
An architecture for practical actively secure MPC with dishonest majority

Marcel Keller, Peter Scholl, Nigel P. Smart
Department of Computer Science, University of Bristol

Abstract

We present a runtime environment for executing secure
programs via a multi-party computation protocol in the
preprocessing model. The runtime environment is gen-
eral and allows arbitrary reactive computations to be per-
formed. A particularly novel aspect is that it automati-
cally determines the minimum number of rounds needed
for a computation, and uses this to minimize the over-
all cost of the computation. Various experiments are
reported on, on various non-trivial functionalities. We
show how, by utilizing the ability of modern processors
to execute multiple threads at a time, one can obtain var-
ious tradeoffs between latency and throughput.

1 Introduction

Recent years have seen great advances in practical vari-
ants of protocols for secure Multi Party Computation
(MPC). Initially these practical instantiations came in the
restricted security model of dealing mainly with passive
(semi-honest) adversaries [3, 5, 22, 28]. However, more
recent work has focused on the case of full active security
[3, 4, 9, 13, 23, 24], or sometimes covert security [11].

MPC protocols come in two flavours: one flavour
based on Yao circuits and one flavour based on secret
sharing. In those based on Yao circuits (which are pre-
dominantly focused on the two party case) a function to
be evaluated is expressed first as a boolean circuit. The
boolean circuit is then “encrypted” by one party in a pro-
cess known as garbling. The encryptor then passes the
encrypted circuit over to the other player, who then eval-
uates the circuit on their own input. The input of the
evaluating player is obtained from the encryptor via an
oblivious transfer protocol.

The first implementation of the Yao approach in the

semi-honest setting was the FairPlay system [22], which
was followed by an implementation in the active security
case [21]. Following [25] it has been common to bench-
mark such Yao based implementations against evaluat-
ing the AES circuit, see for example [14, 15, 20, 27].
The state-of-the-art in terms of Yao based computation
would appear to be the system in [17].

In the secret sharing based approach initial practical
work focused mainly on the case of three parties with
only one allowed semi-honest adversary [5, 28]. Sys-
tems such as [9, 28] could cope with larger numbers of
players, and more powerful adversaries, but only with a
degradation in performance. Recent practical MPC work
in the secret sharing tradition has focused on full active
security against a dishonest majority, utilizing a form of
“shared MAC” to provide security [4, 11, 13, 23]. It is
in this area that our work is focused. Whilst secret shar-
ing based approaches are not as well tailored to evaluate
functions such as AES, the AES functionality is still used
as an important benchmark in this area [10, 11, 18, 19].

Another aspect of modern practical work on secret
sharing based MPC protocols is the fact that they are of-
ten presented in a “preprocessing model”. In this model
one is allowed to perform in an “offline phase” the gen-
eration of random data, which will be consumed in the
“online phase”. The key aspect is that the data produced
in the offline phase must be generic and not depend on
the inputs to the function (which are unknown until the
online phase), nor too tied to the specific function being
evaluated (which again may not be known until the on-
line phase commences).

The final consideration is whether the protocol sup-
ports fully reactive computation. By this we mean that,
after a function result has been determined, one can exe-
cute another function; with the precise choice of the new
function depending on the output of the first computa-
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tion. A fully reactive computation allows this process to
be continued ad infinitum, including possibly executing
the offline phase again if the preprocessed data runs out.

Previous implementation work, in the secret sharing
setting, has mainly focused on the underlying MPC pro-
tocol and how to perform specific pre-defined functional-
ities; for example, the AES circuit above. The function to
be evaluated is described as an arithmetic circuit and then
this circuit is evaluated by executing a sequence of addi-
tion and multiplication “gates”. This is a throw back to
the origins of MPC in the theoretical community; where
functions are always represented as arithmetic circuits.
In practice MPC protocols do not execute arithmetic cir-
cuits; they can evaluate far more elaborate basic oper-
ations since they have the ability to selectively “open”
secret data. This ability in its most basic form allows for
a secret value to be masked, and then the masked value
to be opened. Whilst this might seem a small additional
functionality, it turns out in practice that such an opera-
tion allows one to perform highly complex tasks without
needing to resort to their description as an arithmetic cir-
cuit.

In this work we present the design of an efficient
runtime execution environment for the protocols in the
SPDZ family [11, 12, 13]. This protocol family supports
fully malicious (active) or covert security, is in the pre-
processing model and can (using the techniques of [12])
support fully reactive computation. Unlike prior work we
concentrate only on the online phase and show how to de-
sign efficient compilers and a runtime environment to en-
able high level operations. Prior implementation work on
the SPDZ family has either concentrated on the specific
functionalities over small finite fields, such as evaluat-
ing AES [11] or has focused on the more mathematically
complex offline phase [12, 13].

Our focus is on more general purpose computation,
and in particular how to enable a general purpose high
level function description, which is then translated into
low level operations, which are then executed by an MPC
runtime engine. In particular we present experimental
results for an actively secure online phase for various
high level functionalities such as integer multiplication
and comparison, fixed point and floating point operations
as well as runtimes for AES. Our AES runtimes are sig-
nificantly better than prior runtimes for AES using other
actively secure MPC implementations.

Our prime motivation is to understand how to engineer
the overall runtime environment, rather than the design
of specific protocols. We therefore utilize prior work of
others for our higher level functions, i.e. for integer com-
parison we use [6], for fixed point numbers we use [7],

for floating point numbers we use [1], for AES we use
the techniques of [11]. Whilst much of our design is bi-
ased towards the SPDZ protocol, many aspects can be
extended to other MPC protocols.

