
Zero-Knowledge Using Garbled Circuits

or How To Prove Non-Algebraic Statements Efficiently

Marek Jawurek1, Florian Kerschbaum1, and Claudio Orlandi2

1 SAP Research, Karlsruhe, Germany {marek.jawurek|florian.kerschbaum}@sap.com
2 Aarhus University, Denmark orlandi@cs.au.dk

Abstract. Zero-knowledge protocols are one of the fundamental concepts in modern cryptography and
have countless applications. However, after more than 30 years from their introduction, there are only
very few languages (essentially those with a group structure) for which we can construct zero-knowledge
protocols that are efficient enough to be used in practice.
In this paper we address the problem of how to construct efficient zero-knowledge protocols for generic
languages and we propose a protocol based on Yao’s garbled circuit technique.
The motivation for our work is that in many cryptographic applications it is useful to be able to prove
efficiently statements of the form e.g., “I know x s.t. y = SHA-256(x)” for a common input y (or other
“unstructured” languages), but no efficient protocols for this task are currently known.
It is clear that zero-knowledge is a subset of secure two-party computation (i.e., any protocol for
generic secure computation can be used to do zero-knowledge). The main contribution of this paper is
to construct an efficient protocol for the special case of secure two-party computation where only one
party has input (like in the zero-knowledge case). The protocol achieves active security and is essentially
only twice as slow as Yao’s garbled circuit protocol. This is a great improvement with respect to the
cut-n-choose technique to make Yao’s protocol actively secure, where the complexity grows linearly
with the security parameter.

Table of Contents

1 Introduction . 1
1.1 Protocol idea. 2
1.2 Related Work . 3

2 Preliminaries . 4
2.1 A Weak Flavor of Committing Oblivious Transfer . 5
2.2 Garbling Scheme Requirements . 5

3 Warm-up: Honest Verifier Zero-Knowledge . 7
4 Zero-Knowledge from Garbled Circuits . 8
5 Experimental Results . 10

5.1 Choosing the Building Blocks . 10
5.2 Experiments . 11

A Protocols for FCOT . 16
B Which Garbling Scheme Can Be Used? . 17
C A Relaxed OT Functionality . 19

1 Introduction

Zero-knowledge (ZK) protocols have countless applications in cryptography and therefore effi-
ciency is of paramount importance. Consequently, a huge effort has been put into designing ef-
ficient ZK protocols for specific tasks. In particular there are very efficient protocols for languages
with some algebraic structure. There are, for instance, efficient protocols for proving knowledge
and relations of discrete logarithms [Sch89,CDS94], for proving that RSA public keys are well
formed [CM99], for statements in post-quantum cryptography [BD10,JKPT12,MV03], for bilin-
ear equations [GS12,GSW10], for shuffles [BG12,KMW12] and frameworks for modular design of
zero-knowledge protocols [CKS11].

However, the only generic constructions for ZK protocols use Karp reductions to NP-complete
languages and are therefore too impractical to be used in practice. In particular, so far there has been
no efficient solution to problems that do not exhibit an algebraic structure. Examples for protocols
that could be used in many cryptographic applications are for instance, the problem of efficiently
proving statements of the form “I know x s.t. y = SHA-256(x)” or “I know k s.t. y1 = AESk(y2)”
(the common input is y in the first example and (y1, y2) in the second)3.

In this work we provide the first generic and efficient solution for proving any such statements
in zero-knowledge, by constructing a protocol based on Yao’s garbled circuits technique. The com-
plexity of our protocol is proportional to the size of the circuit of the NP verification function. To
support the validity of our efficiency claim, we present also a proof-of-concept implementation of
our protocol. The performance measurements of our prototypical implementation show the viability
of our protocol for realistic problems.

Zero-Knowledge and 2PC. Zero-knowledge proofs were introduced more than 30 years ago
by Goldwasser, Micali and Rackoff [GMR85]. A zero-knowledge argument (ZK) is an interactive
protocol that allows a prover P to persuade a verifier V of the validity of some NP statement y
by using the knowledge of a witness w. Informally, an honest prover should be able to convince an
honest verifier of the validity of the statements (completeness). Moreover, a zero-knowledge protocol
should give guarantees against corrupted parties: Even a malicious prover cannot persuade an honest
verifier of a false statement (soundness) and even a malicious verifier does not learn anything from
the execution of the protocol, except for the validity of the statement itself, hence the name “zero-
knowledge”.

Approximately at the same time, Yao [Yao82] introduced the problem of two-party secure
computation (2PC) and showed how to solve it using the famous “garbled circuits” construction.
In 2PC the parties hold secret inputs x1 and x2 respectively and want to jointly compute some
function z = f(x1, x2) while keeping their inputs secret.

Observe that ZK is a proper subset of 2PC: ZK is an instance of 2PC where there is an
asymmetry between the parties and only P holds an input w (the witness for the NP statement)
and where the function fy(w) outputs accept iff w is a valid witness for y (note that y here is not
a secret, and therefore is not considered as an input but as part of the circuit description).

However, with few notable exception (see the related work in Section 1.2), the techniques used to
implement efficient zero-knowledge protocols and the techniques used to implement efficient secure
computation are very different from each other.

3 Note that in both cases the prover is not only showing that the instance belongs to the language (both languages
are trivial), but moreover that the prover knows a valid witness for this. So these proofs are meaningful as we
believe that it is hard to compute such a witness.

1

ZK with 2PC techniques. From a very high-level point of view, our construction works as
follows: V and P run the standard (passive-secure) Yao protocol, where V acts as the circuit
constructor and P acts as the circuit evaluator. After the evaluation P sends V the output key
(this step can be seen as a conditional disclosure of secret [GIKM98,AIR01]). The security of Yao’s
protocol implies that a computationally bounded P cannot guess the output key corresponding to
the output value accept unless he has a valid witness for y.

This first, partial solution works in the case of a semi-honest verifier and it is described in
Section 3. However, this protocol is not zero-knowledge against a malicious V , who can mount all
the well-known active attacks against Yao’s protocol (garbling a function different than the one he
is supposed to, selective failure attack during the input phase [KS06] etc.).

Actively secure ZK. To make our protocol actively secure one can use off-the-shelf solutions for
two-party computation with active security, like the cut-n-choose technique. In cut-n-choose, the
circuit constructor sends multiple copies of the circuit to the the circuit evaluator, who chooses a
random subset of the circuits. Then the circuit constructor “opens” the chosen garbled circuits so
that the other party can verify that they garble the correct function, and then they evaluate the
remaining unopened garbled circuits. However, this technique slows the protocol down by a factor
proportional to the security parameter and therefore represents a big drawback in practice.

Our approach for active security is different and takes advantage of the difference between ZK
and 2PC. In the case of ZK the verifier V (i.e., the circuit constructor), has no secrets. Therefore,
after the protocol is completed, V can “open” the circuit and let P verify that it computes the
right function.

