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ON IDEMPOTENT D-NORMS

MICHAEL FALK

Abstract. Replacing the spectral measure by a random vector Z allows the

representation of a multivariate max-stable distribution with standard negative

margins via a norm, called D-norm, whose generator is Z. We investigate the

set of all generators in detail. This approach towards multivariate extreme

value distributions entails the definition of a multiplication type operation on

the set of D-norms leading to idempotent D-norms. We characterize the set

of idempotent D-norms. Iterating the multiplication provides a track of D-

norms, whose limit exists and is again a D-norm. If this iteration is repeatedly

done on the same D-norm, then the limit of the track is idempotent.

1. Introduction

A random vector (rv) η = (η1, . . . , ηd) is called standard max-stable (sms) if each

component follows the standard negative exponential distribution, i.e., P (ηi ≤ x) =

exp(x), x ≤ 0, 1 ≤ i ≤ d, and if for each n ∈ N

P

(

n max
1≤i≤n

η(i) ≤ x

)

= P
(

η ≤
x

n

)n

= P (η ≤ x) , x ≤ 0 ∈ R
d,

where η(1),η(2), . . . are independent copies of η. All operations on vectors such as

max or ≤ are meant componentwise.

The distribution function (df) G(x) := P (η ≤ x), x ∈ R
d, of a sms rv η is called

standard max-stable as well. The following characterization is a consequence of the

de Haan-Resnick-Pickands representation of a sms df, see, e.g., Falk et al. (2010,

Sections 4.2, 4.3).

Theorem 1.1. A function G : (−∞, 0]d → [0, 1] is a sms df ⇐⇒ there exists a

D-norm ‖·‖D on R
d such that

G(x) = exp (−‖x‖D) , x ≤ 0 ∈ R
d.
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A D-norm ‖·‖D on R
d is defined via a rv Z = (Z1, . . . , Zd) as follows. It is

required that Zi ≥ 0 a.s., E(Zi) = 1, 1 ≤ i ≤ d, together with the condition

(1) ‖Z‖ = const a.s.,

where ‖·‖ is an arbitrary norm on R
d. The D-norm corresponding to Z is then

defined by

‖x‖D := E

(

max
1≤i≤d

(|xi|Zi)

)

, x ∈ R
d,

and Z is called generator of ‖·‖D.

The letter D means dependence among the components of η, reflected by the

D-norm. If we take for example Zi = 1, 1 ≤ i ≤ d, then we obtain

‖x‖D = ‖x‖∞ := max
1≤i≤d

|xi| ,

which is the case of complete dependence η1 = · · · = ηd a.s. If Z is a random

permutation of the vector (d, 0, . . . , 0) ∈ R
d with equal probabilities, then we obtain

the L1-norm

‖x‖D = ‖x‖1 :=

d
∑

i=1

|xi| , x ∈ R
d,

which characterizes the case of complete independence of η1, . . . , ηd. These are the

two extreme cases of a D-norm and we obviously have

‖·‖∞ ≤ ‖·‖D ≤ ‖·‖1

for each D-norm ‖·‖D.

The initial characterization of a sms df G by de Haan and Resnick (1977) and

Pickands (1981) is formulated in terms of measure theory and based on a spectral

measure pertaining to G. This spectral measure is a finite measure on the unit

sphere in R
d, taken with respect to an arbitrary norm ‖·‖. A generator Z is the

probabilistic counterpart of the spectral measure, as its distribution equals essen-

tially the spectral measure normed to one; see, e.g., Falk et al. (2010, Sections 4.2,

4.3). Replacing the spectral measure by a generator enables, however, a differ-

ent perspective on multivariate extreme value theory (EVD); the following remark

provides an example.

Remark 1.2. Each sms rv η can be generated in the following way. Consider a

Poisson point process on [0,∞) with mean measure r−2dr. Let Vi, i ∈ N, be a

realization of this point process. Consider independent copies Z(1),Z(2), . . . of a

generator Z of the D-norm corresponding to η, which are also independent of the

Poisson process. Then we have

η =D −
1

supi∈N ViZ(i)
,
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which is a consequence of de Haan and Ferreira (2006, Lemma 9.4.7) and elemen-

tary computations.

The copula of an arbitrary sms df G(x) = exp (−‖x‖D), x ≤ 0 ∈ R
d, is given

by

C(u) = G(log(u)) = exp (−‖log(u)‖D) , u ∈ (0, 1)d.

As each multivariate max-stable df can be obtained from a sms df by just trans-

forming the margins (see, e.g., Falk et al. (2010, Lemma 5.6.8)), the copula of each

multivariate extreme value distribution is of the preceding form.

We have, moreover, by Taylor expansion of log(·) and exp(·) for x ≥ 0 ∈ R
d

lim
t↓0

1− C(1− tx)

t
= lim

t↓0

1− exp (−‖log(1 − tx)‖D)

t
= ‖x‖D ,

and, thus, ‖x‖D =: λ(x) is the stable tail dependence function introduced by Huang

(1992).

