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Abstract

Cross-validation (CV ) is often used to select the regularization parameter in high dimen-
sional problems. However, when applied to the sparse modeling method Lasso, CV leads to
models that are unstable in high-dimensions, and consequently not suited for reliable inter-
pretation. In this paper, we propose a model-free criterion ESCV based on a new estimation
stability (ES) metric and CV . Our proposed ESCV finds a smaller and locally ES-optimal
model smaller than the CV choice so that the it fits the data and also enjoys estimation
stability property. We demonstrate that ESCV is an effective alternative to CV at a similar
easily parallelizable computational cost. In particular, we compare the two approaches with
respect to several performance measures when applied to the Lasso on both simulated and
real data sets. For dependent predictors common in practice, our main finding is that, ESCV
cuts down false positive rates often by a large margin, while sacrificing little of true positive
rates. ESCV usually outperforms CV in terms of parameter estimation while giving similar
performance as CV in terms of prediction. For the two real data sets from neuroscience and
cell biology, the models found by ESCV are less than half of the model sizes by CV . Judged
based on subject knowledge, they are more plausible than those by CV as well. We also
discuss some regularization parameter alignment issues that come up in both approaches.

Keywords: Lasso, model selection, parameter estimation, prediction.

1

ar
X

iv
:1

30
3.

31
28

v1
  [

st
at

.M
E

] 
 1

3 
M

ar
 2

01
3



1 Introduction

1.1 Regularization Methods

There is an ever increasing amount of data in all fields of science and engineering. Often, this

data comes in high dimensions relative to the sample size, posing a new challenge to scientists,

engineers, and decision makers. These problems, plagued by the curse of dimensionality, suffer

from overfitting when classical methods are applied. Regularization methods are used to tackle

this problem of overfitting head on, usually by imposing a penalty on the complexity of the

solution or through early stopping. For example, in fitting the usual linear regression model,

the Lasso (Tibshirani 1996) and ridge regression (Tikhonov 1943; Hoerl 1962) adds a L1 and L2

penalty on the coefficient estimates respectively to the usual least squares fit objective function.

Regularization methods can also take the form of early stopping iterative algorithms like classical

forward selection or L2-Boosting (Friedman 2001; Bühlmann and Yu 2003; Zhang and Yu 2012;

Zhang 2011). Common to these methods is that they provide a family of possible estimators

instead of just one estimator, with the unregularized solution at one end of the spectrum. This

family is indexed by a regularization parameter and is commonly referred to as the solution path.

For the Lasso and ridge regression, this regularization parameter determines the extent of the

respective penalties. For the iterative algorithms, this parameter corresponds to the number of

steps they take. Despite the difference in nature, numerous works have shown these regularization

methods, at least in the context of the linear model, are intrinsically related (Efron et al. 2004;

Zhao and Yu 2007; Meinshausen et al. 2007). In that light, we will not focus on the distinction

between the different types of regularization parameters but instead simply use λ as a catch-all

representation for them. In the same vein, we focus on the Lasso in this chapter even though we

believe the method we present will work in the general framework.

1.2 Selecting the Regularization Parameter λ

Much work has been done to show that regularization methods yield desirable solutions in high

dimensional problems. For example, the popular Lasso has been shown to be L2-consistent

(Meinshausen and Yu 2009; Bickel et al. 2009) and model selection consistent (Meinshausen and

Bühlmann 2006; Zhao and Yu 2006; Tropp 2006; Wainwright 2009) in the high dimensional setting
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when respective conditions are met. These results guarantee the existence of the λ needed, but

offer little guidance on how to find the desired λ in practice. Indeed, data-driven regularization

parameter selection with guaranteed theoretical performance turns out to be a particularly difficult

problem.

One can rely on traditional model selection criteria like Akaike’s information criterion (AIC)

(Akaike 1974) and Bayesian information criterion (BIC) (Schwarz 1978). They are easy to com-

pute but their validity rely on model assumptions. Furthermore, they are derived from asymptotic

results, so even when model assumptions are satisfied, they may not work well in the finite sample

case.

More commonly used today are model-free approaches like cross-validation (CV ) (Allen 1974;

Stone 1974) and bootstrap methods (Efron 1979; Zhang 1993; Shao 1996). They have become

computationally feasible for increasingly large data sets with the rapid advancements in computing

power, especially the parallel computing paradigm that is currently the platform for dealing with

big data. These methods rely on data resampling to assess prediction error of candidate solutions

and can be found in various statistics and machine learning literature (Hastie et al. 2002; Breiman

1995, 1996, 2001). In particular, it is the most popular approach for regularization methods to

select λ. Doing so often leads to estimators with good predictive performance when the sample

size is not small. However, there are other performance metrics that are also of interest in statis-

tics, among them parameter estimation and variable selection metrics, with important practical

connections. Unsurprisingly, optimizing predictive performance does not necessarily translate to

having success with respect to these other performance metrics.