We present our experimental results in the following
way. We show how one can trade, for the different high
level functionalities, latency for throughput. In many
previous works on MPC the focus has been on through-
put or latency alone. This however is not realistic; in
a given application scenario one is likely to have a spe-
cific latency and a specific throughput one has to meet
for the MPC solution to be applicable. We show how, by
batching different numbers of operations together, and
by running in different numbers of threads, one is able to
trade throughput for latency. This allows one to reach a
specific sweet spot for a given application.

2 Overview of the SPDZ protocol

At the core of our work is a multiparty computation
protocol in the preprocessing model, which is a vari-
ant of the protocol first introduced by by Bendlin et al.
[4]. The advantage of this approach is that expensive,
public-key machinery can be offloaded into the prepro-
cessing phase. In our implementation we focus on an
online phase which makes use of the output from an
offline phase following the outline in [12, 13], dubbed
the SPDZ (“Speedz”) protocol. The online phase uses
only cheap, information-theoretically secure primitives
and can therefore be extremely efficient. Moreover, this
technique comes with extremely strong security guaran-
tees: the online phase is actively secure against a dis-
honest majority of corrupted players, irrespective of the
security of the offline phase. Thus we obtain a protocol
which is actively (resp. covertly) secure if we combine
our online phase with an offline phase which is actively
(resp. covertly) secure as in [13] (resp. [12]). In addi-
tion our online phase can evaluate reactive functionalities
(i.e. multiple sequential programs) and not just execute
secure function evaluation.

Throughout this exposition we assume a number of
players n and a finite field Fq over which computations
will be performed have been fixed. The basic data type
used is a secret sharing scheme over the field Fq. Each
party in the protocol Pi has a uniform share αi ∈ Fq
of a secret value α = α1 + · · ·+ αn, thought of as a
fixed MAC key. We say that a data item a ∈ Fp is 〈·〉-
shared if Pi holds a tuple (ai,γ(a)i), where ai is an ad-
ditive secret sharing of a, i.e. a = a1 + · · ·+ an, and
γ(a)i is an additive secret sharing of γ(a) := α · a, i.e.
γ(a) = γ(a)1 + · · ·+ γ(a)n.
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2.1 Offline Phase

In this section we summarize the data produced during
the offline phase of the SPDZ protocol that is required
by our runtime. The main purpose of the preprocessing
phase is to generate multiplication triples, shares of ran-
dom values 〈a〉 ,〈b〉 ,〈c〉 satisfying a · b = c, which are
used to multiply secret shared values during the online
phase using a technique of Beaver [2].

Whilst multiplication triples are the only data really
needed for the online phase, we can also use the offline
phase from [12, 13] to create additional raw data that im-
proves the efficiency of certain operations. In Table 1 we
detail all data that is used during the online phase in our
various higher level functions. The input data is used to
enable parties to input values into the computation, see
[13], we shall not discuss this further in this paper. The
square data is used to perform squaring of shared val-
ues more efficiently than general multiplications; this is
useful in general computation but does not feature in our
specific examples later in the paper. The inv tuples are
used for constant round protocols for integer compari-
son; we shall see later that the logarithmic round proto-
cols are actually more efficient in practice for the data
types we are interested in.

Command Outputs Properties

triple 〈a〉 ,〈b〉 ,〈c〉 a,b $← Fp, c = a ·b
square 〈a〉 ,〈b〉 a $← Fp, b = a2

bit 〈b〉 b $←{0,1}
input 〈r〉 r $← Fp

inv 〈a〉 ,〈a′〉 a $← Fp, a′ = a−1

Table 1: Data Prepared During the Offline Phase

The offline phase is assumed to produce five files of
pre-processed data for each player. Each file contain-
ing the relevant shares of the above data. Exactly how
much of each type of data one needs to compute in the
offline phase is of course unknown until the exact func-
tion one is computing is known. However, one can make
a heuristic over estimate of this number. In addition as
soon as data produced in the offline phase has been ex-
hausted one can return to the offline phase to compute
some more (note this option is only available if one is
using the MAC checking strategy described in [12]).

2.2 Online phase

During the online phase the parties compute on open val-
ues (i.e. values which are not secret shared) and secret
values (i.e. values which are secret shared). All standard
arithmetic (+, ×, /, %) and bitwise boolean (∨, ∧, ⊕)
operations can be performed on open values; where for
the latter boolean operations we assume a fixed binary
representation of values within the finite field Fq. The
arithmetic operations can also be applied to one value
which is shared and one value which is opened, result-
ing in a new value which is shared. Finally, in terms of
arithmetic operations, two shared values can be added
together to result in a shared value. Another set of oper-
ations deal with loading data from the files precomputed
in the offline phase. These are all shared random values,
subject to the constraints given in Table 1.

All of the prior operations are “local”, i.e. they do
not require any interaction between the parties. As these
local operations which produce shared values are per-
formed, the parties can locally update the value of their
shares of the associated MAC value. The power of
the online phase comes from the ability to interactively
“open” shared values so as to produce opened values. In
such an operation a shared value 〈a〉 is opened to reveal
a to all parties, but the associated shared MAC values,
a ·α , are kept secret.

To protect the parties against malicious parties the
shared MACs of all such opened values need to be
checked for correctness, and this must be done in a way
so that neither the MAC key nor the MAC value itself
is revealed. This is done using the protocol described in
[12]. We execute this protocol so that batches of MAC
values are checked all at once; in particular we batch up
to 100,000 such MAC values to be checked into one op-
eration. Thus the MAC checking protocol is executed
after every 100,000 such openings, and once at the end
of the computation to check any remaining values.