1.1 Protocol idea.

In a nutshell our actively secure protocol works as follows: P and V run the OTs, where P uses
as inputs the bits of his witness, and V inputs the keys for the input layer of the garbled circuit.
Then V sends the garbled circuit (if the employed OT has two rounds, the garbled circuit can be
sent with the second message of the OT). Now the prover can evaluate the circuit and retrieve the
output key S corresponding to the circuit output being “accept” or “reject”. However, the prover
does not reveal this key just yet. It rather commits to it and waits with revealing the actual value
until after the verifier “opens” the garbled circuit and the prover can check the honesty of the
verifier. Note that we need the OT protocol to have “committing” properties, as it is important for
the prover to verify that the keys revealed in this stage are consistent with the ones used previously
in the OT phase.

Applications. Private-key cryptographic primitives (such as block ciphers and hash functions) are
orders of magnitude faster than their public-key counterparts: this is mostly due to the fact that
the algebraic structure of many number-theoretic assumptions allows for more efficient attacks than
those for symmetric primitives. Therefore to achieve the same level of security, the parameters used
in public key cryptography are much bigger than the ones used in symmetric key cryptography.

However this extra algebraic structure allows for the construction of naturally efficient protocols
and advanced functionalities. For example, AES encryption is much faster than RSA encryption.
However, if one wants to be able to prove that the encrypted message has a particular structure (for
instance, in escrow applications) one needs to take into account the efficiency of the zero-knowledge

2

Informal Description for Zero-Knowledge Using Garbled Circuits

Prover’s input (y, w) Verifier’s input y

OT-Choose
(
{wi}i

)
- (

GC,
{
K0

i ,K
1
i

}
i
, S

)
← GS.Gen

(
1k, fy

)
�

OT-Send
({
K0

i ,K
1
i

}
i

)
, GC

S′ ← GS.Eval
(
GC, {Kwi

i }i
)

C = Comm (S′)
-

�

{
K0

i ,K
1
i

}
i

= OT-OpenAll()

if GS.Verify
(
fy, GC,

{
K0

i ,K
1
i

}
i

)
= 1

then: S’
else: reject

-

Output (S′
?
= S).

Fig. 1. An informal description of our zero-knowledge protocol.

protocol as well. So far, the only way for proving statements about unstructured languages was by
using expensive Karp reductions to NP-complete problem and then run zero-knowledge protocols for
such languages. Therefore public-key primitives are favored over symmetric key primitives because
the public key schemes are compatible with the most efficient zero-knowledge protocols. The results
of this paper change the state of things and allow for proving statements about cryptographic
protocols with no algebraic structure in an efficient way.

As a motivating real life example, consider the following event: In 2010 Julian Assange released
a “thermonuclear file insurance” i.e., a 1.4GB file allegedly consisting of an AES encryption of
highly sensitive information. This encrypted data has been released as a countermeasure to protect
WikiLeaks from being shut down by the U.S. government. The file had been extensively distributed
using peer-to-peer application, and therefore simply releasing the encryption key would allow a great
number of people to have access to this secret information. Note that it is important that the secret
key is short, and can therefore be released in a very short time and with a wide variety of means,
if one wants to.

It is natural to wonder whether this is just an empty threat (i.e., the file just contains random
data) or whether the encrypted file really contains sensitive information. To show that the file
actually contains sensitive information, one could imagine a randomized check in which the verifier
asks to see the decryption of a random, but small portion of the file. To do this without releasing
the decryption key a zero-knowledge protocol that “works well” with AES is required.

Finally, consider the Fiat-Shamir [FS86] heuristic for NIZK or signatures, widely used in practice
due to its extreme efficiency. In many application it is desirable to prove that “I know a proof of x”
or “I have a signature on m” without revealing the proof/signature. Doing so requires an efficient
way to prove non-algebraic statement about the hash-functions used to instantiate the random
oracle in the Fiat-Shamir construction.

1.2 Related Work

As discussed before, although zero-knowledge and secure computation are clearly related, few works
have been exploiting MPC techniques in zero-knowledge protocols. Some few notable exceptions

3

are listed here. Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07] use MPC protocols for honest
majority to achieve efficient zero-knowledge protocols; their idea is to have the prover simulate “in
its head” n parties running an MPC protocol for the verification function and commit to their
internal states. Then the verifier gets to pick a subset of the parties and check that their state is
consistent with an accepting verification. Intuitively, given that the MPC protocol is secure against
a minority of passively-corrupted players, the proof is zero-knowledge. This allows to construct
zero-knowledge protocols with very good asymptotic complexity.

Bitansky and Paneth [BP12] also use Yao garbled circuits in order to achieve zero-knowledge
protocols, however their constructions fall short of the goal and they only achieve witness hiding and
weak zero-knowledge (two strictly weaker properties than zero-knowledge). Moreover, their construc-
tion uses point obfuscation as a tool, and therefore their security reduction makes non black-box use
of the adversary and requires non-standard cryptographic assumptions. This is inherent, as their
goal is to build 3-round protocols and it is known that black-box 3-round zero-knowledge is impos-
sible under standard assumptions [GK96]. By relaxing the requirement on round-complexity (our
protocol can be made 5-rounds using a two-move OT) we are able to achieve full zero-knowledge
using only generic assumptions and our security reduction only makes black-box use of the adver-
sary.

Structure. The remainder of this paper is structured as follows: Section 2 introduces and defines
preliminaries for the presentation of our protocol. Section 3 then presents our protocol for an honest
verifier as a warm-up. Then, in Section 4, we build upon that and present our actively secure protocol
for a malicious verifier. Finally, in Section 5 we describe a prototype implementation and the results
of our experiments regarding its performance.

2 Preliminaries

Let [n] = {1, . . . , n}. If S is a set x ∈R S denotes a uniformly random element sampled from S. We
call a function ε : N→ R+ negligible if for every polynomial p and big enough n, ε(n) < 1/p(n).

Let L ⊂ {0, 1}∗ be a language in NP and ML be the language verification function i.e., for all
y ∈ L there exist a string w of length polynomial in the size of y s.t. ML(y, w) = accept and for
all y 6∈ L,w ∈ {0, 1}∗ then ML(y, w) = reject.

Defining Security. We use the standard security notion for static, malicious adversaries defined
as indistinguishability between the real world (where the adversary interacts with a honest party)
and the ideal world (where the adversary interacts with a simulator with access to the ideal func-
tionality), see [Can00,Can01,Gol04]. We will write our proofs in an hybrid model where real world
parties have oracle access to a given functionality, while in the ideal world the simulator “controls”
this functionality. We use the oblivious transfer (OT) functionality and a slight augmentation of it.

All our simulators are straight-line and the protocols achieve UC-security [Can01] when instan-
tiated with UC secure oblivious transfers, for instance [PVW08,DNO08].