The function

D(t) :=

∥

∥

∥

∥

∥

(

t1, . . . , td−1, 1−

d−1
∑

i=1

ti

)∥

∥

∥

∥

∥

D

,

defined on
{

t ∈ [0, 1]d−1 :
∑d−1

i=1 ti ≤ 1
}

is known as Pickands dependence func-

tions, and we have

‖x‖D = ‖x‖1 D

(

|x1|

‖x‖1
, . . . ,

|xd−1|

‖x‖1

)

, x ∈ R
d,

which offers a different way to represent a sms df; see Falk et al. (2010, Section

4.3).

The generator of a D-norm is not uniquely determined. Take again the D-norm

‖·‖∞, which is generated by the constant rv Z = (1, . . . , 1). But ‖·‖∞ is generated

by any rv (ξ, . . . , ξ), where ξ ≥ 0 a.s. is a random variable with E(ξ) = 1:

E

(

max
1≤i≤d

(|xi| ξ)

)

=

(

max
1≤i≤d

|xi|

)

E(ξ) = ‖x‖∞ , x ∈ R
d.

Note that the rv (ξ, . . . , ξ) does not necessarily satisfy ‖(ξ, . . . , ξ)‖ = const a.s.

nor is it necessarily bounded. We, therefore, investigate in Section 2 the set of

generators in more detail and extend it to their maximum size.

Based on the componentwise multiplication of their generators, we introduce in

Section 3 a multiplication type operation on the set of D-norms. This leads to

idempotent D-norms, which are characterized in Section 4. Iterating the multipli-

cation provides a track of D-norms. We will establish in Section 5 the fact that the

limit of aD-norm track is an idempotent D-norm, if the multiplication is repeatedly

done with the same D-norm.
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The D-norm approach can be extended to functional extreme value theory, see

Aulbach et al. (2012). In the present paper, however, we restrict ourself to the

finite dimensional space.

2. The Set of Generators

In this section we drop the boundedness condition of a generator Z and, thus,

maximally extend the set of generators. In a preparatory step we drop condition

(1) on Z.

Lemma 2.1. Let the rv Z = (Z1, . . . , Zd) satisfy 0 ≤ Zi ≤ c a.s., E(Zi) = 1,

1 ≤ i ≤ d, for some constant c ≥ 1. Then Z is the generator of a D-norm ‖·‖D,

i.e.,

G(x) := exp (−E (‖xZ‖∞)) = exp (−‖x‖D) , x ≤ 0 ∈ R
d,

is a sms df.

Proof. Choose a constant K < 0 and a rv U that is on (0, 1) uniformly distributed

and independent of Z. Set

V :=

(

max

(

K,−
U

Z1

)

, . . . ,max

(

K,−
U

Zd

))

.

The constant K avoids division by zero. We obtain for x ≤ 0 ∈ R
d and n ∈ N large

enough

P
(

V ≤
x

n

)

= P

(

max

(

K,−
U

Zi

)

≤
xi

n
, 1 ≤ i ≤ d

)

= P

(

U ≥
|xi|

n
Zi, 1 ≤ i ≤ d

)

= P

(

U ≥
1

n
max
1≤i≤d

(|xi|Zi)

)

= 1−
1

n
E

(

max
1≤i≤d

(|xi|Zi)

)

by Fubini’s theorem. Let now V (1),V (2), . . . be independent copies of V . Then we

obtain for x ≤ 0 ∈ R
d and n ∈ N large

P

(

n max
1≤i≤n

V (i) ≤ x

)

= P
(

V ≤
x

n

)n

=

(

1−
1

n
E

(

max
1≤i≤d

(|xi|Zi)

))n

→n→∞ exp

(

−E

(

max
1≤i≤d

(|xi|Zi)

))

=: G(x).
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As G is continuous and is the pointwise limit of a sequence of df, with G(0) = 1,

limx→−∞ G(x) = 0, G is a df. Its max-stability G(x/n)n = G(x) is obvious. �

In the next auxiliary result we drop the boundedness condition of a generator.

Lemma 2.2. Let the rv Z = (Z1, . . . , Zd) satisfy Zi ≥ 0 a.s., E(Zi) = 1, 1 ≤ i ≤ d.

Then Z is the generator of a D-norm ‖·‖D, i.e.

G(x) = exp (−E (‖xZ‖∞)) =: exp (−‖x‖D) , x ≤ 0 ∈ R
d,

is a sms df.