In [13] the following O(n) protocol is suggested for
performing the opening operation on the shared value
〈a〉.

• The players pick an arbitrary “nominated player”,
say P1.

• Players Pi for i = 2, · · · ,n send P1 the value ai.

• P1 computes a = a1 + · · ·+ an and sends a to all
other players.

It is readily seen that the communication complexity of
the above protocol is that each player (on average) sends
a total of three field elements per opening. However, in
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practice we have found the following naive protocol to
be more efficient.

• Pi sends ai to all other players.

• Each player locally computes a = a1 + · · ·+an.

Here the parties need to each send n− 1 field elements
per opening, which will be worse than the prior method
as soon as n > 3. However, in practice we found that
the naive method performs better than the O(n) method
for n ≤ 5. This is because it is a one round protocol as
opposed to a two round protocol. This dependence of ef-
ficiency on rounds will be a feature of our work and we
will take a great deal of trouble in later sections in mini-
mizing the round complexity of the entire computation in
an automatic manner. Clearly to minimize rounds across
a computation many different values to be opened can be
opened at once in either of the methods above.

3 Virtual machine

To implement the online protocol we took a ‘ground
up’ approach to architecture, starting with a very sim-
ple register-based virtual machine that can be run on an
ordinary desktop computer by each party. By focussing
initially on the low level design details we have obtained
a high performance implementation with minimal over-
head, leaving decisions for optimization and compilation
to a higher level. Our virtual machine could be used to
run code from a variety of language descriptions, given a
cross-compiler to output the appropriate bytecode. To
demonstrate this we use a simple language based on
Python for all our programs. Details of the compilation
process and special-purpose optimizations that we devel-
oped to reduce communication costs are given in Section
4.

Programs to be run by the virtual machine must be en-
coded into bytecode as assembly-like instructions (gen-
erally produced by a higher level compiler), which are
then parsed and executed. To make the most of modern
multi-core processors, we allow a number of such pre-
computed bytecode files to run simultaneously, each in
a separate thread of the runtime virtual machine. This
then leads to an additional level of complication in rela-
tion to how the bytecode files consume data from the of-
fline phase, how the bytecode files are scheduled across
a large computation and communicate with each other,
and how branching and looping are to be performed. In
this section we describe the low level design decisions
which we have made to solve these problems. To ease
exposition we shall refer to a single sequence of byte-
code instructions as a tape in the following presentation.

The virtual machine consists of a memory holding a
fixed number of clear and secret shared values. This
memory is long term, and as the virtual machine starts
up/shuts down the memory is read from/written to the
player’s local disk. In addition the virtual machine runs
a series of t + 1 threads; one thread acts as a control
thread while the other t threads have the task of executing
(or not) a tape of bytecode. The t tape-running threads
open pairwise point-to-point communication channels
with the associated threads in the other players’ runtime
environments. There is no limit to the number of concur-
rent tapes, t, but in practice one will be restricted by the
number of cores. For our test machines with eight cores,
we found best performance when t is limited to seven or
fewer.

The control thread executes the main program, or
schedule. This is a program which specifies exactly
which tape should be run at which point. The sched-
ule also specifies which, and how many, tapes are exe-
cuted in parallel; with up to t such tapes may be exe-
cuted in parallel. The control thread takes the tapes to be
executed at a given step in the program, passes them to
the execution threads, and then waits for the threads to
finish their execution, at which point the control thread
processes the next stage of the program. Communica-
tion between tapes is done via reading and writing to the
virtual machine’s long term memory. To avoid unnec-
essary stalls there is no locking mechanism provided to
this memory. So if two simultaneously running threads
execute a read and a write, or two writes, to the same
memory location then the result is undefined since it is
unspecified as to which order the associated instructions
will be performed in. Thus in this respect we have traded
speed for safety at the lowest level; it is the task of the
compiler or programmer to ensure the safe behaviour of
concurrently running bytecode.

We now turn to discussing the execution threads and
the associated bytecode instructions within each tape.
Each execution thread has its own local shared and clear
memory. To avoid confusion with the long term memory
we shall call this local memory a register file, referring
to the values as shared or clear registers. The values of
a register are not assumed to be maintained between an
execution thread running one tape and the next tape, so
all passing of values between two sequential tape execu-
tions must be done by reading and writing to the main
virtual machine memory. Again, whilst this may seem
like a very primitive approach to take, we are ensuring
that there is no unnecessary overhead and bloat in the
virtual machine, leaving more complex elements to the
next level up.
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The bytecode instructions within a tape are influenced
by the RISC design strategy, coming in only three basic
types; corresponding to the operations described in Sec-
tion 2.2. The first of these most closely resembles tradi-
tional assembly code instructions, consisting of load and
store operations for moving registers to and from the long
term memory, and instructions for executing local arith-
metic and bitwise logical operations described in Section
2.2, that can be performed without interaction. All of this
class of bytecode instructions are of the simple one out-
put, one or two input variety found in modern processors,
where the inputs may be registers or immediate values
and the output register type depends on the input types as
specified earlier. The other two types of instructions are
data access instructions, which serve to load data from
the preprocessing phase, and a special instruction to open
shared register values into clear registers. Note that this
last instruction is the only one requiring interaction be-
tween players. We now turn to discussing each of these
special MPC instruction types in turn.