1.3 Estimation Stability

Statistical estimation is often tied to the optimization of an empirical loss or a random function

based on data. Take for example, when fitting a linear model for random variablesX ∈ IRp, Y ∈ IR,

one might want to minimize the predictive L2 loss,

f(β) = EX,Y (Y −X ′β)2.
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However, since the underlying joint distribution of (X, Y ) is unknown, we instead minimize the

empirical loss

f̂(β) =
1

n

n∑
i=1

(yi − x′iβ)2,

where (xi, yi) for i = 1, . . . , n, are the observed samples of (X, Y ). By minimizing f̂ instead of

f , we incur a random estimation error dependent on the sample we observed. In the classical

ideal scenario, e.g. when the sample contain independent and identically distributed observations

and the sample size n is large and p is small, this estimation error incurred is small. If we draw

multiple samples from (X, Y ), each resulting estimate will be close to that of minimizing f , and

consequently close to each other. This closeness across different samples can be seen as a form of

stability in the estimation procedure, and we call it estimation stability.

When the differences across different samples are measured by the L2 error, the estimation

stability is obviously related to variance. We opt to use the term “stability” rather than the

more commonly used term “variablity” in statistics. This is to recognize the fact that stability

is a concept broader than variance or variability and that it is used in other quantative fields

such as numerical analysis, dynamical systems, and linear analysis (Higham 1996; Salle 1976; Ellis

1998). Stability is also not associated with a particular metric (unlike variance) and thus allows

its consideration under different metrics. In a recent paper (Yu 2013 (to appear), we advocate an

enhanced emphasis on stability in statistical inference, especially for large and high dimensional

data for which instability of statistical methods is much more common than in the domain of

classical statistics.

It is clear that estimation stability is a necessary property for a reasonable estimation proce-

dure: the solution is not meaningful if it varies considerably from sample to sample. The converse

certainly cannot be true in general: an arbitrary constant estimate will not vary but is certainly

meaningless. When we add a data faithfulness requirement through cross-validation, we are able

to devise a model-free criterion based on estimation stability for the selection of the regulariza-

tion parameter λ. Specifically, our proposed new criterion of estimation stability cross validation

(ESCV ) combines a new metric of estimation stablity (ES) with CV . For a given L1 norm τ or

a regularization parameter λ, our new ES(τ) metric is the reciprocal of a test statistic for testing

the null hypothesis that the regression function is zero. The test statistic is an estimate of the

regression function standardized by an approximate delete-d Jackknife standard error estimate
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based on the same pseudo data sets as in CV , and both estimates are functions of τ . The pro-

posed ESCV criterion chooses a local minimum of ES(τ) which is smaller than the selection of

τ by CV . It is worth noting that the computational cost of ESCV is similar to that of CV and

that they are both well suited to parallel computation, the dominant computing platform for big

data.

We demonstrate that our criterion ESCV provides a viable alternative to CV and BIC. We

compare the three approaches with respect to several performance metrics when applied to the

Lasso on both simulated data sets with different predictor dependence set-ups and two real data

sets. These performance metrics are L2 error for parameter estimation, prediction error, F -measure

and model size for model selection performance. We find that our criterion compares favorably

with CV and BIC where they are known to excel, and outperforms them in other scenarios over

different performance criteria. In particular, ESCV obtains excellent model selection results that

are substantially better than those from CV , both in simulations and our real data sets, where

the results are validated by subject knowledge. When the predictors are correlated, which is often

the case in practice, ESCV also often outperforms CV for parameter estimation while at same

time provides prediction errors comparable to those of CV .

We note that previous works based on stability of solutions have shown positive results in

terms of model selection (Breiman 1996; Bach 2008; Meinshausen and Bühlmann 2010). The

work here differs from them in three substantial ways. Firstly, we develop a different measure of

stability ES that is closely related to estimation than model selection, even though our ESCV

does have desirable model selection properties such as the best F -measures across all simulation

set-ups in Section 3. Secondly, we restrict our attention to selecting the regularization parameter.

Even though we evaluate our choice by the performance of the corresponding solution, our focus

remains on determining the right amount of regularization. We do not introduce any further tuning

parameters as in Meinshausen and Bühlmann (2010). Concurrent with and independent of our

work, recent follow-up papers on (Meinshausen and Bühlmann 2010) use model selection stability

to select edges in graphical models (Liu et al. 2010; Haury et al. 2012) or modify stability model

selection to improve its false discovery rate theoretical properties (Shah and Samworth 2013). The

former two papers introduce further tuning parameters and they recommend fixed values for them.

Shah and Samworth (2013) employs the complementary half-sample data perturbation scheme.
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ESCV can work on such a scheme, but doing so would depart from the usual implementation

of CV for comparison purposes. Thirdly, as in Meinshausen and Bühlmann (2010), these three

papers apply data perturbation schemes such as bootstrap and subsampling with hundreds or

thousands runs of model fitting. On the contrary, the CV (and ESCV ) data perturbation scheme

often works well based on 5-10 runs of model fitting.