Proof. Choose a constant c > 0 large enough such that Z̃
(c)
i := min(c, Zi) satisfies

µ
(c)
i := E

(

Z̃
(c)
i

)

> 0, 1 ≤ i ≤ d. Note that by the monotone convergence theorem

µ
(c)
i ↑ 1 as c ↑ ∞ for 1 ≤ i ≤ d. The rv Z(c) := (Z

(c)
1 , . . . , Z

(c)
d ) with Z

(c)
i :=

Z̃
(c)
i /µ

(c)
i , 1 ≤ i ≤ d, is by Lemma 2.1 the generator of the sms df G(c)(x) =

exp (−‖x‖D(c)), x ≤ 0 ∈ R
d. As

‖x‖D(c) = E
(∥

∥

∥xZ
(c)
∥

∥

∥

∞

)

→c→∞ E (‖xZ‖∞) =: ‖x‖D , x ∈ R
d,

by the dominated convergence theorem, we obtain

G(c)(x) →c→∞ G(x) := exp (−‖x‖D) , x ≤ 0 ∈ R
d,

and, thus, G is a sms df by repeating the arguments at the end of the proof of

Lemma 2.1. �

The set of generators of a D-norm on R
d is by Lemma 2.2 given by

Z := {Z = (Z1, . . . , Zd) with Zi ≥ 0 a.s. and E(Zi) = 1, 1 ≤ i ≤ d} .

Two generators Z(1),Z(2) are said to be equivalent, if they generate the same D-

norm, i.e., if

E
(∥

∥

∥xZ
(1)
∥

∥

∥

∞

)

= E
(∥

∥

∥xZ
(2)
∥

∥

∥

∞

)

= ‖x‖D , x ∈ R
d.

The set Z then divides into equivalence classes, denoted by Z‖·‖D
, i.e., Z‖·‖D

is the

set of those generators which generate the D-norm ‖·‖D.

Remark 2.3. Let ‖·‖ be an arbitrary norm on R
d. By condition (1) on a generator,

which uses the initial de Haan-Resnick-Pickands representation of a sms df (see,

e.g. Falk et al. (2010, Sections 4.2, 4.3)), each equivalence class Z‖·‖
D

contains a

generator Z = (Z1, . . . , Zd) with the additional property ‖Z‖ = const a.s.

If we choose in particular ‖·‖ = ‖·‖1, then ‖Z‖ =
∑d

i=1 Zi = const a.s., which,

together with E
(

∑d
i=1 Zi

)

= d implies const = d. As a consequence we, thus, ob-

tain in particular that each D-norm has a generator Z with the additional property
∑d

i=1 Zi = d. This will in particular be useful in the derivation of Proposition 4.2.
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Remark 2.4. The set of D-norms is closely related to the set of copulas. Let the

rv U = (U1, . . . , Ud) follow an arbitrary copula C on R
d, i.e., each component Ui

is on (0, 1) uniformly distributed. Then

Z := 2U

is, obviously, the generator of a D-norm. Note, however, that not each D-norm

can be generated this way. Take, for example, the bivariate independence D-norm

‖(x, y)‖1 = |x|+ |y| and suppose that there exists a rv (U1, U2) following a copula

such that

‖(x, y)‖1 = 2E (max (|x|U1, |y|U2)) , (x, y) ∈ R
2.

Choose x = y = 1. From the general equation

(2) max(a, b) =
a+ b

2
+

|a− b|

2
, a, b ∈ R,

we obtain

2 = 2E

(

U1 + U2

2
+

|U1 − U2|

2

)

= 1 + E (|U1 − U2|)

⇐⇒ E (|U1 − U2|) = 1

⇐⇒ |U1 − U2| = 1 a.s.

But as U1, U2 realize in (0, 1) a.s., we have |U1 − U2| < 1 a.s. and, thus, a contra-

diction. The bivariate D-norm ‖·‖1, therefore, cannot be generated by 2(U1, U2).

It is obvious that ‖·‖∞ on R
d with d ≥ 3 cannot be generated by 2U , as ‖1‖1 =

d > 2E (‖U‖∞).

Each logistic norm ‖x‖λ =
(

∑d
i=1 |xi|

λ
)1/λ

, x ≤ 0 ∈ R
d, 1 ≤ λ ≤ ∞, is a

D-norm. This is a consequence of the fact that C(u) = exp (−‖log(u)‖λ), u ∈

(0, 1]d, defines a copula on R
d, called Gumbel-Hougaard copula, see, e.g., Nelsen

(2006, Example 4.25), which is the copula of G(x) = exp (−‖x‖λ), x ≤ 0 ∈ R
d.

Generators of the extreme cases ‖·‖1 and ‖·‖∞ are given in Section 1. Explicit

generators of the general D-norm ‖·‖λ, λ ∈ (0,∞), however, seem to be an open

problem.

3. Multiplication of D-Norms

Our approach towards sms df enables the following multiplication-type operation

on D-norms. Choose Z(1),Z(2) ∈ Z with corresponding D-norms ‖·‖D(1) , ‖·‖D(2)

and suppose that Z(1), Z(2) are independent. Then

Z := Z(1)Z(2)
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is by Lemma 2.2 again a generator of aD-norm, which we denote by ‖·‖D(1)D(2) . Re-

call that all operations on vectors, such as the above multiplication, is meant com-

ponentwise. Clearly, the multiplication is commutative ‖·‖D(1)D(2) = ‖·‖D(2)D(1) .

The corresponding operation on a sms rv η is described in Remark 1.2.