For the sake of simplicity, we neglect some details from our ideal functionalities, such as the
fact that all the communication can be deleted and delayed by the adversary. This has no impact
on our proofs as we only prove static security.

4

Zero-Knowledge: The Ideal Functionality. We define the task of zero-knowledge with an ideal
functionality, as in [Can01]. This is a convenient way of defining all the properties we want from a
zero-knowledge protocol (including the proof-of-knowledge property) in a compact way.

The ideal functionality FR
ZK

– FR
ZK is parametrized by a binary relation R.

– On input (prove, sid, x, w) from P and (verify, sid, x′) from V , if x = x′ and R(x,w) = 1 output
(verified, x) to V .

Fig. 2. The ideal functionality FR
ZK for Zero-Knowledge

The ideal functionality FCOT

Choose: On input (choose, id, b) from the receiver, with b ∈ {0, 1}, if no messages of the form (choose, id, ·) is
present in memory, store (choose, id, b) and send (chosen, id) to the sender.

Transfer: On input (transfer, id, tid,m0,m1) from the sender, with m0,m1 ∈ {0, 1}k, if no messages of the
form (transfer, id, tid, ·, ·) is present in memory and a message of the form (chosen, id, b) is stored, send
(transferred, id, tid,mb) to the receiver.

Open-all: On input (open-all) from the sender, reveal all messages (transfer, id,m0,m1) to the receiver.
Then the functionality halts and does not reply to any further command.

Fig. 3. The ideal functionality FCOT for OT with Sender Verifiability

2.1 A Weak Flavor of Committing Oblivious Transfer

One of the ingredients in our construction is a flavor of oblivious transfer, defined in Figure 3.
Similar primitives appeared in literature under the name of verifiable OT [Cré89], committed
OT [CvdGT95], authenticated OT [NNOB12] just to name a few. The main difference here is
that we only need to have commitments to the sender’s input, and not the receiver, like in the
notion of committing OT [KS06]. In fact, our flavor of OT is even weaker than committing OT, as
we do not need to have individual commitments to the messages. The only extra property we need
is that after all the OTs have been performed, the sender can reveal all its input messages to the
receiver and cannot lie about them. This can in general be achieved by letting the sender commit
to a seed in the beginning of the protocol, and then run any secure OT protocol using the output
of a pseudorandom generator on the seed as its random tape. Then the the open-all phase can be
implemented by simply letting the sender reveal the seed and all the messages.

In Appendix A we show how some “natural” (and efficient) OT protocols already satisfy this
extra property and securely implement the FCOT functionality.

In Appendix C we show how the OT functionality can be further relaxed without impacting the
security of our protocol. We do not need the protocol to be “correct” against a malicious sender,
as long as the receiver will detect this during the open-all phase. This allows to use slightly less
secure (and potentially more efficient) OT protocols.

2.2 Garbling Scheme Requirements

We define a garbling scheme as a tuple GS = (GS.Gen,GS.Eval,GS.Verify) such that:

5

– The garbled circuit generation function GS.Gen is a randomized algorithm that on input of
a security parameter 1k and the description of a Boolean function f : {0, 1}n → {0, 1}, with
n = poly(k) and |f | = poly(k) outputs pairs of input keys {K0

i ,K
1
i }i∈[n], a garbled circuit GC

and a secret string S.
– The garbled circuit evaluation function GS.Eval is an algorithm that on input a set of n keys
{K ′i}i∈[n] outputs a string S∗.

– The garbled circuit verification function GS.Verify is an algorithm that on input a garbled
circuit GC, a description of a Boolean function f : {0, 1}n → {0, 1}, n pairs of input keys
{K0

i ,K
1
i }i∈[n] outputs accept or reject.

We require the following properties:

Definition 1 (Correctness). Let GS be a garbling scheme described as above. We say that GS
enjoys correctness if for all n = poly(k), f : {0, 1}n → {0, 1} and all x ∈ {0, 1}n s.t. f(x) = 1 the
following probability

Pr
(
GS.Eval(GC, {Kxi

i }i∈[n]) 6= S : (GC, {K0
i ,K

1
i }i, S)← GS.Gen(1k, f)

)
is negligible in k.

Intuitively, Definition 1 says that it is possible to recover the secret S by evaluating a honestly
generated circuit with input keys corresponding to a value x such that f(x) = 1.

Definition 2 (Soundness). Let GS be a garbling scheme described as above. We say that GS
enjoys soundness if for all n = poly(k), f : {0, 1}n → {0, 1} and all pairs x ∈ {0, 1}n s.t. f(x) = 0
and for all PPT A, the following probability:

Pr
(
A(f, x,GC, {Kxi

i }i∈[n]) = S : (GC, {K0
i ,K

1
i }i, S)← GS.Gen(1k, f))

)
is negligible in k.

Intuitively, Definition 2 says that no malicious evaluator can extract the secret S unless she has
access to input keys corresponding to a value x such that f(x) = 1.

Definition 3 (Verifiability). Let GS be a garbling scheme described as above. We say that GS
enjoys verifiability if for all n = poly(k), f : {0, 1}n → {0, 1} and all x, y ∈ {0, 1}n with x 6= y and
f(x) = f(y) = 1 and for all PPT A the probability:

Pr

(
GS.Eval(GC, {Kxi

i }i∈[n]) 6= GS.Eval(GC, {Kyi
i }i∈[n]) :

GS.Verify(f,GC, {K0
i ,K

1
i }i∈[n]) = accept

(GC, {K0
i ,K

1
i }i∈[n])← A(1k, f)

)
is negligible in k.

In addition, we require the existence of a expected polynomial time algorithm Ext s.t., for all x
satisfying f(x) = 1 the probability:

Pr

(
Ext(GC, {K0

i ,K
1
i }i∈[n]) 6= GS.Eval(GC, {Kxi

i }i∈[n]) :
GS.Verify(f,GC, {K0

i ,K
1
i }i∈[n]) = accept

(GC, {K0
i ,K

1
i }i∈[n])← A(1k, f)

)
is negligible in k.

6

Intuitively, Definition 3 says that even a malicious constructor cannot create circuits that are
successfully verifiable (GS.Verify = accept) and at the same time can output different values as a
function of the evaluator’s input x, as long as f(x) = 1. Jumping ahead, this is going to guarantee
that the verifier cannot distinguish between different witnesses used by the prover.

Moreover, we require that the input of the testing function is enough to extract the secret in
polynomial time. Note that this is trivial when it is easy to find an x s.t., f(x) = 1 but non-trivial
otherwise. Jumping ahead, this extra guarantee will enable our simulator to extract the secret S
from the input of the malicious verifier to the oblivious transfer protocol, and it is therefore crucial
to prove the zero-knowledge protocol. Intuitively, this is because this requirement ensures that the
verifier already knows the (unique) secret S when he sends the garbled circuit to the prover, and
therefore the verifier is not learning any information when he receives back the secret S as the
output of the circuit evaluation by the prover (given that the check passes).