The instructions for loading data from the prepro-
cessing phase are denoted triple, square, bit, input and
inv, and they take as argument three, two, one, one and
two shared registers respectively. The associated data is
loaded from the precomputed data and loaded into the
registers given as arguments. This leads to the prob-
lem that multiple concurrent tapes could read the same
data from the precomputed global store. Thus the control
thread on passing a tape to an execution thread for exe-
cution first calculates a (reasonable) upper bound on the
amount of pre-processing data it will consume before it is
executed. This can be easily done in the case of programs
with no loops by simply counting the number of such in-
structions in the tape. Then the control thread allocates
a specific portion of the unused precomputed data to the
thread for use within this tape. This solution avoids com-
plexity in the offline phase (by not requiring it to produce
separate data for each thread) or added complexity to the
online phase (by not requiring a locking mechanism to
access the precomputed data), both of which would neg-
atively affect program complexity and/or performance.
The cost for this simple solution comes when executing
tapes containing branching instructions, an issue we re-
turn to in Appendix A.

The process of opening secret values is covered by two
instructions. The startopen instruction takes as input a
set of m shared registers, and stopopen an associated
set of m clear registers, where m can be an arbitrary in-
teger. They then execute the protocol from Section 2.2
to open the shared registers and place the results into the
designated clear registers. The fact that we can perform

m of these operations in parallel is vital in improving the
throughput and latency of applications run on the virtual
machine. Furthermore, splitting the process in two steps
allows one to execute local instructions while the runtime
is waiting for data from other parties to arrive.

4 The compilation process

To produce the bytecode tapes required by our virtual
machine, we developed a compiler for a simple high-
level language derived from Python. The compiler takes
a Python-like program description, extracts individual
threads from this and breaks each thread down into ba-
sic blocks. The individual basic blocks are then opti-
mized and each thread used to produce a bytecode tape
for the virtual machine. Our optimization guarantees
that, within a basic block, the program will be compiled
with the minimum possible number of rounds of com-
munication. This, coupled with the familiarity to many
of the Python programming language, ensures that the
workload of implementing complex MPC functionalities
is eased considerably.

Instead of the traditional approach of using parsing
and lexing tools for compilation, we chose to imple-
ment the core language features as a Python library, so
that programs can be executed by Python itself, which
then produces the relevant bytecode. This allows for
(compile-time) access to many of Python’s powerful fea-
tures such as list comprehensions, classes and functions
with relatively little effort. The library consists of a set
of functions for creating, storing and loading clear and
secret shared data types; loading preprocessed data and
more complex features such as threading and branching.
We then use operator overloading to provide transparent
support for arithmetic functions on our data types.

Upon execution, the Python code creates bytecode
instructions from our library functions and overloaded
arithmetic operators, whilst keeping track of the appro-
priate threading and basic block information. Complex
functions such as secret multiplication and comparison
are expanded into sequences of the basic RISC-like in-
structions described in Section 3. Note that at this stage
the open instructions will only have one shared and one
clear register as arguments.

So despite our RISC instructions not supporting com-
plex operations such as the multiplication of two shared
values in Fq, we can easily implement this using the com-
piler. This abstraction is key to our approach; we do not
at the low level execute a program corresponding to an
arithmetic circuit over Fq as in other approaches. We in-
stead execute only a sequence of operations which are
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linear operations on the shared values, open instructions,
or load precomputed data. All high level operations can
be built up from these instructions; and indeed more ef-
ficient high level operations can be built which do not
involve reduction to arithmetic circuits.

Using the above ideas we arrive at a point where we
have produced a set of bytecode tapes in static single
assignment (SSA) form, with an unbounded number of
clear and shared registers, and standard compiler op-
timizations such as common subexpression elimination
can be performed if required. We then optimize the com-
munication complexity of each tape by reordering and
merging the open instructions, as follows:

• Calculate the program dependence graph G, whose
vertices correspond to instructions in the bytecode.
Two vertices (vi,v j) are connected by a directed
edge if an output from instruction vi is an input to
instruction v j.

• Now consider the sub-graph H consisting of ver-
tices consisting of all open instructions. We insert
a directed edge into H if there is a path in G be-
tween the corresponding vertices not including an-
other open instruction.

• Label vertices in H with their maximal distance
from any source in H.

• Vertices in G corresponding to open instructions are
then merged into one instruction if the associated
vertices in H have the same label.

• Output the resulting instruction sequence (given by
a topological ordering of the new graph).

The above process automatically determines the opti-
mal number of rounds of communication for any given
tape, ordering the instructions to maximise throughput.
Thus round complexity of our bytecode tapes is automat-
ically computed by the compilation process. By batching
all open operations which can be performed in parallel
we reduce the number of data transmission operations;
which enables faster execution.

By computing a topological ordering of the graph we
can determine at what time in the computation an in-
struction can correctly occur with respect to the open-
ing commands. More precisely, the compiler computes
which round of openings does each instruction depend on
and which round of openings depends on the instruction.
Instructions that do not have a dependency in both di-
rections, like memory operations, are placed close to the
remaining dependency or close to the beginning if there

is no dependency at all. This reduces the memory usage
of the virtual machine because it reduces the lifetime of
registers.

Finally, there are instructions that have dependencies
in both ways, i.e. those that depend on some opening
round i, while at the same time opening round i+ 1 de-
pends on them, clearly have to be placed between the
two rounds. However, instructions that only depend on
rounds up to i and are independent of round i+ 1 can
be placed between the startopen and stopopen of
round i+ 1. This utilizes the time used for waiting for
data from other parties for performing local computa-
tions.

To complete compilation, the compiler allocates reg-
isters. Since all programs are in SSA form at this point,
the allocation is straightforward. The compiler processes
the program backwards, allocates a register whenever a
register is read for the last time, and deallocates it when-
ever a register is written to. This ensures that a minimal
numbers of registers are used, which minimizes memory
usage of the virtual machine.

x = a * b + c * d
y = a * x
z = reveal(e)

Figure 1: A sample program.