Let, for instance, Z(2) be a generator of the D-norm ‖·‖∞. Then we obtain by

conditioning on Z(1)

‖x‖D(1)D(2) = E
(∥

∥

∥xZ
(1)Z(2)

∥

∥

∥

∞

)

=

∫

E
(∥

∥

∥xz
(1)Z(2)

∥

∥

∥

∞
| Z(1) = z(1)

)(

P ∗Z(1)
)(

dz(1)
)

=

∫

E
(∥

∥

∥xz
(1)Z(2)

∥

∥

∥

∞

)(

P ∗Z(1)
)(

dz(1)
)

=

∫

∥

∥

∥xz
(1)
∥

∥

∥

∞

(

P ∗Z(1)
)(

dz(1)
)

= E
(∥

∥

∥xZ
(1)
∥

∥

∥

∞

)

= ‖x‖D(1) , x ∈ R
d,(3)

i.e., ‖·‖D(1)D(2) = ‖·‖D(1) . The sup-norm ‖·‖∞ is, therefore, the identity element

within the set ofD-norms, equipped with the above multiplication. There is, clearly,

no other D-norm with this property.

When applied to the representation of an arbitrary sms rv η in Remark 1.2, this

implies that multiplication with an independent rv ξ ≥ 0, E(ξ) = 1, does not alter

its distribution:

η =D −
1

supi∈N ViZ(i)
=D −

1

supi∈N Viξ(i)Z(i)
,

where ξ(i), i ∈ N, are independent copies of ξ, also independent of Z(i), i ∈ N, and

the Poisson process {Vi : i ∈ N}.

Take, on the other hand, as Z(2) a generator of the D-norm ‖·‖1. Then we

obtain

‖x‖D(1)D(2) = E
(∥

∥

∥xZ
(1)Z(2)

∥

∥

∥

∞

)

=

∫

E
(∥

∥

∥xz
(1)Z(2)

∥

∥

∥

∞

)(

P ∗Z(1)
)(

dz(1)
)

=

∫ d
∑

i=1

|xi| z
(1)
i

(

P ∗Z(1)
)(

dz(1)
)

=

d
∑

i=1

|xi|E
(

Z
(1)
i

)
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=

d
∑

i=1

|xi| , x ∈ R
d,

i.e., ‖·‖D(1)D(2) = ‖·‖1. Multiplication with the independence norm ‖·‖1 yields the

independence norm and thus, ‖·‖1 can be viewed as the maximal attractor among

the set of D-norms. There is, clearly, no other D-norm with this property.

Applied to the representation of an arbitrary sms rv, this implies that

−
1

supi∈N
ViZ(i)Z̃(i)

=D η,

where η is a sms rv with independent components, if Z̃(i), i ∈ N, are independent

copies of a generator of ‖·‖1, also independent of Z(i), i ∈ N, and the Poisson

process {Vi : i ∈ N}.

4. Idempotent D-Norms

The maximum-norm ‖·‖∞ and the L1-norm ‖·‖1 both satisfy

‖·‖D2 := ‖·‖DD = ‖·‖D .

Such a D-norm will be called idempotent. The problem suggests itself to character-

ize the set of idempotent D-norms. This will be achieved in the present section. It

turns out that in the bivariate case ‖·‖∞ and ‖·‖1 are the only idempotent D-norms,

whereas in higher dimensions each idempotent D-norm is a certain combination of

‖·‖∞ and ‖·‖1.

Speaking in terms of rv, we will characterize in this section the set of generators

Z such that

η = −
1

supi∈N ViZ(i)
=D −

1

supi∈N
ViZ(i)Z̃(i)

,

where Z(i), Z̃(i), i ∈ N, are independent copies of Z, also independent of the

Poisson process {Vi : i ∈ N} on [0,∞), with intensity measure r−2dr, see Remark

1.2.

The following auxiliary result will be crucial for the characterization of idempo-

tent D-norms.

Lemma 4.1. Let X be a rv that a.s. attains only values in [−c, c] for some c > 0

and E(X) = 0. Let Y be an independent copy of X. If

E(|X + Y |) = E(|X |),

then either X = 0 or X ∈ {−m,m} a.s. with P (X = −m) = P (X = m) = 1/2 for

some m ∈ (0, c]. The reverse implication is true as well.
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Proof. Suppose that P (X = −m) = P (X = m) = 1/2 for some m ∈ (0, c]. Then,

obviously,

E(|X |) = m = E(|X + Y |).