It is natural at this point to ask if there exist garbling schemes satisfying this definition. In
Appendix B we discuss the most efficient Yao garbling schemes and argue how they satisfy all
these properties under reasonable assumptions. Correctness follows from the correctness of Yao’s
construction. Intuitively soundness follows from the privacy of Yao’s protocol (the output keys are
encrypted using a secure encryption scheme under the input keys). The last requirement is satisfied
by any garbling scheme good enough to be used in a cut-n-choose context. Note that the extraction
requirement is very natural in Yao’s scheme because, having access to all input keys, one can “fully
decrypt” every garbled gate iteratively and get access to the key corresponding to the output bit 1
even without computing an input x such that f(x) = 1.

The following claim can be easily derived from the result of [LP09]

Lemma 1 ([LP09]). Assuming the existence of one-way functions, there exist a garbling scheme
satisfying Definitions 1, 2 and 3.

3 Warm-up: Honest Verifier Zero-Knowledge

It is trivial to construct zero-knowledge proofs when the prover is semi-honest. However, it is in
some cases interesting to consider a relaxation of zero-knowledge in which the verifier is semi-honest
i.e., where the verifier follows the protocol correctly but then tries to extract additional information
about the prover’s witness from the transcript of the protocol. This notion can be found in the
literature under the name of honest-verifier zero-knowledge or HVZK.

In this section we start by presenting an efficient protocol for this scenario. Note however, that
our protocols are private coin zero-knowledge protocols and therefore standard transformations
from HVZK to full ZK cannot be used4.

Constructing HVZK protocols using garbled circuits is relatively easy, and the main idea is as
follows: the verifier, acting as the circuit constructor, constructs a Yao circuit that evaluates the
function fy. This function outputs 1 if R(y, w) = 1 otherwise it outputs 0. Then the parties run
n = |w| OTs, where V acting as the sender inputs the keys corresponding to the input wires and

4 In a public-coin zero-knowledge protocol, the verifier does not have any private randomness and is limited to
sampling random challenges and sending them to the prover. In this case it is possible to transform an HVZK
into a ZK by letting the verifier commits to his challenges ahead of time and/or by sampling them using a coin
flip protocol. In addition, public coin ZK protocols can be turned into non-interactive zero-knowledge protocols
(NIZK) using the Fiat-Shamir heuristic. This is not possible for our construction, as here the messages sent by the
verifier are not simply its random choices.

7

P inputs the bits of its witness (w1, . . . , wn). Now V sends the garbled circuit to P ,5 who evaluates
and sends V the output of the evaluation of the garbled circuit. The formal description of the
protocol is provided in Figure 4. Note that the algorithm GS.Verify is not needed in this case. Note
also that if the OT protocol has a two move form, then the whole protocol has only 3 moves (first
choose from P to V , then transfer and GC from V to P and finally S′ from P to V).

The protocol πHVZK.

Let GS = (GS.Gen,GS.Eval) be a garbling scheme. Let L be an NP language with |w| < n = poly(|y|) and
fy : {0, 1}n → {0, 1} be the verification function that outputs 1 if w is a valid witness for y.
Both parties have input y and a security parameter 1k. In addition, the prover P has input w = (w1, . . . , wn).

1. For all i ∈ [n], P sends (choose, i, wi) to FOT;
2. FOT sends V messages (chosen, i) (for all i ∈ [n]);
3. V runs (GC, {K1

i ,K
0
i }i∈[n], S)← GS.Gen(1k, fy);

4. For all i ∈ [n], V sends to FOT the input (transfer, i,Ki
0,K

i
1);

5. FOT sends P messages (transferred, i,K′i) (for all i ∈ [n]);
6. V sends GC to P ;
7. P runs S′ ← GS.Eval(GC, {K′i}i∈[n]) and sends S′ to V ;
8. V outputs accept iff S = S′;

Fig. 4. The protocol for honest-verifier zero-knowledge in the FOT-hybrid model

Theorem 1. Let GS be a garbling scheme satisfying Definition 1 and 2. Then protocol πHVZK in
Figure 4 securely implements the zero knowledge functionality FRZK in the presence of an actively
corrupted P or a passively corrupted V in the FOT-hybrid model.

Proof. When playing against a corrupted P ∗: the simulator S extracts P ∗’s input w∗ = (w∗1, . . . , w
∗
n)

from the first step by simulating the FOT functionality and the simulator continues the protocol
like an honest verifier with the only exception that at the end, it outputs accept iff w∗ is a valid
witness for y. We argue that the view of P ∗ in the real world and in a simulated execution are
computationally close as follows: up to the last step the view of P ∗ is distributed identically in
the two settings (the simulator acts as an honest verifier except for its final output), and due to
Definition 2 the probability that the corrupted P ∗ manages to make the real verifier output accept
when he does not input a valid witness in the OT phase is negligible.

The simulator can produce the view of a passively corrupted V ∗ by running the protocol as an
honest verifier would do. Note that, as we are working in the OT-hybrid model, the simulation is
perfect.

4 Zero-Knowledge from Garbled Circuits

In this section we describe our final protocol, that achieves full zero-knowledge also in the presence of
a malicious verifier. An intuitive explanation of the protocol has been provided in the introduction,
and therefore we proceed to formally define the protocol in Figure 5 and prove its security. Note
that the steps 1− 6 are the same as in the protocol πHVZK.

5 Note that this is the proper order of things. If the circuit is sent before the OTs then the garbling scheme needs
to be secure against adaptive attacks at the price of reduced efficiency, see [BHR12a].

8

The protocol πZK.

Let GS = (GS.Gen,GS.Eval,GS.Verify) be a garbling scheme. Let L be an NP language with |w| < n = poly(|y|)
and fy : {0, 1}n → {0, 1} be the verification function that outputs 1 if w is a valid witness for y.
Let Com be a computationally binding, computationally hiding commitment scheme, that in addition is non-
malleable w.r.t. GS6

Both parties have input y and a security parameter 1k. In addition, the prover P has input w = (w1, . . . , wn).