2 Methodology

2.1 Lasso and Pseudo Solutions

Let X ∈ IRn×p, Y ∈ IRn be our data set. The Lasso generates a family of solutions,

β̂[λ] = arg min
β

{
||Y −Xβ||22 + λ||β||1

}
.

β̂[λ], as a function of λ ≥ 0 is also known as the Lasso solution path for βj (j = 1, . . . , p). We

want to select a solution from this solution path; that is, choose a λ and take its corresponding

solution in the solution path. As alluded to earlier, we would like to make this choice based on

estimation stability and fit.

Since the notion of estimation stability is tied to the sampling distribution of the data, it is

unavoidable that we need multiple solution paths to make such an assessment. Of course, it is

often costly and infeasible to obtain extra data in practice. Thankfully, this problem is not new,

and there are well-established ways to get around it. The key is to exploit the existing data

by employing data perturbation schemes, parlaying it into multiple data sets. Let (X∗[k], Y ∗[k])

represents our kth pseudo data set, derived from (X, Y ). In our case, these are the cross-validation

folds: we randomly partition the data into V groups and form V pseudo data sets by leaving out

one group at a time. (See Section 2.6 for other data perturbation schemes.) We then get pseudo

solutions,

β̂[k;λ] = arg min
β

{
||Y ∗[k]−X∗[k]β||22 + λ||β||1

}
for k = 1 . . . V .
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2.2 Alignment

For many regularization methods, there are multiple representations for the regularization param-

eter λ. In the case of the Lasso above, λ refers to the L1 penalty parameter. Other popular choices

to index the solution path are the L1-norm of the coefficient estimate, and the L1-norm expressed

as a fraction of the L1-norm of the unregularized solution. Each of these representations for the

solution path has its own merits, and is equivalent to the others (when non-trivial) for any single

solution path.

However, care must be taken on how to most meaningfully align our solution paths, when we

reference the same λ across different (pseudo) solution paths. In particular, when n < p, the L1-

norm of the unregularized solution corresponds to the saturated fit and can vary a lot depending

on which data points were sampled. This makes L1-fraction a poor choice, as the same index may

correspond to very different amounts of regularization. The effect is more pronounced when the

features are more correlated. Figure 1 shows a histogram of the maximum L1-norms for 10,000

bootstrap Lasso estimates of the base case Gaussian simulation (with n = 100, p = 150, σ = 1,

ρ = 0.5) in Section 3.1.1. There is considerable spread: in this case, the upper decile is more than

20% more than the lower decile.

To highlight the effect of alignment on estimation performance, we compared the performance

of cross-validation with the three alignments for the low noise scenarios detailed in Section 3.1.1.

As shown in Table 1, aligning the solution paths with L1-fraction does comparatively worse than

aligning with L1-norm or the penalty parameter. Notably, in the popular R package “lars” used

in solving the Lasso efficiently, the included cross-validation code aligns with L1-fraction.

For ESCV to be proposed later, we find that there is little difference in performance when

aligning with either the penalty parameter, λ or the L1-norm τ . In this work, since the L1 norm

of the solution is more comparable than the regularization parameter across different pseudo data

sets, we opt to align with τ . Note that our main comparison target CV performs best with the τ

alignment, as shown in Table 1. To be clear,

τ = τ(λ) = ||β̂(λ)||1,

a one-to-one function for 0 ≤ λ < λ0, where λ0 = inf
{
λ
∣∣ ||β̂(λ)||1 = 0

}
.

Indexing by τ also has the benefit of visualizing the solution growing with the index. β̂(τ)

starts at the origin when τ = 0 and moves towards the unregularized solution as τ increases.
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Figure 1: Empirical bootstrap distribution of maximum L1-norms of Lasso estimates on a typical

simulated data set: a base case Gaussian simulation with n = 100, p = 150, σ = 1, ρ = 0.5 in

Section 3.1.1.

2.3 Convergence of Pseudo Solutions

Given p-dimensional pseudo solutions β̂[k; τ ] for k = 1, . . . , V , we want to measure their differences

or see how similar or stable they are. Computing their pair-wise L2 errors was a natural first

thing that we tried. However, we found that these errors vary too wildly to be useful even after

normalization by means when there is high dependence between the components in the vector and

this happens often especially when p is large. Notice that the components of an estimate of β

are combined in a linear fashion through Xβ to achieve our primary goal of estimating the linear

regression function. Therefore we propose to compute the estimates

Ŷ [k; τ ] = Xβ̂[k; τ ],

and study their stability.

To evaluate such stability, as mentioned earlier we need a measure for how far apart the

estimates are at each τ : stable pseudo solutions should give similar estimates. One possibility is
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Cross-Validation Estimation Error

ρ Regularization parameter L1-norm L1-fraction

0 0.794 0.787 0.817

0.2 0.781 0.773 0.821

0.5 0.969 0.956 1.04

0.9 1.83 1.80 1.95

Table 1: Effect of alignment on cross validation performance on the base case Gaussian simulation

with n = 100, p = 150, σ = 0.5 in Section 3.1.1. The first column corresponds to the alignment

based on λ, the second based on τ and the third based on the L1 fraction. Cross-Validation

performs worst when aligning with L1-fraction.

to look at the average pairwise squared Euclidean distance between the V estimates:

A(τ) :=
1(
V
2

)∑
k 6=j

||Ŷ [k; τ ]− Ŷ [j; τ ]||22.