For way of illustration, Figure 1 shows a possi-
ble high-level program, and Figure 2 shows the corre-
sponding output of the compiler. Note that the open-
ings required for the multiplications a*b and c*d and
the opening of e are all merged together in the first
startopen/stopopen pair. Furthermore, the triple
needed for the multiplication a*x is loaded only after
that. This allows for the registers s6-s8 to be used for
something else prior to that, thus reducing the register
usage. The compiler mapped a-e to s0-s4, x to s5, y
to s6, and z to c0. Registers starting with s hold secret
values, registers starting with c clear values.

Vector operations The virtual machine also supports
vector instructions like adding two vectors of registers
and storing the result in a vector of registers. This does
not significantly improve the performance of the runtime
(in that one could obtain the same effect using multiple
copies of the non-vectorized instructions), but vectorized
instructions reduces memory and time needed for the
compilation. Vector instructions are based on the basic
instructions and take the size of the vector as an addi-
tional parameter. The further parameters have the same
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triple s13, s10, s14
triple s11, s12, s5
subs s9, s3, s10
subs s7, s2, s13
subs s6, s1, s12
subs s8, s0, s11
startopen s8, s6, s7, s9, s4
stopopen c1, c3, c4, c5, c0
triple s7, s8, s6
subs s9, s0, s7
mulc c2, c4, c5
mulm s13, s13, c5
mulm s10, s10, c4
adds s10, s14, s10
adds s10, s10, s13
addm s10, s10, c2
mulc c2, c1, c3
mulm s11, s11, c3
mulm s12, s12, c1
adds s5, s5, s12
adds s5, s5, s11
addm s5, s5, c2
adds s5, s5, s10
subs s10, s5, s8
startopen s9, s10
stopopen c1, c2
mulm s8, s8, c1
adds s6, s6, s8
mulm s7, s7, c2
adds s6, s6, s7
mulc c1, c1, c2
addm s6, s6, c1

Figure 2: Compiled sample program.

format as for basic instruction. Register and memory ad-
dresses are interpreted as the base address of the vector,
and constants as constants. Furthermore, the high-level
language allows to declare vectors of secret and clear val-
ues. Operations on those are compiled into vector in-
structions.

The key reason for enabling such vector instructions
is to enable SIMD processing of multiple programs in
the same thread. By introducing vectorized processing
we can obtain high SIMD parallelism without compro-
mising the speed of the compiler. We shall see later that
the SIMD execution of higher level operations, such as
floating point operations and AES evaluations, allow one
to obtain a higher throughput without sacrificing latency
too much. Thus the vectorized instructions give us a an-
other way of obtaining higher throughput via parallelism,
in addition to the execution of multiple tapes in multiple
threads.

5 Run Time Arithmetic

The runtime comes in two variants. One for working
with finite fields Fq where q is a “large” prime, say
q ≈ 2128. This runtime variant is more suited to gen-
eral purpose computations; it supports integer operations
and working on fixed and floating point numbers as we
shall describe later. Here we assume a statistical security
parameter of 40, i.e. we allow deviations in the statis-
tical distributions of the various shared value output of
2−40. The second runtime is for working with function-
alities more related to binary circuit descriptions, and it
works in the finite field F240 . The choice of this specific
finite field is to obtain a probability of an active adversary
cheating of 2−40, as well as to enable the efficient evalu-
ation of the AES functionality using the field embedding
technique described in [11]. We now discuss each variant
in turn:

5.1 The Large Prime Variant
Here we represent a signed t-bit integer value, where
t < 128, by its value modulo the 128-bit prime q. Us-
ing the basic embedding of the range [−2t−1,2t−1− 1]
into [0,q−1], we can then provide standard integer oper-
ations such as addition, multiplication and comparison.
Note however that “wrap around” will only occur in the
range [0,q−1] and not in [−2t−1,2t−1−1] unless special
code is produced to do so.

For some computations, we may wish to decompose a
secret shared integer into bits and then perform bitwise
operations on the resulting shared bits. This can be done
using fairly standard bit decomposition techniques [6],
but we achieve further efficiency gains through use of
shared bits from the preprocessing. In particular the fol-
lowing bit decomposition technique is used in the float-
ing point addition protocol of [1] which we use. We
pause to overview how a bit decomposition is performed
using the precomputed shared random bits: Given a
shared value 〈x〉 which is known to represent an inte-
ger which is t ≤ 128− 40 = 88 bits long, we use a set
of t + 40 shared bits {〈bi〉}t−1

i=0 (loaded via the bit op-
eration) to obtain t sharings of the m least significant
bits of x. The shared masking value 〈y〉 = ∑

t+39
i=0 2i 〈bi〉

is first computed, and applied to 〈x〉 to obtain 〈c〉 =
2t+40+1 + 2t + 〈x〉 − 〈y〉. The value 〈c〉 is then opened
and the result taken modulo 2m to obtain r = x− y. We
then take the m least significant bits of r, and the shared
bits {〈bi〉}m−1

i=0 , and execute the circuit for binary addition
on these to compute the result.

This last step requires us to efficiently evaluate binary
circuits for shared bit values over a large finite field. The
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usual approach is to execute a squaring for every XOR
operation, since a⊕ b = (a− b)2 over the integers for
binary a and b. This is relatively expensive; so we instead
adopt one of two different approaches.

• For the bitwise addition circuit used in bit decompo-
sition above, we use the technique from [26]. In this
circuit for every XOR of two bit values we also need
to compute their AND. If a,b ∈ {0,1} then com-
puting a∧ b is the same as computing their integer
product; and compute a⊕b is the the integer calcu-
lation a+b−2 ·a ·b, and so comes at no additional
cost (since a∧b is also needed).