1. For all i ∈ [n], P sends (choose, i, wi) to FCOT;
2. FCOT sends V messages (chosen, i) (for all i ∈ [n]);
3. V runs (GC, {K1

i ,K
0
i }i∈[n], S)← GS.Gen(1k, fy);

4. For all i ∈ [n], V sends to FCOT the input (transfer, i,Ki
0,K

i
1);

5. FCOT sends P messages (transferred, i,K′i) (for all i ∈ [n]);
6. V sends GC to P ;
7. P runs S′ ← GS.Eval(GC, {K′i}i∈[n]); In case the function GS.Eval aborts, set S′ to ⊥;
8. P computes C = Com(S′, r) and sends C to V ;
9. V sends the message (open-all) to the FCOT functionality;

10. FCOT sends P , for all i ∈ [n], the values (transfer, i,Ki
0,K

i
1);

11. P runs GS.Verify(GC, {K0
i ,K

1
0}i∈[n]), if the output is not accept, P terminates the protocol. Otherwise, if

GS.Verify outputs accept, P sends (S′, r) to V ;

12. V outputs accept iff C
?
= Com(S, r) and S′

?
= S;

Fig. 5. The protocol for honest-verifier zero-knowledge in the FCOT-hybrid model

Theorem 2. Let GS be a garbling scheme satisfying Definition 1, 2 and 3 and Com be a compu-
tationally binding and computationally hiding commitment scheme. Then protocol πZK in Figure 4
securely implements the zero knowledge functionality FRZK in the presence of actively corrupted
parties in the FCOT-hybrid model.

Proof. When playing against a corrupted P ∗: the simulator S extracts P ∗’s input w∗ = (w∗1, . . . , w
∗
n)

from the first step by simulating the FCOT functionality and the simulator continues the protocol
like an honest verifier with the only exception that at the end, it outputs accept iff w∗ is a valid
witness for y. We argue that the view of P ∗ in the real world and in a simulated execution are
computationally close as follows: up to the last step the view of P ∗ is distributed identically in the
two settings (the simulator acts as an honest verifier except for its final output): as discussed, the
simulator only outputs accept when P ∗ uses a valid witness in the OT phase, while a real verifier
will accept if the value received from the prover in step 11 is a valid opening of the commitment
and S is consistent with the secret hidden in the the garbled circuit. Then as the prover cannot
break the binding property of the commitment scheme, then due to Definition 2 the probability
that the corrupted P ∗ manages to make the real verifier output accept when he does not input a
valid witness in the OT phase is negligible.

When playing against a corrupted V ∗: The simulator simply sends messages (chosen, i) to V ∗

and extracts V ∗’s input {(K∗)0i , (K∗)1i }i∈[n] from step 4 by simulating the FCOT functionality. It
then proceeds by checking that GS.Verify(GC, {(K∗)0i , (K∗)1i }i∈[n]) accepts: if GS.Verify accepts,

6 Intuitively, this means that seeing the garbled circuit GC, the input keys and the opening in step 9 does not help a
corrupted prover create and correctly open a commitment C for the secret S. To see why this is necessary, consider
an (artificial) garbling scheme that includes C = Com(S, r) in the description of the garbled circuit GC where r is
the xor of two of the input keys of GC. Now a malicious prover can simply send back to V this commitment C, wait
for V to perform open-all in step 9. At this point he can open the commitment and make V accept, completely
breaking the soundness of the protocol. Since the focus of this paper is on efficiency, we will just commit by using
a different hash-function than the one used by the circuit generator and achieve the desired property.

9

the simulator computes S∗ ← Ext(GC, {(K∗)0i , (K∗)1i }i∈[n]) and commits to it in step 8, waits to
receive the message (open-all) from V ∗ and then sends S′, r to V ∗.

In the other case, if GS.Verify rejects, the simulator commits to S′ = ⊥. Note that the simulator
sends the commitment C even if it already knows that the GS.Verify is going to fail. Now the
simulator waits to receive the message (open-all) from V ∗ and then terminates the protocol as an
honest prover would do.

We argue that this simulated view of a malicious verifier is indistinguishable from the view of
the interaction with a real prover: note that if the verifier “cheats” (i.e., sends keys and circuit that
make GS.Verify reject) then the simulator always commits to the value ⊥ in step 8 while an honest
prover might commit to a different value (i.e., the output of the evaluation function on the garbled
circuit with a specific set of input keys). Due to the hiding property of the commitment scheme this
does not significantly change the distribution of the view of the adversary: in this case in fact (both
in the simulated view and in the real world) the protocol ends at step 10, and the verifier does
not get to see the committed value. In the other case i.e., when the verifier behaves honestly and
the simulator commits to the secret value S, then the view of the adversary in the real world and
in the simulated execution is computationally close: this is guaranteed by Definition 3 that states
that the output of the circuit is unique and therefore independent from the actual witness used –
therefore the value committed by the simulator and the value committed by an honest prover are
the same except with negligible probability.

5 Experimental Results

To show that our protocol πZK can be used in practice we implemented it and measured its perfor-
mance. We stress that the goal of this section is not to show the best possible implementation of
our protocol, but to show that the overhead to get active security on top of passive security when
using garbled circuits for the case of zero-knowledge (as opposed to general 2PC) is very limited.

5.1 Choosing the Building Blocks

We chose only publicly available tools to implement our protocol, instead of creating an ad-hoc
implementation from scratch. While this negatively affects our performance, it allows anyone in-
terested in verifying our results to do so with only minimal effort.

Garbled Circuits. For the implementation of GS.Gen and GS.Eval we chose FastGC [HEKM11].
FastGC implements the evaluation of garbled circuits with state-of-the-art techniques like free-
XOR [KS08] or pipelining [HEKM11]. Furthermore we employed GCParser [DE12] that parses
circuit descriptions in an intermediate language for use with FastGC. This allows us to use the
circuits available at [ST12] with little additional manipulation.

Oblivious Transfer. We implemented Naor-Pinkas [NPS99] OT (NPOT) using the SCAPI li-
brary [EFLL12]. As SCAPI’s backend driver we chose the MIRACL Crypto SDK7 and used the
group of points of the Koblitz 224 curve. We tested the use of OT-extension, but due to the low
number of input bits in our applications (the witness size), we found that using OT-extension
produced worse results than simply using one OT per input bit.

7 https://certivox.com/solutions/miracl-crypto-sdk/

10

Commitment Scheme. The commitment scheme used by the prover in step 8 does not need
to be extractable or equivocable, and therefore can be simply implemented as Com(m, r) =
SHA-256(m||r). This is a computational hiding and binding commitment under the (mild) as-
sumption that SHA-256 is collision resistant and that the output SHA-256(·||r) for random r is
indistinguishable from a random string.

5.2 Experiments

We have measured performance in four experiments:

HVZK AES: P proves knowledge of private k so that c = AESk(x) for public plaintext x and
public ciphertext c using protocol πHVZK. AES Key expansion for k is performed in the circuit.
The bit lengths of the circuit’s inputs are: |k|2 = |c|2 = |x|2 = 128. This is essentially a passive
secure evaluation of AES, and therefore gives us a “base case” to measure the performance of
our protocol.

ZK AES: As HVZK AES but this time we run the complete πZK protocol.

MD5: P proves knowledge of private x so that h = MD5(x) for public hash h using πZK. The
circuit only performs one invocation of the MD5 compression function, x is padded outside the
circuit. The bit lengths of the circuit’s inputs are: |x|2 = 512, |h|2 = 128.