It is not hard to see that this is proportional to the more familiar “sample variance” formulation,

V̂ar(Ŷ [τ ]) =
1

V

V∑
k=1

||Ŷ [k; τ ]− ¯̂
Y [τ ]||22,

where
¯̂
Y [τ ] = 1

V

∑V
i=1 Ŷ [i; τ ].

Figure 2 shows two examples of this sample variance metric. The left panel is particularly

illuminating: the pseudo solutions diverge as they grow at first but converge somewhat before di-

verging again. Here, convergence and divergence simply refer to the sample variance metric (which

is really just the average pairwise distance) decreasing and increasing respectively. Heuristically,

this behavior is exactly what one would expect if there is a “correct” amount of regularization.

Different samples would take different paths towards the “correct” solution before moving away

from one another due to overfitting. Hence, we might select the τ corresponding to the minimum

point after the first negative slope. That is, we want to choose τ corresponding to the “dip”.

By doing this, we incorporate fit into our selection even though our criterion is based on

stability. The convergence of the solution paths is key: not only does it suggest we are close to the

truth, we are also gifted with estimation stability. Note that this helps us automatically exclude
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Figure 2: Examples of the sample variance metric. The left panel shows an example where the

metric exhibits a “dip”, representing the “convergence” of the pseudo solutions. The right panel

shows an example with a much muted “dip”. It is difficult to use the sample variance metric to

select a solution on the right.

τ ’s where the solution paths trivially agree. We see this trivial effect in Figure 2, where the global

minimum for the sample variance metric occurs where the solutions are close to zero.

However, this convergence effect is not always clear. The “dip” is not always present as shown

in the example on the right panel. There you can still see the drop in gradient, but it is not clear

which τ we should pick. Notice, however, that in a solution path, the norm of the solution varies

with the amount of regularization (by definition in our case). Since larger solutions naturally varies

more, using the sample variance metric skews the choice towards solutions with small norms. We

need to bring in the concept of normalization to account for this effect.

2.4 Hypothesis Testing and the Estimation Stability Metric

In hypothesis testing, a test statistic based on data is computed and its corresponding p-value

is calculated by matching the test statistic with its model-specific theoretical distribution. This

test statistic often takes the form of a mean value over its estimated standard deviation, e.g. the
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student’s t-test. The desired outcome for the t-test, as is often the case regardless of the assumed

model and p-value computation, is to have thle test-statistic away from 0. The heuristic there is

clear: if the hypothesized effect is real, the size of the mean value should be large compared to its

estimated standard deviation.

In the same vein, our sample variance metric should be relative to the squared mean size of

the corresponding solution. We define the estimation stability metric,

ES(τ) :=
V̂ar(Ŷ [τ ])

|| ¯̂Y [τ ]||22
,

the normalized version of the sample variance metric. Figure 3 shows the corresponding ES

metrics in dashed lines superimposed on the old sample variance metric. On the left, the “dip”

from the sample variance metric is preserved by the ES metric. On the right, there is now a

pronounced minimum we can select.

Figure 3: Examples of the sample variance metric (as in Figure 2) and the corresponding ES

metric. We see that the ES metric preserves the local minimum from the sample variance metric

on the left panel, and introduces one on the right panel where there was no local minimum from

the sample variance metric.

The ES metric’s reciprocal has exactly the form of a test-statistic. We can view the ES
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selection of τ as a set of hypothesis tests. For each τ , we are testing if the fit (Ŷ [τ ]) is statistically

different from fitting the null model (E(Y ) = 0), albeit without a specified theoretical distribution.

Our ES criterion of choosing the τ corresponding to the convergence of pseudo solutions, is exactly

choosing Ŷ [τ ] with locally minimal normalized variance. This in turn, is exactly choosing the

solution whose ES metric has the largest reciprocal, or in our analogy, the most statistically

significant solution along the path.

2.5 ESCV : Incorporating Cross-Validation

There is no guarantee that our ES metric would have only one local minimum. Note that unless

the multiple solution paths match up perfectly, there will be a local minimum or multiple local

minima. Hence, even in the case where Y bears no relation to X at all, an inadvertent minimum

on the ES metric will falsely suggest the pseudo solutions are converging towards a meaningful

solution. To prevent scenarios like this where ES fails, we incorporate cross-validation into our

selection. We have already limited our choice of minimum ES to local minima. Here we further

limit it to the local minimum of τ that is smaller than the cross-validation choice. We call this

improved criterion estimation stability with cross validation (ESCV ). In Section 3 on experimental

results, we use a grid-search algorithm to find such a local minimum of ES as commonly done

for CV . Thus ESCV ’s computational cost is similar to that of CV and they are both easily

paralleable.