Next we establish the reverse implication. Suppose that X is not a.s the constant

zero. Denote by F the df of X . Without loss of generality we can assume the

representation X = F−1(U1), Y = F−1(U2), where U1, U2 are independent, on

(0, 1) uniformly distributed rv and F−1(q) := inf {t ∈ R : F (t) ≥ q}, q ∈ (0, 1), is

the generalized inverse of F . The well known equivalence

F−1(q) ≤ t ⇐⇒ q ≤ F (t), q ∈ (0, 1), t ∈ R,

(see, e.g. Reiss (1989, equation (1.2.9))) together with Fubini’s theorem implies

E(|X + Y |)

= E
(∣

∣F−1(U1) + F−1(U2)
∣

∣

)

=

∫ 1

0

∫ 1

0

∣

∣F−1(u) + F−1(v)
∣

∣ du dv

= −

∫ F (0)

0

∫ F (0)

0

F−1(u) + F−1(v) du dv +

∫ 1

F (0)

∫ 1

F (0)

F−1(u) + F−1(v) du dv

+ 2

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv

= −

∫ F (0)

0

(

F (0)F−1(v) +

∫ F (0)

0

F−1(u) du

)

dv

+

∫ 1

F (0)

(

(1− F (0))F−1(v) +

∫ 1

F (0)

F−1(u) du

)

dv

+ 2

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv

= −2F (0)

∫ F (0)

0

F−1(v) dv + 2(1− F (0))

∫ 1

F (0)

F−1(v) dv

+ 2

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv

and

E(|X |) = −

∫ F (0)

0

F−1(u) du+

∫ 1

F (0)

F−1(u) du.

From the assumption E(|X + Y |) = E(|X |) we, thus, obtain the equation

0 = (1− 2F (0))

∫ F (0)

0

F−1(v) dv + (1 − 2F (0))

∫ 1

F (0)

F−1(v) dv
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+ 2

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv

or

0 = (1− 2F (0))

∫ 1

0

F−1(v) dv + 2

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv.

The assumption 0 = E(X) =
∫ 1

0 F−1(v) dv now yields

∫ F (0)

0

∫ 1

F (0)

∣

∣F−1(u) + F−1(v)
∣

∣ du dv = 0

and, thus,

(4) F−1(u) + F−1(v) = 0 for λ−a.e. (u, v) ∈ [0, F (0)]× [F (0), 1],

where λ denotes the Lebesgue-measure on [0, 1].

If F (0) = 0, then P (X > 0) = 1 and, thus, E(X) > 0, which would be a

contradiction. If F (0) = 1, then P (X < 0) > 0 unless P (X = 0) = 1, which we

have excluded, and, thus, E(X) < 0, which would again be a contradiction. We,

consequently, have established 0 < F (0) < 1.

As the function F−1(q), q ∈ (0, 1), is in general continuous from the left (see,

e.g., Reiss (1989, Lemma A.1.2)), equation (4) implies that F−1(v) is a constant

function on (0, F (0)] and on (F (0), 1), precisely,

F−1(v) =







−m, v ∈ (0, F (0)],

m, v ∈ (F (0), 1),

for some m ∈ (0, c]. Note that the representation X = F−1(U1) together with the

assumption that X is not a.s. the constant zero, implies m 6= 0. The condition

0 = E(X) =

∫ F (0)

0

F−1(v) dv +

∫ 1

F (0)

F−1(v) dv = m(1− 2F (0))

implies F (0) = 1/2 and, thus,

X = F−1(U1) =







m, U1 > 1
2 ,

−m, U1 ≤ 1
2 ,

which is the assertion. �

The next Proposition is the first main result of this section.

Proposition 4.2. A bivariate D-norm ‖·‖D is idempotent ⇔ ‖·‖D ∈ {‖·‖1 , ‖·‖∞}.
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Proof. It suffices to establish the implication

‖·‖D2 = ‖·‖D , ‖·‖D 6= ‖·‖∞ =⇒ ‖·‖D = ‖·‖1 .

Let Z(1) =
(

Z
(1)
1 , Z

(1)
2

)

, Z(2) =
(

Z
(2)
1 , Z

(2)
2

)

be independent and identically

distributed generators of ‖·‖D. According to Remark 2.3 we can assume that Z
(1)
1 +

Z
(1)
2 = 2 = Z

(2)
1 + Z

(2)
2 . Put X := Z

(1)
1 − 1, Y := Z

(2)
1 − 1. Then X,Y are

independent and identically distributed withX ∈ [−1, 1], E(X) = 0. From equation

(2) we obtain the representation

E
(

max
(

Z
(1)
1 Z

(2)
1 , Z

(1)
2 Z

(2)
2

))

= E

(

Z
(1)
1 Z

(2)
1

2
+

Z
(1)
2 Z

(2)
2

2

)

+
1

2
E
(∣

∣

∣Z
(1)
1 Z

(2)
1 − Z

(1)
2 Z

(2)
2

∣

∣

∣

)

= 1 + E
(∣

∣

∣Z
(1)
1 − 1 + Z

(2)
1 − 1

∣

∣

∣

)

= 1 + E(|X + Y |)

as well as

E
(

max
(

Z
(1)
1 , Z

(2)
2

))

= 1 + E(|X |).

Lemma 4.1 now implies that P (X = m) = P (X = −m) = 1/2 for some m ∈ (0, 1].

It remains to show that m = 1.