SHA-256: P proves knowledge of private x so that h = SHA-256(x) for public hash h using πZK.
The circuit only performs one invocation of the SHA-256 compression function, x is padded
outside the circuit. The bit lengths of the circuit’s inputs are: |x|2 = 512, |h|2 = 256

Implementation details: In all experiments both parties, prover and verifier, were executed on
the same “Intel(R) Core(TM) i7-2600 CPU 3.40GHz” and 16GBytes of RAM and averaged over
100 runs. However, prover and verifier had their own JVM and communicated over (local) network
sockets.8

Performance measurements: In Figure 1 we present our results. The individually measured
operations are characterized next9:

Circuit Parsing (1): P and V both independently parse the GC’s description in the intermediate
language. Furthermore this also includes some initializations. Clearly the time for parsing can
be amortized over multiple executions or could be precomputed once and for all.

Oblivious Transfers P and V run NPOT with the witness and the keys corresponding the the
input wires as inputs.

Circuit Generation/Evaluation: P and V evaluate the GC using the pipelining technique: Both
traverse the circuit in parallel and V creates and sends a garbled table (GTT) whenever he and
P encounter a gate. P decrypts the respective entry in the GTT. FastGC’s use of the free-XOR
technique only requires GTT for AND and OR gates. Finally, P commits to the GC’s output.

8 As shown in the table, the communication complexity of the protocol is just a few hundreds kilobytes, so moving
the protocol to a LAN should not change the timings significantly.

9 Note that those operations are quite different from the idealized version of πZK. The reason for this is that in the
“idealized” protocol V generates the whole circuit and then sends it to P . This generates a lot of idle time for the
parties, while to get more efficiency it is useful to have both parties work in parallel.

11

Circuit Parsing (2): During the circuit verification, the prover parses the circuit again. This
is just an implementation issue due to the “black-box” use of FastGC but could clearly be
optimized away.

Circuit verification: V sends P the seed it used for the random creation of wire labels of the
circuit and the OT. Furthermore, it also sends its inputs to the circuit to P . P starts evaluating
it in the role of V . P compares the output it creates (the GTTs) to the GTTs it received from V
previously. P accepts if both are equal for the entire GC. In this case it opens the commitment
and V verifies the opening.

Discussion of results: Our experiments show that thanks to our protocol we can prove complex
non-algebraic statements in only a few seconds.

We believe that our main contribution can be seen by comparing the timings of HVZK AES
and ZK AES. Our protocol achieves active security on top of passive security with a slowdown of
less than 20% with respect to the passive secure version, much better than the factor 2 we would
have predicted.

The absolute value of 1.7s for AES ZK shows the competitiveness of our approach versus the
standard techniques for active secure two-party computation: the best solution based on Yao on
standard hardware [SS11]10 reports a time of 192s for one AES evaluation. The GMW-based active
secure protocol in [NNOB12] requires 64s per AES instance (the timings go down to 2.5s but only
when running many instances in parallel).

We conjecture that all our timings could be reduced by a significant factor if we were willing
to sacrifice generality for performance: to see why, compare the timings for HVZK AES with
the timings for passive secure 2PC of AES reported in [HEKM11], performing almost the same
task11: they have a timing of 0.2s versus our 1.4s. We believe that the main reason for this (apart
from running the code on different hardware)12 is that the AES circuit is hard-coded in their Java
program and thus they do not perform circuit parsing at runtime – this generates also less overhead
during evaluation. Therefore we believe that an ad-hoc implementation of our protocol for a specific
circuit could run much faster than our prototype.
Acknowledgement. We thank Yan Huang for his support with FastGC and his OT implementation,
Stefan Tillich for his support with their circuits and Yael Ejgenberg for support for the SCAPI
framework. Finally we want to thank Omkant Pandey for pointing out that our construction requires
a non-malleable commitment.

10 [KSS12] reports better timings, but they run their experiments on machines with more than 60000 cores.
11 Their implementation performs the AES key expansion at the prover side – this is not a problem when the prover

is semi-honest but cannot be done in our case.
12 They also instantiate the NPOT in the multiplicative group of Zp with p = 1024 while we use the Koblitz 224

curve which is considered more secure.

12

AES Decrypt MD5 SHA256
HVZK ZK ZK ZK

Operation Prover Verifier Prover Verifier Prover Verifier Prover Verifier

Circuit Parsing (1) 239 ± 3 243 ± 4 239 ± 3 247 ± 3 336 ± 5 343 ± 3 565 ± 6 585 ± 9

Oblivious Transfers 731 ± 4 766 ± 5 736 ± 4 772 ± 5 2078 ± 7 2115 ± 7 2081 ± 7 2118 ± 8

Circuit Generation/Evaluation 335 ± 3 298 ± 3 332 ± 3 296 ± 3 605 ± 8 602 ± 8 1701 ± 7 1700 ± 7

Circuit Parsing (2) 91 ± 1 82 ± 1 240 ± 1

Circuit Verification 163 ± 1 410 ± 2 1059 ± 15

Total time 1404 ± 6 1667 ± 6 3617 ± 11 5761 ± 20

Data transferred 256256 ± 0 262022 ± 2 1069647 ± 3 3052635 ± 4

P ’s input bits 128 512 512

#Gates 6927 29211 91080

Table 1. Execution times and confidence intervals in milliseconds with confidence level 99%, averaged over 100
runs, rounded to ms. #Gates is the sum of AND and OR gates. The total runtime is the time (in ms) between the
establishment of the network connection and the point where V accepts/rejects. Data transferred is the number of
bytes exchanged between P and V . P ’s inputs indicates the number of input bits for which OTs have to be executed.
#Gates is the number of non-free gates in the circuits.

13

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods.
In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
119–135. Springer, 2001.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In TCC, pages 201–218, 2010.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In
EUROCRYPT, pages 263–280, 2012.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications to
one-time programs and secure outsourcing. In ASIACRYPT, pages 134–153, 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In ACM Confer-
ence on Computer and Communications Security, pages 784–796, 2012.

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In Ronald Cramer,
editor, TCC, volume 7194 of Lecture Notes in Computer Science, pages 190–208. Springer, 2012.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. FOCS, 2001.
Updated version at http://eprint.iacr.org/2000/067.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the
”free-XOR” technique. In TCC, pages 39–53, 2012.

[CKS11] Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable
zero-knowledge protocols. In ASIACRYPT, pages 449–467, 2011.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product of two safe
primes. In EUROCRYPT, pages 107–122, 1999.

[Cré89] Claude Crépeau. Verifiable disclosure of secrets and applications (abstract). In EUROCRYPT, pages
150–154, 1989.

[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and private multi-
party computation. In CRYPTO, pages 110–123, 1995.

[DE12] Samee Zahur David Evans, William Melicher. Interpreter for Garbled Circuits Intermediate Language,
2012. http://mightbeevil.org/gcparser/.