We are exploiting the fact that cross-validation overselects (Leng et al. 2006; Wasserman and

Roeder 2009). When ES gives a meaningful local minimum, cross-validation will likely overselect.

Hence, ESCV behaves like ES above. However, when Y bears no relation to X, or when the

noise overwhelms the signal, cross-validation will likely choose the trivial solution correctly. In

this case, ESCV will follow suit and pick up the trivial solution.

Note that this has negligible additional computation cost, as we are essentially getting the

cross-validation choice for free. The bulk of the computation lies in computing the multiple

solution paths we already have.
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2.6 Discussion on ESCV

Our ES metric is based on assessing the stability of the fitted values Ŷ [τ ] = Xβ̂[τ ] instead of the

estimates β̂[τ ]. This seems counter-intertuitive since we are interested in a variety of performance

measures, most of which are based on the quality of β̂[τ ] itself. However, we note that these

performance measures only make sense if the underlying β is identifiable. To that end, there is a

large volume of work showing the Lasso is model selection consistent under regularity conditions

including that the smallest non-zero true parameter value is not too small compared a rate decay-

ing in n (Meinshausen and Bühlmann 2006; Tropp 2006; Zhao and Yu 2006; Wainwright 2009).

In particular, it assures us the asymptotic recovery of the underlying true β under appropriate

conditions.

However, in the finite sample case, and especially when the features are highly correlated,

different linear combinations of features (of a given sparsity) may give approximately equivalent

fits. Under data perturbation, it is not surprising that the different solution paths choose different

features. This makes any metric based on β̂[τ ] statistically unstable since V is small. Note that

this does not contradict the assessment of the eventual β̂[τ ] picked since ESCV and CV , picking

from the same solution path, would both suffer from any failure of the original Lasso.

In ESCV , we have used cross-validation folds to compute our pseudo-solutions. There are of

course many other ways to generate pseudo datasets. One related approach would be to apply

bootstrap sampling (Bach 2008). Here, simply sample with replacement from the original data

set to generate multiple data sets. These two approaches are obvious choices, and can be applied

to any estimation procedure (even those without an optimization formulation). A third choice,

which applies only to penalized M -estimators such as the Lasso, is based on perturbations of the

penalty (Meinshausen and Bühlmann 2010). Note that such perturbations of the penalty amount

to perturbing (indirectly) the samples, but in a different way than bootstrapping. Finally, we can

simply perturb the data directly by adding noise to X and/or Y . For example, we can add random

Gaussian noise to the response (Breiman 1996). We find in the experimental results section that

the choice of data perturbation scheme does not affect the results much.

With high dimensional data, computation can be costly. In the case of the Lasso, the com-

putation quickly gets expensive with larger data sets (Efron et al. 2004; Mairal and Yu 2012).

Using the estimation stability metric to select the regularization parameter incurs only as much
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computation as using cross validation. This is because the bulk of the computation in both cases

rests in computing the solution paths of the V perturbed data sets. V in this case can be small

as demonstrated in Section 3. This is in contrast to related work (Bach 2008; Meinshausen and

Bühlmann 2010) which requires a much larger V .

3 Experimental Results for Lasso

In this section, we evaluate ESCV ’s performance relative to the cross validation (CV ) across a

variety of data examples. In each problem, we fit a linear model using the Lasso. We focus our

attention on the comparison with CV as it is the most popular criterion in practice.

In all the data examples, we use the same grid-search algorithm to find a minimum of τ for

ESCV and that for CV . For our algorithm, we determine the domains for τ , [0, τmax] in each of

our pseudo-solutions β̂[l; τ ], where τmax is the L1-norm of the saturated pseudo-solution. We limit

our choice of τ to the intersection of the domains. This potentially truncates some large values

of τ from the original lasso path, but we view this as inconsequential as we are often after sparse

solutions corresponding to relatively small values of τ .

The fact that a τ value is larger than the upper limit of the intersection implies that for at

least one pseudo data set, the solution at this τ value is not unique so this τ value corresponds to

instability and we would not want to consider it in our search for a stable solution. We evaluate

each criterion in a equally spaced grid of 1000 values of τ in the resulting domain.

We start with simple sparse gaussian linear model simulations with our focus on the high

dimensional data set up. We will vary the simulation parameters such as correlation strength

within features and signal strength, as well as explore popular correlation structures of the design

matrix, to cover a wide range of data scenarios in practice. We compare the solutions picked by

ESCV and CV with regard to parameter estimation, prediction, and model selection performance

measures such as F -measure and model size. We also include the BIC choice, but note that it

performs poorly as expected in our high dimensional setting.

We also explore the performance of our method on two real data sets from neuroscience and

bioinformatics. We use a combination of objective predictive performance and subject knowledge

on plausible models to illustrate the efficacy of ESCV over CV . In all cases, note that we are

comparing different choices of τ on the same solution path (from the original data). Furthermore,
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we use the same data splits to make comparable results of CV and ESCV . We find that the

number of cross validation folds V do not affect the relative performance between CV and ESCV .

