i o n s i s e q u a l t o
30 −− t h e number o f m e s s a g e b l o c k s .
31 compF2 : sha256 c f port map (
32 stateOld => w1 ,
33 msg => m, −− Each t im e s h a 2 5 6 r f g e t s i n s t a n t i a t e d w i t h i n t h e
34 −− l o o p , a new b l o c k o f m w i l l b e p r o c e s s e d .
35 stateNew => w1 −− L a c k i n g c o n c u r r e n c y , t h i s i s p o s s i b l e .
36 ) ;
37 end generate msgLoop ;
38
39 −− The s e c o n d SHA c om p u t a t i o n
40 compF4 : sha256 c f port map (
41 stateOld => auth , −− P r o c e s s i n g t h e s e c o n d b l o c k f r om a u t h .
42 msg => w1(255 downto 0) & padding (255 downto 0) ,
43 stateNew => r
44 ) ;
45
46 end s t r u c t u r a l ;

A.2 AES U1

Note that Baes rf also instantiates Baes ark, Baes sub and Baes mix illustrating our point about reuse
of Bfi .

1 entity aes u1 i s
2 port (
3 rk : in s t d l o g i c v e c t o r (127 downto 0 ) ; −− u n r o l l e d k e y 11 ∗ 128 b i t i n t o t a l
4 m: in s t d l o g i c v e c t o r (127 downto 0 ) ; −− msg
5 r : out s t d l o g i c v e c t o r (127 downto 0 ) ; −− c i p h e r t e x t
6 ) ;
7 end aes u1 ;
8
9 architecture s t r u c t u r a l of aes u1 i s

10
11 component ae s a rk
12 port (
13 stateOld : in s t d l o g i c v e c t o r (127 downto 0 ) ;
14 key : in s t d l o g i c v e c t o r (127 downto 0 ) ;
15 stateNew : out s t d l o g i c v e c t o r (127 downto 0 ) ;
16 ) ;
17 end component ;
18
19 component aes sub
20 port (
21 stateOld : in s t d l o g i c v e c t o r (127 downto 0 ) ;
22 stateNew : out s t d l o g i c v e c t o r (127 downto 0 ) ;
23 ) ;
24 end component ;
25
26 component aes mix
27 port (
28 stateOld : in s t d l o g i c v e c t o r (127 downto 0 ) ;
29 stateNew : out s t d l o g i c v e c t o r (127 downto 0 ) ;
30 ) ;
31 end component ;
32
33 component a e s r f



34 port (
35 stateOld : in s t d l o g i c v e c t o r (127 downto 0 ) ;
36 key : in s t d l o g i c v e c t o r (127 downto 0 ) ;
37 stateNew : out s t d l o g i c v e c t o r (127 downto 0 ) ;
38 ) ;
39 end component ;
40
41 signal stateA : S t d l o g i c v e c t o r (127 downto 0 ) ;
42 signal stateB : S t d l o g i c v e c t o r (127 downto 0 ) ;
43 signal stateC : S t d l o g i c v e c t o r (127 downto 0 ) ;
44 signal stateD : S t d l o g i c v e c t o r (127 downto 0 ) ;
45
46 begin
47
48 stateA <= m; −− The f i r s t and o n l y b l o c k o f m i s b e i n g r e a d .
49
50 RF LOOP: for i in 1 to 5 generate
51 r f i : a e s r f port map (
52 stateOld => stateA ,
53 key => rk , −− The f i r s t 5 b l o c k s o f r k a r e b e i n g p r o c e s s e d .
54 stateNew => stateA
55 ) ;
56 end generate RF LOOP;
57
58 stateB <˜ stateA ; −− The D e l t a u p d a t e h a p p e n s !
59
60 RF LOOP: for i in 1 to 4 generate
61 r f i : a e s r f port map (
62 stateOld => stateB ,
63 key => rk , −− The n e x t 4 b l o c k s o f r k a r e b e i n g p r o c e s s e d .
64 stateNew => stateB
65 ) ;
66 end generate RF LOOP;
67
68 ark 10 : ae s a rk port map (
69 stateOld => stateB ,
70 key => rk , −− 10 t h b l o c k o f r k .
71 stateNew => stateC
72 ) ;
73 sub 10 : aes sub port map (
74 stateOld => stateC ,
75 stateNew => stateD
76 ) ;
77 ark 11 : ae s a rk port map (
78 stateOld => stateD (127 downto 120) & stateD ( 87 downto 80) & stateD ( 47 downto 40) &
79 stateD ( 7 downto 0) & stateD ( 95 downto 88) & stateD ( 55 downto 48) &
80 stateD ( 15 downto 8) & stateD (103 downto 96) & stateD ( 63 downto 56) &
81 stateD ( 23 downto 16) & stateD (111 downto 104) & stateD ( 71 downto 64) &
82 stateD ( 31 downto 24) & stateD (119 downto 112) & stateD ( 79 downto 72) &
83 stateD ( 39 downto 32) ,
84 key => rk , −− 11 t h b l o c k o f r k .
85 stateNew => r
86 ) ;
87
88 end s t r u c t u r a l ;