[DNO08] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally composable
oblivious transfer. In ICISC, pages 318–335, 2008.

[EFLL12] Yael Ejgenberg, Moriya Farbstein, Meital Levy, and Yehuda Lindell. Scapi: The secure computation
application programming interface. Cryptology ePrint Archive, Report 2012/629, 2012. http://crypto.
biu.ac.il/scapi.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private informa-
tion retrieval schemes. In Jeffrey Scott Vitter, editor, STOC, pages 151–160. ACM, 1998.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM J.
Comput., 25(1):169–192, 1996.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In Robert Sedgewick, editor, STOC, pages 291–304. ACM, 1985.

[Gol04] Oded Goldreich. Foundations of Cryptography Volume 2, Basic Applications. Cambridge University Press,
2004.

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, 2012.

[GSW10] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Groth-sahai proofs revisited. In Public Key
Cryptography, pages 177–192, 2010.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, STOC, pages 21–30. ACM, 2007.

14

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments and efficient zero-
knowledge proofs from learning parity with noise. In ASIACRYPT, pages 663–680, 2012.

[KMW12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A mix-net from any cca2 secure cryptosystem. In
ASIACRYPT, pages 607–625, 2012.

[KS06] Mehmet S. Kiraz and Berry Schoenmakers. A protocol issue for the malicious case of yao’s garbled circuit
construction. In In Proceedings of 27th Symposium on Information Theory in the Benelux, pages 283–290,
2006.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP (2), pages 486–498, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Towards billion-gate secure computation with
malicious adversaries. IACR Cryptology ePrint Archive, 2012:179, 2012.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers: Lattice
problems and more. In CRYPTO, pages 282–298, 2003.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In CRYPTO, pages 681–700, 2012.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In
ACM Conference on Electronic Commerce, pages 129–139, 1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, pages 239–252,
1989.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In EURO-
CRYPT, pages 386–405, 2011.

[ST12] Nigel Smart and Stefan Tillich. Circuits of basic functions suitable for mpc and fhe, 2012. http:

//www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.
[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164.

IEEE Computer Society, 1982.

15

A Protocols for FCOT

In this section we discuss the relationship between the FOT functionality and the FCOT functionality.
While it is clear that the FOT functionality cannot be used in a black box way to run FCOT, we argue
that any protocol based on computational assumptions can be used to implement FCOT. (Oblivious
transfer can be instantiated using non-computational assumptions, such as noisy channels, quantum
cryptography etc. We do not expect these kind of protocols to work in our context.) This can be
done by letting the sender commit to a random seed s at the beginning of the protocol and then use
the output of a pseudorandom generator PRG(s) as its random tape in the protocol. Then during
the open-all phase the sender reveals the seed and the messages and the receiver can check that
the messages are consistent.

In order to make the paper self-contained, we describe here two efficient OT protocols that can
be used to instantiate our construction, and discuss how those protocols already commit the sender
to his choice of messages.

OT with UC-Security. We consider the UC-secure OT protocol proposed in [PVW08], instan-
tiated using discrete logarithm. The reason for this choice is that the PVW OT appears to be the
most efficient protocol for UC-OT in the literature. Let (G, q, g) be the description of a group of
prime order q generated by g where the decisional Diffie-Hellman assumption is believed to hold.

CRS: The parties have access to a random string (g0, h0, g1, h1) ∈ G4.
Choose: R chooses a random α ∈R Zq, computes g = (gb)

α, h = (hb)
α and sends (g, h) to S;

Transfer: The sender operates in the following way:
1. S chooses random r0, s0, r1, s1 ∈R Z4

q and computes

u0 = gr00 h
s0
0 , v0 = gr0hs0

and
u1 = gr11 h

s1
1 , v1 = gr1hs1

2. S sends R the values (u0, w0) where w0 = v0 ·m0, and (u1, w1) where w1 = v1 ·m1;
Retrieve: R outputs: mb = wb · (ub)−α

In [PVW08] the authors prove that this protocol securely implement the FOT functionality in
the CRS-hybrid model. We can easily augment this protocol with the following procedure:

Open-All: S sends R the randomness r0, r1, s0, s1. R checks that

u0 = gr00 h
s0
0 and u1 = gr11 h

s1
1

and aborts if not. Otherwise, compute

v0 = gr0hs0 and v1 = gr1hs1

and output

m0 = w0 · v−10 and m1 = w1 · v−11

The sender cannot lie about the messages without breaking the discrete logarithm assumption:
the values u0, u1 can be seen as Pedersen commitments, and if the adversary can find two different
openings then the adversary can be used to find the discrete logarithms of hi in base gi for some
i ∈ {0, 1}.

16

Naor-Pinkas OT: A problem with PVW OT is that it requires a common-reference string. Naor
and Pinkas [NPS99] proposed a very efficient OT protocol in the plain model. It does not satisfy
full-simulatabilty as PVW, but in practice it seems to be a good enough choice and it requires fewer
exponentiations. The protocol proceeds as follows:

Setup: The sender chooses a random d ∈R G and sends it to the receiver.;

Choose: The receiver chooses a random α ∈R Zq, computes hb = gα and h1−b = d · (hb)−1, and
sends h0 to the sender.

Transfer The sender computes h1 = d · (h0)−1, and sends

(c0, c1, c2) = (hr0 ·m0, h
r
1 ·m1, g

r)

to the receiver.

Retrieve: R outputs: mb = cb · (c2)−α

This protocol can be augmented in the following way:

Open-All: The sender reveals r to the receiver, who checks that c2 = gr and in this case outputs

m0 = c0 · (h0)−r and m1 = c1 · (h1)−r

In this case the transfer message is a perfectly binding commitment to m0,m1, therefore no adver-
sary can send inconsistent values.

We remark that if we use this OT protocol in our construction the simulator cannot extract the
witness (i.e., the choice bits) of the prover/receiver, and in order to argue that the protocol πZK is
also a proof-of-knowledge we need to rely on some extra assumption on the garbling scheme or by
rewriting the proof in the random oracle model.

Saving on Communication Complexity: in both protocols the “Open-All” procedure simply
consists of having the sender reveal all of its internal coins to the receiver. In practice one could have
the sender producing his random tape by stretching a short seed with a pseudorandom generator.
Then the receiver can regenerate the random tape on his side and perform the same computation
as described above. This helps saving in communication complexity.

B Which Garbling Scheme Can Be Used?

The protocol described in Section 4 is compatible with every garbling schemes that can be used in
standard cut-n-choose protocols. In particular, it is possible to use very optimized garbling schemes.
To make the paper self-contained, we describe in this section such a garbling scheme that combines
the state of the art optimizations for Yao Gates i.e., free XOR [KS08], permutation bits [NPS99],
garbled row-reduction [NPS99].