For the simulations and data below, we use commonly used V = 8 to obtain the pseudo solutions.

3.1 Gaussian Simulation

Let Xi ∈ IRp for i = 1, . . . , n be independent identically distributed Gaussian variables with mean

0 and covariance Σ. We have the usual linear model Yi = X ′iβ + εi, where β ∈ IRp is the unknown

parameter, and εi ∈ IR is independent Gaussian noise with standard deviation σ. βj are drawn

from U [1
3
, 1] for j = 1, . . . , 10 and 0 otherwise. The separation from zero is for model selection to

make sense. This is a common assumption in theoretical work.

The reported estimation and prediction errors are defined as

||β̂ − β||2 and

√
EX(||Xβ̂ −Xβ||22) =

√
(β̂ − β)′Σ(β̂ − β)

respectively. For model selection, we use the F -measure which balances false positive and false

negative rates of identifying non-zero coefficients of β. The higher the F -measure the better. Each

simulation is repeated 1000 times and the performance measures are aggregated across them.

3.1.1 A Base Case

Within the Gaussian linear model setup, there are many problem scenarios that favor one method

over others. In particular, the following problem settings are known to affect the performance of

the Lasso: correlation strength between features, strength of signal (size of coefficients) relative

to the noise levels, dimension of the problem (p), and the correlation structure of the features.

This is of course not an exhaustive list but is sufficient to cover a wide range of problems. As the

strength of the correlation and signal are key to the behavior of the Lasso solution, we will include

a full complement of these problem settings to illustrate when and why ESCV works well.

We start with a base case scenario. Here, Σ has entries 1 down the diagonal and constant ρ

on the off-diagonal. We vary ρ = 0, 0.2, 0.5, 0.9 and σ = 0.5, 1, 2. We set n = 100 and p = 150

to emulate the high dimensional data setting. Note that this implies that the columns of X are

empirically correlated even when the features they represent are independent.

As expected, CV does well in terms of prediction error (see Table 2). However, observe that this

does not necessarily translate to success in terms of other performance measures. With estimation
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error, we find that once we leave the orthogonal case ρ = 0 where estimation and prediction error

are equivalent, ESCV has lower estimation error than CV despite having comparable prediction

error.

For model selection, we use the F -measure, the harmonic mean of the precision and recall

rates, which are inversely proportional to false positive rate and false negative rate respectively.

A high F -measure is achieved when both false positive and false negative rates are low. Recall

that we are selecting solutions from the same solution path. The Lasso solution path corresponds

roughly to a nested family of models in terms of features picked since features seldom gets dropped

as the we relax the penalty term. Hence, having a low false negative rate (high recall) typically

comes at the cost of a high false positive rate (low precision). The F -measure balances these two

objectives.

By this measure, ESCV often outscores CV by a considerable margin. CV picks more true

variables, but in the process picks up a disproportionately large number of noise variables. This is

in line with theory that CV often overselects (Wasserman and Roeder 2009). ESCV cuts down

the false positive rate, but not too much at the expense of the false negative rate.

The results are summarized in Table 2 and the standard errors (SE) are given in Table 3. Note

that the performance measures are highly correlated since for each simulation run, the selections

by ESCV , CV and BIC are from the same solution path. Hence, the SEs for paired differences

in performance measures are actually lower than the SEs for each of the values as reported in

Table 3.

3.1.2 Effect Of Ambient Dimension

We repeat the simulations but this time for p = 50 and p = 500 to investigate the effect of the

ambient dimension. Note that only the number of non-relevant features is changing; the number

of non-zero coefficients remain at 10, the sample size n remains at 100. The comparison of ESCV

and CV from the base case extends here: CV does well in prediction error, especially in the

independent predictors case, but loses out to ESCV in the other scenarios with dependence more

relevant to practice and in terms of parameter estimation and model selection metrics that are

important for scientific applications. The results are summarized in Table 5 and 6.

For the low dimensional case p = 50, we see that BIC performance is much improved compared
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Estimation Prediction Model Selection Model Size