• For more general binary circuits, the overhead of
multiplying at every XOR gate can be costly, so
we propose an alternative method for avoiding this.
We simply execute an addition operation instead of
XOR, and keep track of the maximum size of the re-
sulting shared integer. When the result may exceed
2128−40, or we need to return the final bit value, we
can reduce the integer modulo two by applying the
bit decomposition procedure (with m = 1) to output
the least significant bit. This allows us to emulate
binary circuits of reasonable depth at very little ex-
tra cost, bar the unavoidable overhead of arithmetic
modulo q.

Fixed and floating point arithmetic: In addition to inte-
ger types, our compiler supports fixed and floating point
arithmetic. Our fixed point arithmetic type consists of a
secret shared integer of size up to 64 bits, with the point
fixed at 32 binary places. Our secure floating point rep-
resentation is based on the IEEE single precision format,
where the significand has 24 bits of precision and the
exponent 8 bits. This allows both significands and ex-
ponents to be stored as 128-bit field elements, leaving
plenty of room for expansion after addition and multipli-
cation with a 40-bit statistical security parameter.

The results of floating point operations are compliant
to the IEEE standard, except we do not currently han-
dle errors for overflow or invalid operations. Clearly any
error handling performed must be secret to preserve pri-
vacy; we could use secret shared bits to handle error flags
(as described in [1]) but chose to omit this for simplicity.

Note that we always use deterministic truncation in
our protocols, and not the probabilistic rounding method
of [7]. Whilst more efficient, the probabilistic method
leads to lower accuracy and more complex analysis of
errors, and is impractical for operations like comparison,
where a deterministic result is required.

5.2 The F240 Variant
We also present results for a runtime based on secret
sharing over the field F240 . This field size is chosen to
enable us to upper bound the probability of an active ad-
versary going undetected by of 2−40, which is a common
value in previous work on actively secure MPC proto-
cols. In addition the field F240 enables us to efficiently
embed a copy of F28 within it; this was shown to be
useful in [11] in evaluating an AES functionality. In a
similar way we embed the binary field F2 into F240 thus
enabling the evaluation of binary circuits.

Unlike the case of the large prime characteristic field,
for the characteristic two fields, our offline phase only
produces triples, bits and input sharings. We shall see
in Section 6.2 that our runtime is able to evaluate the
AES functionality rather efficiently. In particular one can
obtain a factor of 100 improvement in either latency of
throughput on the previous best runtimes for AES eval-
uation with active security [11]. In addition in trading
throughput for latency one can always obtain a factor of
10 improvement in either of these values (and a factor of
100 improvement in the other) over the results in [11].
However, we shall see that the runtime is less efficient at
evaluating complex general binary circuits.

6 Experimental Results

Our basic experimental setup was as follows. We used
two machines with Intel i7-2600S CPU’s running at 2.8
GHz with 4GB of RAM, connected by a local area net-
work. Each machine represents a party to the computa-
tion. Our experimental setup could have been performed
with more than two parties with only a marginal decrease
in performance.

Each program was written using our system and then
compiled to bytecode tapes. Each tape was run `
times (with ` at least 50, the precise value depend-
ing on the experiment being carried out) sequentially in
a single thread, and then the experiment repeated us-
ing tapes which had been vectorized with our SIMD
instructions. For the SIMD experiments, a tape exe-
cuted n versions of the algorithm in parallel with all of
the communication batched together, for values of n in
{1,2,3,4,5,10,16,32,64,128}. Finally the same set of
experiments were carried out running in t threads in-
stead of one, for t ∈ {1,4,7}. The upper bound of seven
was chosen since our processors had eight cores and one
thread was acting as the controller thread.

For all experiments we measured performance using
throughput and latency. Latency is simply the average
execution time for n · t operations (obtained by dividing
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the total runtime by `), whilst throughput is the number
of operations executed per second. We plot these mea-
sures against other in the graphs that follow, showing
tradeoffs that are possible depending on the application.
Reading the graphs from left-to-right, the number n of
operations in parallel is increased; note that the first data
point always corresponds to n = 1, for purely sequential
operations. Higher values of n result is higher latency as
more data needs to be passed across the network in each
communication. However, we can also see for most func-
tionalities that at a certain point increasing n no longer
buys us any extra throughput, and indeed it can decrease
the throughput in some cases.

6.1 Arithmetic Circuits in Large Charac-
teristic

In this section we detail the performance of our runtime
when working in Fq, for q a 128-bit prime. The most ba-
sic operation interactive operation is multiplication of se-
cret shared values, for which we give timings below. We
then discuss integer comparison, where we assume the
input values are guaranteed to be 32 bit or 64 bit signed
integers. Integer comparison is, unlike for standard pro-
cessors, more expensive than multiplication. Having in-
teger comparison allows us to implement sorting of lists
with sorting networks. From comparison we move onto
computing on approximations to real number computa-
tions using fixed point and floating point arithmetic. Ta-
ble 6.1 summarizes the various costs and complexities of
the algorithms discussed in this section.

6.1.1 Integer Multiplication

The basic non-local operation performed by the run time
is executing an integer multiplication in the field Fq. This
requires a single round of communication, with each
player needing to send two elements in Fq to each other
player. In Figure 3 we present the how the latency and
throughput varies depending on how many threads are
used, and how many multiplications per thread are exe-
cuted in a SIMD like manner per thread.