Set x = 1 and y = a, where 0 < a < 1 satisfies a(1 + m) > 1 − m. Then

a(1 +m)2 > (1−m)2 as well, and we obtain by equation 2

‖(x, y)‖D2 = E
(

max
(

Z
(1)
1 Z

(2)
1 , a

(

2− Z
(1)
1

)(

2− Z
(2)
1

)))

=
1

4
max

(

(1−m)2, a(1 +m)2
)

+
1

4
max

(

(1 +m)2, a(1−m)2
)

+
1

2
max

(

1−m2, a(1−m2)
)

=
1

4
a(1 +m)2 +

1

4
(1 +m)2 +

1

2
(1 −m2)

=
1

4
(1 +m)2(1 + a) +

1

2
(1 −m2)

and

‖(x, y)‖D = E
(

max
(

Z
(1)
1 , a

(

2− Z
(1)
1

)))

=
1

2
max(1 +m, a(1−m)) +

1

2
max(1−m, a(1 +m))

=
1

2
(1 +m) +

1

2
a(1 +m)

=
1

2
(1 +m)(1 + a).
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From the equality ‖(x, y)‖D2 = ‖(x, y)‖D and the fact that 1 + m > 0 we, thus,

obtain

1

4
(1 +m)(1 + a) +

1

2
(1−m) =

1

2
(1 + a)

⇐⇒ (m− 1)(a− 1) = 0

⇐⇒ m = 1,

which completes the proof. �

Next we will extend Proposition 4.2 to arbitrary dimension d ≥ 2. Denote by

ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ R
d the i-th unit vector in R

d, 1 ≤ i ≤ d, and let ‖·‖D

be an arbitrary D-norm on R
d. Then

‖(x, y)‖Di,j
:= ‖xei + yej‖D , (x, y) ∈ R

2, 1 ≤ i < j ≤ d,

defines a D-norm on R
2, called bivariate projection of ‖·‖D. If Z = (Z1, . . . , Zd) is

a generator of ‖·‖D, then (Zi, Zj) generates ‖·‖Di,j
.

Proposition 4.3. Let ‖·‖D be a D-norm on R
d such that each bivariate projection

‖·‖Di,j
is different from the bivariate sup-norm ‖·‖∞. Then ‖·‖D is idempotent ⇔

‖·‖D = ‖·‖1.

Proof. If ‖·‖D is idempotent, then each bivariate projection is an idempotent D-

norm on R
2 and, thus, each bivariate projection is by Proposition 4.2 necessarily

the bivariate L1-norm ‖·‖1. This implies bivariate independence of the margins of

the sms df G(x) = exp (−‖x‖D), x ≤ 0 ∈ R
d. It is well-known that bivariate inde-

pendence of the margins of G implies complete independence (see, e.g., Falk et al.

(2010, Theorem 4.3.3)) and, thus, ‖·‖D = ‖·‖1 on R
d. �

If we allow bivariate complete dependence, then we obtain the complete class of

idempotent D-norms on R
d as mixtures of lower-dimensional ‖·‖∞- and ‖·‖1-norms.

To this end we will first introduce the complete dependence frame of a D-norm.

Let D be an arbitrary D-norm on R
d such that at least one bivariate projection

‖·‖Di,j
equals ‖·‖∞ on R

2. Then there exist nonempty disjoint subsets A1, . . . , AK

of {1, . . . , d}, 1 ≤ K < d, |Ak| ≥ 2, 1 ≤ k ≤ K, such that
∥

∥

∥

∥

∥

∑

i∈Ak

xiei

∥

∥

∥

∥

∥

D

= max
i∈Ak

|xi| , x ∈ R
d, 1 ≤ k ≤ K,

and no other projection
∥

∥

∑

i∈B xiei
∥

∥

D
, B ⊂ {1, . . . , d}, |B| ≥ 2, B 6= Ak, 1 ≤ k ≤

K, is the sup-norm ‖·‖∞ on R
|B|. We call A1, . . . , AK the complete dependence

frame (CDF) of ‖·‖D. If there is no completely dependent bivariate projection of

‖·‖D, then we say that its CDF is empty.
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To illustrate the significance of A1, . . . , AK , take a sms rv η = (η1, . . . , ηd) with

df G(x) = exp (−‖x‖D), x ≤ 0 ∈ R
d. Then the sets A1, . . . , AK assemble the

indices of completely dependent components ηi = ηj a.s., i, j ∈ Ak, and the sets Ak

are maximally chosen, i.e., we do not have ηi = ηj a.s. if i ∈ Ak for some j ∈ A∁
k.

The next result characterizes the set of idempotent D-norms with at least one

completely dependent bivariate projections.

Theorem 4.4. Let ‖·‖D be an idempotent D-norm with non empty CDF A1, . . . , AK .

Then we have

‖x‖D =

K
∑

k=1

max
i∈Ak

|xi|+
∑

i∈{1,...,d}\∪d
k=1Ak

|xi| , x ∈ R
d.

On the other hand, the above equation defines for each set of nonempty disjoint

subsets A1, . . . , AK of {1, . . . , d} with |Ak| ≥ 2, 1 ≤ k ≤ K < d, an idempotent

D-norm on R
d with CDF A1, . . . , AK .