error error F -measure

ρ σ ESCV CV BIC ESCV CV BIC ESCV CV BIC ESCV CV BIC

0 0.5 0.470 0.399 0.632 0.470 0.399 0.632 0.673 0.402 0.225 19.7 39.7 78.7

0 1 0.885 0.787 1.27 0.885 0.787 1.27 0.594 0.413 0.225 21.7 37.8 77.4

0 2 1.53 1.47 2.29 1.53 1.47 2.29 0.434 0.403 0.207 22.8 29.8 58.3

0.2 0.5 0.386 0.391 0.687 0.373 0.360 0.623 0.535 0.440 0.223 27.4 35.4 79.6

0.2 1 0.757 0.773 1.36 0.719 0.711 1.23 0.522 0.445 0.223 27.8 34.5 78.3

0.2 2 1.37 1.43 2.56 1.31 1.33 2.34 0.475 0.414 0.206 25.6 31.6 73.4

0.5 0.5 0.465 0.479 0.871 0.341 0.348 0.624 0.493 0.456 0.222 30.6 33.8 80.0

0.5 1 0.927 0.956 1.72 0.682 0.695 1.23 0.485 0.445 0.214 29.9 33.6 80.2

0.5 2 1.62 1.67 3.18 1.21 1.23 2.30 0.427 0.396 0.19 26.2 29.5 74.6

0.9 0.5 1.02 1.04 1.92 0.330 0.339 0.615 0.466 0.444 0.211 31.1 33.2 80.4

0.9 1 1.75 1.80 3.55 0.572 0.587 1.14 0.396 0.377 0.183 26.9 28.9 75.1

0.9 2 2.46 2.58 5.50 0.858 0.861 1.81 0.274 0.262 0.158 19.0 21.3 58.3

Table 2: Performance of ESCV , CV and BIC in picking the regularization parameter for the

Lasso for our base case design: constant correlation ρ, n = 100, p = 150. We see that ESCV

performs best in parameter estimation (when different from prediction) and model selection, while

doing comparably to CV in prediction.
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Estimation Prediction Model Selection

error SE error SE F -measure SE

ρ σ ESCV CV BIC ESCV CV BIC ESCV CV BIC

0 0.5 0.003 0.002 0.004 0.003 0.002 0.004 0.004 0.003 0.002

0 1 0.007 0.005 0.008 0.007 0.005 0.008 0.004 0.003 0.002

0 2 0.009 0.008 0.02 0.009 0.008 0.02 0.004 0.003 0.002

0.2 0.5 0.002 0.003 0.005 0.002 0.002 0.004 0.002 0.003 0.002

0.2 1 0.004 0.005 0.01 0.004 0.004 0.009 0.002 0.003 0.002

0.2 2 0.007 0.008 0.02 0.007 0.008 0.02 0.003 0.003 0.002

0.5 0.5 0.003 0.003 0.006 0.002 0.002 0.004 0.002 0.003 0.002

0.5 1 0.006 0.006 0.01 0.004 0.004 0.009 0.002 0.003 0.002

0.5 2 0.008 0.009 0.03 0.007 0.007 0.02 0.003 0.003 0.002

0.9 0.5 0.006 0.006 0.01 0.002 0.002 0.004 0.002 0.003 0.002

0.9 1 0.008 0.01 0.03 0.003 0.003 0.01 0.003 0.003 0.002

0.9 2 0.01 0.02 0.08 0.01 0.005 0.03 0.003 0.003 0.002

Table 3: Standard errors (SE) for performance numbers in Table 2.
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to the p = 150 case. This is to be expected since BIC was developed to tackle problems in the

classical regime of n > p. It is interesting to note that the performance of ESCV and BIC

are very comparable in this case. Indeed, in this low dimensional case, they are very close to

(empirically) optimal with respect to the F -measure. Of course, once we go to p = 500, BIC’s

performance falls off the cliff. ESCV continues to beat out CV by a wide margin.

3.1.3 Other Correlation Structures

The constant correlation structure can be seen as a simple one latent variable model. Here we

introduce other correlation structures corresponding to more complex models and run the same

simulations (n = 100, p = 150, and varying σ and ρ). First, block correlation: all p features are

randomly grouped into 10 blocks, and within each block, the features have correlation ρ while

features from separate blocks are independent. Here, we let ρ = 0.3, 0.5, 0.9. Second, Toeplitz

design: Σij = ρ|i−j|, with ρ = 0.5, 0.9, 0.99. In this case, the ten true variables indices are randomly

distributed among the p variables so that they are not all strongly correlated with each other. The

results for the two designs are summarized in Tables 7 and 8 respectively.

Despite the different correlation structures, the qualitative results from the prior section holds

again in both variations. For prediction error, CV almost always outperforms ESCV , but ESCV ’s

predictive performance can be quite close to CV ’s when ρ 6= 0. For estimation error, ESCV gains

on and eventually outperforms CV with increasing correlation levels. And for model selection,

ESCV almost always has a higher F -measure than CV . Digging deeper, Table 9 shows the

breakdown of the F -measure into the true positive and false positive rates. We can see that

ESCV has much lower false positive rates while sacrificing relatively little on the true positive

rates. Also unsurprising, BIC continues to do poorly in these p > n regimes.

3.2 fMRI Data

This data is from the Gallant Neuroscience Lab at University of California, Berkeley. In this

experiment, a subject is shown a series of randomly selected natural images and the fMRI response

from his primary visual cortex is recorded. The fMRI response is recorded at the voxel level, where

each voxel corresponds to a tiny volume of the visual cortex. The task is to model each voxel’s

response to the n = 1500 images. The image features are approximately 10000 transformed Gabor
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wavelet coefficients. We evaluate the prediction performance by looking at correlation scores

against an untouched validation set of 120 images with 10-13 replicates. There are 1250 voxels in

all. We ranked them according to their predictive performance under a different procedure from a

previous study (Kay et al. 2008). Not all of them are informative, so we only look at the top 500.