6.1.2 Integer Comparison

Comparison of secret shared integers is a fundamen-
tal operation in secure computation, used extensively
throughout our fixed and floating point arithmetic below.
The protocols we use all subtract one input from the other
and compare the result to zero by extracting the most sig-
nificant bit without doing bitwise decomposition.
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Figure 3: Integer multiplication

We implemented two protocols described by Catrina
and de Hoogh [6] for comparison, one with logarith-
mic round complexity and one in constant rounds but
with slightly higher communication costs. The logarith-
mic rounds solution evaluates a binary circuit for com-
puting the carry bit from binary addition, using this to
obtain the comparison result. The constant rounds vari-
ant takes a different approach, using an efficient prefix
multiplication protocol to compute the prefix products
pi = ∏

k
j=i(d j + 1) = 2∑

k
j=i d j , where di = ai ⊕ bi, from

which the comparison bit can be derived. The prefix
multiplication by Damgård et al. [8] works as follows:
Given non-zero inputs x0,x1,x2, . . . opening the masked
values x0a−1

0 ,a0x1a−1
1 ,a1x1a−1

2 , . . . for random non-zero
a0,a1, . . . allows to compute a0a1,a0a1a2, . . . in a con-
stant number of rounds. Catrina and de Hoogh also gave
a second constant rounds protocol with better commu-
nication complexity, however this exploits properties of
Shamir secret sharing which we cannot use.

For 32-bit comparison (resp. 64-bit comparison) op-
erations with a 40-bit statistical security parameter, the
logarithmic rounds solution requires six (resp. seven)
rounds of communication, compared with four for the
constant rounds protocol. However, the amount of data
transmitted is 20% smaller; 121 (resp. 249) required
openings for the logarithmic round version as opposed
to 155 (resp. 315) for the constant round version (32-
bit). Our experiments indicate that the saving of one
round in the constant variant is dominated by the com-
munication cost of sending more data in each round.
The resulting performance is around 20% slower for
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Protocol Rounds Triples Bits Inverses
Multiplication 1 1 0 0
32-Bit Comparison (Constant Rounds) 4 61 143 31
32-Bit Comparison (Logarithmic Rounds) 5 52 72 0
64-Bit Comparison (Constant Rounds) 4 125 207 63
64-Bit Comparison (Logarithmic Rounds) 6 114 104 0
Fixed Point Mult. 7 63 168 0
Floating Point Mult. 15 95 218 0
Floating Point Add 48 323 548 0
Fixed Point Comp. 10 73 159 0
Floating Point Comp. 7 124 104 0

Table 2: Round and communication complexities of the large prime field protocols.
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Figure 4: Integer comparison (logarithmic rounds pro-
tocol).

the constant round method compared to the logarith-
mic round method. Therefore we used the logarithmic
rounds protocol for all comparison and higher-level oper-
ations. Note that our implementations have slightly dif-
fering round and communication complexities to those
stated in [6], firstly because we can generate shared bits
without interaction using our preprocessing, and also as
their constant rounds solution uses a special public out-
put multiplication protocol, which cannot be applied to
our setting.

6.1.3 Sorting

Based on integer comparison, we implemented odd-even
merge sorting networks similarly to Jónsson et al. [16].

Our results are shown in Figure 5. For the implemented
sizes they are similar to the results by Jónsson et al. Note
that the figures are based on only one sequential sorting
operation, using one thread for shorter lists and seven
threads for longer lists. The latter improves the perfor-
mance because sorting networks are highly parallelizable
by design.
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Figure 5: Sorting.

Sorting networks are the most efficient known method
for fully private sorting because the most sorting algo-
rithms rely on branching, which is not possible in multi-
party computation if the condition is supposed to stay
secret. Sorting networks only use compare-and-swap op-
erations, which guarantee that the first output is the min-
imum of the two inputs. It is straightforward to imple-
ment this operation using comparison. Odd-even merge
sorting networks have complexity O(n · log2 n). While
this is not optimal, there is no known sorting network
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with complexity O(n · logn) that is efficient for practical
parameters.

6.1.4 Fixed and Floating Point Arithmetic

As explained earlier fixed point arithmetic is imple-
mented using a secret shared integer of size up to 64
bits, with the point fixed at 32 binary places. Here ad-
dition is simply a local operation (as with integer arith-
metic) and multiplication consists of multiplying the two
integers and truncating the result by 32 bits. This is es-
sentially the same cost as a 32-bit comparison operation.
The relevant performance is presented in Figures 7 and
8.
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Figure 6: Floating point addition

We use the floating point protocols from [1] for addi-
tion, multiplication and comparison (see Figures 6, 7, 8).
From these operations other more complex floating com-
putations can be built up. As was also the case with inte-
ger comparison earlier, the complexities of our protocols
improve upon those stated in [1] due to the preprocessing
we use. Floating point protocols make extensive use of
comparison and bitwise addition protocols, for which us-
ing precomputed shared bits improves performance con-
siderably. Recall that our floating point operations are al-
most compliant to the IEEE standard for single precision
floating point numbers; the only deviation being how we
handle errors for overflow and invalid operations.

As can be seen in Figure 7, the difference in perfor-
mance between fixed and floating point multiplication is
not huge; floating point is only a factor of two slower. It
is in addition, however, where floating point operations
really suffer. This is due to the need to obliviously align
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Figure 7: Fixed and floating point multiplication

the exponents of both inputs, whereas fixed point addi-
tion is a simple local operation (as with integers). With
the comparison operation, floating point is slightly faster
due to the smaller lengths of integers involved, despite
the protocol being more complex.

Our throughput results compare favourably with those
for a passively secure, three-party protocol based on
Shamir secret sharing from [1]. They had a similar setup
to ours, also running on a local network, and our opera-
tions are roughly an order of magnitude faster when max-
imum parallelism is used, probably due to our sophisti-
cated implementation techniques described earlier.