Proof. Let η = (η1, . . . , ηd) be a sms rv with df G(x) = exp (−‖x‖D), x ≤ 0 ∈ R
d.

Then we have for x ≤ 0 ∈ R
d

G(x) = exp (−‖x‖D)

= P (ηi ≤ xi, 1 ≤ i ≤ d)

= P

(

ηk∗ ≤ min
i∈Ak

xi, 1 ≤ k ≤ K; ηj ≤ xj , j ∈
(

∪K
k=1Ak

)∁

)

,

where k∗ ∈ Ak is for each k ∈ {1, . . . ,K} an arbitrary but fixed element of Ak. The

rv η∗ with joint components ηk∗ , 1 ≤ k ≤ K, and ηj , j ∈
(

∪K
k=1Ak

)∁
, is a sms rv

of dimension less than d, and η∗ has no pair of completely dependent components.

The rv η∗ might be viewed as the rv η after the completely dependent components

have been removed. Its corresponding D-norm is, of course, still idempotent. From

Proposition 4.3 we obtain its df, i.e.,

G(x) = exp






−

K
∑

k=1

∣

∣

∣

∣

min
i∈Ak

xi

∣

∣

∣

∣

−
∑

j∈(∪K
k=1Ak)

∁

|xj |







= exp






−

K
∑

k=1

max
i∈Ak

|xi| −
∑

j∈(∪K
k=1Ak)

∁

|xj |






, x ≤ 0 ∈ R

d,

which is the first part of the assertion.

Take, on the other hand, a rv U that is on the set of integers {k∗ : 1 ≤ k ≤ K}∪
(

∪K
k=1Ak

)∁
uniformly distributed. Put m := K +

∣

∣

∣

(

∪K
k=1Ak

)∁
∣

∣

∣ and set for i =
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1, . . . , d

Zi :=







m, i ∈ Ak,

0 otherwise,

if U = k∗, 1 ≤ k ≤ K, and

Zi :=







m, i = j,

0 otherwise,

if U = j ∈
(

∪K
k=1Ak

)∁
. Then E(Zi) = 1, 1 ≤ i ≤ d, and

E

(

max
1≤i≤d

(|xi|Zi)

)

=
∑

j∈{k∗: 1≤k≤K}∪(∪K
k=1Ak)

∁

E

(

max
1≤i≤d

(|xi|Zi) 1(U = j)

)

=
K
∑

k=1

max
i∈Ak

|xi|+
∑

j∈(∪K
k=1Ak)

∁

|xj | , x ∈ R
d.

It is easy to see that this D-norm is idempotent, which completes the proof. �

The set of all idempotent trivariate D-norms is, for example, given by

‖(x, y, z)‖D =











































max(|x| , |y| , |z|)

max(|x| , |y|) + |z|

max(|x| , |z|) + |y|

max(|y| , |z|) + |x|

|x|+ |y|+ |z|

,

where the three mixed versions are just permutations of the arguments and might

be views as equivalent.

5. Tracks of D-Norms

The multiplication of D-norms D(1), D(2), . . . on R
d can obviously be iterated:

‖·‖∏n+1
i=1 D(i) := ‖·‖D(n+1)

∏
n
i=1 D(i) , n ∈ N.

This operation is commutative as well. In this section we investigate such D-norm

tracks ‖·‖∏n
i=1 D(i) , n ∈ N. We will in particular show that each track converges to

an idempotent D-norm if ‖·‖D(i) = ‖·‖D, i ∈ N, for an arbitrary D-norm D on R
d.

We start by establishing several auxiliary results. The first one indicates in

particular that multiplication of D-norms decreases the dependence among the

components of the corresponding sms rv.
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Lemma 5.1. We have for arbitrary D-norms ‖·‖D(1) , ‖·‖D(2) on R
d

‖·‖D(1)D(2) ≥ max (‖·‖D(1) , ‖·‖D(2)) .

Proof. Let Z(1), Z(2) be independent generators of ‖·‖D(1) , ‖·‖D(2) . We have for

x ∈ R
d by conditioning on Z(2) as in equation (3)

(5) ‖x‖D(1)D(2) = E
(∥

∥

∥xZ
(1)Z(2)

∥

∥

∥

∞

)

= E
(∥

∥

∥xZ
(2)
∥

∥

∥

D(1)

)

.

Note that

(6) ‖x‖D(1) =
∥

∥

∥xE
(

Z(2)
)∥

∥

∥

D(1)
=
∥

∥

∥E
(

xZ(2)
)∥

∥

∥

D(1)
.

Put

T (x) := ‖x‖D(1) , x ∈ R
d.

Then T is a convex function by the triangle inequality and the homogeneity satisfied

by any norm. We, thus, obtain from Jensen’s together with equations (5) and (6)

‖x‖D(1)D(2) = E
(∥

∥

∥xZ
(2)
∥

∥

∥

D(1)

)

= E
(

T
(

xZ(2)
))

≥ T
(

E
(

xZ(2)
))

=
∥

∥

∥E
(

xZ(2)
)∥

∥

∥

D(1)

= ‖x‖D(1) .