This means that to garble a gate 4 evaluations of encryption are needed, and a garbled gate
consists of only 3 ciphertexts (therefore saving on communication complexity). The evaluation of
the gate consists of a single decryption.

17

How to garble gates. For the sake of exposition we will only describe how to garble NAND
gates – as those are complete for Boolean circuits. It is straightforward to see how to garble other
non-linear gates (remember that XOR-gates will be “for free”).

Free-XOR: When generating the circuit, the circuit constructor chooses a random ∆ ∈ {0, 1}k
and then, for each wire in the circuit, it will choose the key K0 corresponding to the bit 0 at
random in {0, 1}k and set K1 = K0 ⊕∆ for each wire in the circuit.
This allows to evaluate XOR gates for free: let L0, L1 ∈ {0, 1}k be the keys associated to the
left input wire and R0, R1 corresponding to the right input wire and O0, O1 the keys associated
to the output wire. Remember that L0 ⊕ L1 = R0 ⊕ R1 = O0 ⊕ O1 = ∆. Then, if the circuit
constructor sets O0 = L0⊕R0 it is easy to see that the circuit evaluator can use two keys La, Rb
(without knowing a, b) to compute Oa⊕b as follows:

La ⊕Rb = L0 ⊕ a ·∆⊕R0 ⊕ b ·∆ = (L0 ⊕R0)⊕ (a⊕ b) ·∆ = Oa⊕b

Encryption scheme: Let L,R be the input keys for a gate with identifier id and O the output
key. We define some key derivation function KDF and encrypt output key under the input keys
as follows:

C = KDF(L,R, id)⊕O

In our implementation we use the same KDF as FastGC i.e., we hash the input keys and the id
using SHA-1.
In [BHR12b], is suggested to use a different KDF based on the assumption that AES with a
random (constant) key behaves like a random permutation. This can lead to efficiency improve-
ments, especially when using new CPUs where AES encryption is implemented directly as a
machine instruction. The KDF in this case is, for some constant value const:

KDF(L,R, id) = (L⊕ 2R⊕ id)⊕ AESconst(L⊕ 2R⊕ id)

where 2R is multiplication in GF (2k).
Point-and-permute: We call the least significant bit of every key the permutation bit and write

pK = lsb(K) and we assume that lsb(∆) = 1. (This is not a problem as in our application the
prover will learn all input keys (and therefore ∆) and can therefore check it during GS.Verify.)
Then, for each gate in the circuit GS.Gen samples random L,R ∈ {0, 1}k and computes:
1. Define

ρ0 = pL ∧ pR
ρ1 = pL ∧ pR
ρ2 = pL ∧ pR
ρ3 = pL ∧ pR

2. Compute O0 = KDF(LpL , RpR , id)⊕ ρ0∆;
3. Compute:

α1 = Oρ1 ⊕ KDF(LpL , RpR , id)

α2 = Oρ2 ⊕ KDF(LpL , RpR , id)

α3 = Oρ3 ⊕ KDF(LpL , RpR , id)

18

4. Output (id, α1, α2, α3)
Evaluation: The function GS.Eval on input (id, α1, α2, α3), L

′, R′ does:
1. Define α0 = 0k.
2. Compute pL′ = lsb(L′) and pR′ = lsb(R′) and let j = 2pL′ + pR′ .
3. Compute O′ = αj ⊕ KDF(L′, R′, id);

Remember that the requirement for correctness is: Let (gg,O0)← GS.Gen(id, L0, R0, ∆), then
for all a, b ∈ {0, 1}

GS.Eval(gg, La, Rb) = Oa∧b

except with negligible probability over the choices of L0, R0, ∆ and the random coins of GS.Gen
and GS.Eval.

This is the case because, let L′ = La, R
′ = Rb, then lsb(L′) = a⊕pL and lsb(R′) = b⊕pR. Then

by construction ρj = a ∧ b and
αj = Oρj ⊕ KDF(La, Rb, id)

and therefore
O′ = Oρj = O(pL⊕a)∧(pR⊕b)

This garbling scheme can be proven secure under the assumption that AES (with a fixed keys)
behaves like a random permutation – see [BHR12b] and references therein. Note that, as with every
other free-XOR based construction, we need to assume that AES satisfies some kind of related key-
attack security [CKKZ12].

C A Relaxed OT Functionality

It turns out that while our zero-knowledge protocol in Section 4 is certainly secure when instantiated
using a FCOT functionality, this might be a bit of an overkill. We therefore introduce a second,
relaxed version of verifiable OT as described in Figure 6. This functionality is insecure in the sense
that it allows the sender to make the receiver’s output depend on the receiver choice bits. Note
that as our functionality allows for multiple OTs, this is actually a relaxation of the previous
functionality: while it is always possible for the sender to make the receiver output any function of
its input bit in a single instance of OT, this is not the case when considering multiple instances.
In particular, being able to make the output of the jth OT depending on the choice bits in the ith
OT, i 6= j, is a strong insecurity for an OT protocol.

On the other hand, if a malicious sender chooses to mount this attack, the functionality will
inform the receiver of the malicious behavior of the sender when the command open-all is invoked.

Therefore the functionality is sufficient for our needs in the zero-knowledge protocol. The reason
for describing this relaxation is that by relaxing the security requirement it might be possible to
implement FCOT with more efficient protocols than FOT.

Intuitively, we can directly plug this functionality in the protocol πZK and still argue that πZK
is secure. The argument is essentially the same as in the proof of Theorem 2: if a corrupted verifier
performs an illegal-transfer the simulator will know this and commit to the ⊥ value in step
8 (in the same way as the simulator does in πZK when the GS.Verify function outputs reject),
while an honest prover might evaluate the circuit on a set of maliciously chosen keys and commit
to some value that potentially leaks information about the witness. However, during the open-all

phase the honest prover will detect the cheating attempt and therefore abort the protocol.
It is an open problem to find protocols for OT (or OT-extension) that securely implement F−COT

but not FOT and are more efficient than the best known protocols that securely implement FOT.

19

The ideal functionality F−COT

Choose: Unchanged from FCOT.
Transfer: Unchanged from FCOT.
Illegal-Transfer: Let m be the number of (chosen, id) messages received by the sender so far and (b1, . . . , bm)

the selection bits input so far by the receiver. The ideal functionality accepts messages of the form
(illegal-transfer, id, tid, g) where g : {0, 1}m → {0, 1}k, with g an efficiently computable function and
outputs (transfer, id, tid, g(b1, . . . , bm)) to the receiver.

Open-all: On input (open-all) from the sender: if the ideal functionality received any messages of the
form (illegal-transfer, . . .) output (corrupted-sender) to the receiver, otherwise reveal all messages
(transfer, id,m0,m1) to the receiver.

Fig. 6. The ideal functionality F−COT for OT with Sender Verifiability with relaxed security

20