6.2 Circuits in Characteristic Two
For our experiments in characteristic two we settled
on the following six functionalities as exemplars: AES
(with and without the key schedule included), DES
(again with and without the key schedule included), MD5
and SHA-1. The reason for selecting these was firstly, as
has already been mentioned, AES is the standard exam-
ple in the field and secondly, the circuits for DES, MD5
and SHA-1 are readily available. In addition if one is
using AES as a prototypical PRF in an application it is
interesting to compare just how much more efficient it is
compared to other PRF’s used in various cryptographic
operations.

In Table 6.2 we present various statistics associ-
ated with these functionalities; how many multiplication
triples they consume, how many bits, and how many
rounds of communication are required, all for a single
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Functionality Rounds Triples Bits
AES (incl. Key Schedule) 50 1200 3200
AES (excl. Key Schedule) 50 960 2560
DES (incl. Key Schedule) 263 18124 0
DES (excl. Key Schedule) 261 18175 0
MD5 2972 29084 0
SHA-1 5503 37300 0

Table 3: Round and required pre-processed data for the various functionalities in characteristic two.
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Figure 8: Fixed and floating point comparison operation
(less than)

invocation of the functionality. Note, this latter figure
is determined automatically by our compilation strategy
to be the minimum necessary given the algorithm used
to compute the function. The DES, MD5 and SHA-1
functionalities were computed via their standard binary
circuit description whereas the AES functionality made
use of arithmetic description over F28 and the efficient
bit-decomposition method to compute the S-Box from
[10, 11].

6.2.1 AES

In this functionality we assume a single AES secret key
k, which has been shared between the parties. The goal
of the functionality is to evaluate the AES function on
a single block of public data, producing a shared output
ciphertext block. From Figure 9 we can see that hav-
ing a pre-expanded secret key shared between the parties
makes very little difference in the execution times. We
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Figure 9: AES runtimes

also see that with either four or seven threads a through-
put of roughly 1000 blocks per second is easily obtain-
able; with a latency of around 100ms. The smallest la-
tency comes when using a single thread and only batch-
ing up a single AES execution at a time; here we obtain
a latency of around 12ms, but only a throughput of 83
blocks per second. To see the low latency values more
explicitly we in Figure 10 zoom in on the lower left hand
corner of Figure 9. Note, that the performance we ob-
tain with our runtime is at least an order of magnitude
better than that obtained in [11], without introducing any
algorithmic improvements. Our improvement is purely
down to a deeper understanding of how to schedule and
execute MPC instructions.

6.2.2 DES

In Figure 11 we present a similar experiment for the DES
cipher. Notice, just as for AES there is little difference
between evaluating the cipher with a pre-expanded key
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Figure 10: AES runtimes (low latency values)
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Figure 11: DES runtimes

and having to evaluate the key schedule using MPC. Ex-
cept in the case of running seven threads, in which case
having to execute the key schedule significantly reduces
the throughput. The latency and throughput are about
ten times worse than what was obtained from AES. This
however is not (directly) because we are evaluating a bi-
nary circuit over F2 as opposed to working with bytes
in F28 , it is more a function of the number of rounds of
communication needed and the amount of data commu-
nicated in those rounds.

6.2.3 MD5 and SHA-1
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Figure 12: MD5 runtimes

When applying the runtime to the MD5 and SHA-
1 circuits one sees that the number of multiplica-
tions/rounds has an even more dramatic effect. The la-
tency increases and the throughput decreases as the num-
ber of rounds increases, and the number of triples con-
sumed increases. See Figures 12 and 13 for details.
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Figure 13: SHA-1 runtimes
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A Branching/Looping

Due to the way the precomputed data is processed the
runtime needs to know before executing a specific byte-
code tape within a thread how much precomputed data
will be consumed. This produces a particular issue in
relation to branching and looping. We distinguish three
cases:

• Loops where the number of iterations are known at
compile time.

• Conditional branches forwards (as in
if-then-else constructions).

• Conditional branches backwards (as in do-while
loops).

We note that conditional branching can only be executed
on opened values; we do not allow branching on shared
values. We now discuss each of the above three cases in
turn.

For loops where the number of iterations is known
at compile time, we can determine the amount of pre-
computed data used within the loop by simply counting
each instruction which loads data by the requisite num-
ber of times the loop is executed; with a suitable modi-
fication for nested loops. Forward conditional branches
essentially allow one to conditionally skip code portions;
thus by simply counting the total number of instructions
which load precomputed data we will obtain an upper
bound on the amount of precomputed data; this will be
enough for the runtime to allocate different portions of
the precomputed data to each bytecode tape within each
thread.

The main issue occurs with conditional branches back-
wards; these arise for loop constructions where the num-
ber of iterations cannot be determined at compile time.
Here a design decision has to be made, either we install
logic to cope with this case (which would incur a large
performance penalty) or we restrict the use of such con-
structs in some way. We decided to come up with the
following constraint, after considering various use-cases.
The main problem arises from not being able to allocate
portions of the existing pool of precomputed data to each
thread. Thus we impose a constraint on the main con-
trol thread in that it cannot execute any bytecode tape
containing a conditional backward branch with any other
thread at the same time. This means that tapes which
could in theory be executed concurrently will be exe-
cuted serially. Then the actual amount of precomputed
data consumed during the execution can be determined;
rather than estimated ahead of time. We found this com-
promise provided a suitable balance between efficiency

and applicability; we can process the single tape very
fast, at the expense of not being able to execute multiple
tapes in parallel for such situations.
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