Exchanging Z(1) and Z(2) completes the proof. �

Proposition 5.2. Let ‖·‖D(n) , n ∈ N, be a set of arbitrary D-norms on R
d. Then

the limit of the track

lim
n→∞

‖x‖∏n
i=1 D(i) =: f(x)

exists for each x ∈ R
d and is a D-norm, i.e., f(·) = ‖·‖D.

Proof. From Lemma 5.1 we know that for each x ∈ R
d and each n ∈ N

‖x‖∏n
i=1 D(i) ≤ ‖x‖∏n+1

i=1 D(i) .

As eachD-norm is bounded by the L1-norm, i.e., ‖x‖∏n
i=1 D(i) ≤ ‖x‖1, the sequence

‖x‖∏n
i=1 D(i) , n ∈ N, is monotone increasing and bounded and, thus, the limit

lim
n→∞

‖x‖∏n
i=1 D(i) =: f(x)

exists in [0,∞). The triangle inequality and the homogeneity of f(·) are obvious.

The monotonicity of the sequence limn→∞ ‖x‖∏n
i=1 D(i) implies that f(x) = 0 ⇐⇒

x = 0 and, thus, f(·) is a norm on R
d. The characterization of a D-norm as
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established by Hofmann (2009) (see Falk et al. (2010, Theorem 4.4.2)) implies that

f(·) is a D-norm as well. �

If we set D(n) for each n ∈ N equal to a fixed but arbitrary D-norm, then the

limit in Proposition 5.2 is an idempotent D-norm.

Theorem 5.3. Let ‖·‖D be an arbitrary D-norm on R
d. Then the limit

lim
n→∞

‖x‖∏n
i=1 D(i) =: ‖x‖D∗ , x ∈ R

d,

is an idempotent D-norm on R
d.

Proof. We know from Poposition 5.2 that ‖·‖D∗ is a D-norm on R
d. Let Z∗ be

a generator of this D-norm and let Z(1),Z(2), . . . be independent copies of the

generator Z of ‖·‖D, independent of Z∗ as well. Then we have for each x ∈ R
d

‖x‖Dn = E

(∥

∥

∥

∥

∥

x

n
∏

i=1

Z(i)

∥

∥

∥

∥

∥

∞

)

↑n→∞ ‖x‖D∗

by Lemma 5.1, as well as for each k ∈ N

‖x‖Dn

= E





∥

∥

∥

∥

∥

∥

x

k
∏

i=1

Z(i)
n
∏

j=k+1

Z(j)

∥

∥

∥

∥

∥

∥

∞





=

∫

E





∥

∥

∥

∥

∥

∥

x

k
∏

i=1

z(i)
n
∏

j=k+1

Z(j)

∥

∥

∥

∥

∥

∥

∞





(

P ∗
(

Z(1), . . . ,Z(k)
))(

d
(

z(1), . . . , z(k)
))

→n→∞

∫

∥

∥

∥

∥

∥

x

k
∏

i=1

z(i)

∥

∥

∥

∥

∥

D∗

(

P ∗
(

Z(1), . . . ,Z(k)
))(

d
(

z(1), . . . , z(k)
))

= E

(∥

∥

∥

∥

∥

xZ∗
k
∏

i=1

Z(i)

∥

∥

∥

∥

∥

∞

)

by the monotone convergence theorem. We, thus, have

‖x‖D∗ = E

(∥

∥

∥

∥

∥

xZ∗
k
∏

i=1

Z(i)

∥

∥

∥

∥

∥

∞

)

for each k ∈ N. By letting k tend to infinity and repeating the above arguments

we obtain

‖x‖D∗ = E

(∥

∥

∥

∥

∥

xZ∗
k
∏

i=1

Z(i)

∥

∥

∥

∥

∥

∞

)

↑k→∞ E (‖xZ∗‖D∗) = ‖x‖D∗D∗ ,

which completes the proof. �
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If the initial D-norm ‖·‖D has no complete dependence structure among its

margins, i.e., if its CDF is empty, then the limiting D-norm in Theorem 5.3 is the

L1-norm. Otherwise, the limit has the same CDF as ‖·‖D.

The limit of an arbitrary track ‖·‖∏n
i=1 D(i) , n ∈ N, is not necessarily idempotent.

Take, for example, an arbitrary and non idempotent D-norm ‖·‖
(1)
D and ‖·‖

(i)
D =

‖·‖∞, i ≥ 2. But it is an open problem, whether the limit of a track is again

idempotent if ‖·‖D(i) 6= ‖·‖∞ for infinitely many i ∈ N.

References

Aulbach, S., Falk, M., and Hofmann, M. (2012). On max-stable processes

and the functional D-norm. Extremes. doi:10.1007/s10687-012-0160-3. To

appear.
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