We find that while the prediction performance are nearly identical for ESCV and CV , ESCV

selects much fewer features. The results are in Table 4. For the sake of brevity, they are averaged

across groups of 100 voxels. For example, for the top 100 voxels, on average, the correlation

scores are similar, but ESCV selects 30 features compared to CV ’s 70 features - a close to 60%

reduction. That is, ESCV selects a much simpler and also more reliable model that predicts just

as well as CV . Figure 4 shows how close the correlation scores are.

Voxels Correlation Score Model Size

ESCV CV ESCV CV

1-100 0.730 0.735 30.1 70.2

101-200 0.653 0.655 27.0 61.8

201-300 0.567 0.566 22.6 49.6

301-400 0.455 0.459 16.7 40.3

401-500 0.347 0.347 16.5 33.6

Table 4: Performance on fMRI data set. The numbers are averaged across the respective hundred

voxels. ESCV cuts down the model size by more than half compared to CV , while largely

preserving prediction accuracy.

We note again that ESCV picks fewer features than CV by design (Section 2.5). That being

said, the reduction is huge here: ESCV picks less than half the number of features as CV across

the different voxels. Furthermore, this was with little or no loss in predictive performance. To

understand the results better, we look at the individual voxels and examine the features selected.

In almost all the cases, ESCV selects a subset of the features selected by CV . This is because

they both select from the same Lasso solution path and features are rarely dropped after being

added to the solution as we relax the regularization.

Now, each feature corresponds to a Gabor wavelet characterized by its location, frequency, and

orientation. We plot the features selected by both CV and ESCV as well as the extra features
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Figure 4: Scatterplot of predictive correlation scores of ESCV and CV for the top 500 voxels in

the fMRI data set. We see that for almost all 500 voxels, the predictive performances are similar

for ESCV and CV .

selected by CV . The points in the plot represent the location and size of the Gabor wavelet

selected. Figure 5 shows four randomly selected voxels.

We can see quite clearly that the features selected by ESCV are clustered in one area whereas

the features selected by CV but not ESCV are scattered across the image. Biologically, we expect

each voxel to respond only to a particular area of the visual receptive field. This confirms that the

extra features selected by CV are most likely not meaningful. Note that the location information

of the Gabor wavelets were not used in fitting the model.

3.3 Cytokine Data

This data is from experiments performed by the Alliance for Cellular Signaling (AfCS), archived

and made available at the Signaling Gateway, a comprehensive and free resource supported by

the University of California, San Diego (UCSD). Pradervand et al. (2006) from the Bioinformatics
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Figure 5: Feature selection by ESCV and CV on four randomly selected voxels. The “o”s

represent features selected by both methods, while the “+”s represent features selected only by

CV . The axes represent the pixel location of the images. The position and size of the points

represents the wavelet location and wavelet scale respectively. Note that most of the extra features

CV select are scattered and less biologically plausible.
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and Data Coordination Laboratory at UCSD processed and analyzed this data in an attempt to

identify signal pathways responsible for regulating cytokine release. There are 7 cytokines, 22

signal pathway predictors. The signal pathways cannot be directly manipulated. Instead, ligands

are stimulated to elicit responses from the signal pathway predictors and cytokines. For each

cytokine, we have about 100 samples, each corresponding to average measured responses of the

cytokine and signal pathways when a specific ligand pair is stimulated.

In the original study (Pradervand et al. 2006), principal component regression (PCR) is used

to fit the data to a linear model and select the significant signal pathways. The selection is done

by thresholding the estimated coefficients via a pseudo-bootstrap method. They do this for each

of the seven cytokines. That is, they solve seven linear regression problems, each with n ≈ 100

and p = 22, and apply thresholding to select the relevant signal pathways. These PCR results

are then merged with other data and analysis to derive a final minimal model (MM).

We run Lasso with ESCV and CV on the seven linear regression problems and compare our

results with the results from PCR and MM . Fig 6 shows the feature selection results for the

four methods. We regard MM as the benchmark for feature selection performance because it

encompasses extra data and is not directly restricted by the linear model.

We can see from Fig 6 that Lasso with CV does poorly. It selects the most features for every

cytokine, often by a large margin. Lasso with ESCV on the other hand, selects the same or

slightly larger number of features than MM . Moreover, with the exception of cytokine TNFa,

ESCV always includes the features PCR selected which survived to the minimal model. In the

case of TNFa, PCR barely selects (close to threshold) the one feature that ESCV missed. ESCV

in general selects only about half the number of features PCR selects. There are far fewer false

positives with respect to MM . At the same time, it rarely misses out any of the important features

that PCR picked up.

4 Conclusion

Regularization methods are employed to deal with problems in the increasingly common high

dimensional setting. However, the difficult problem of selecting the associated regularization pa-

rameter for interpretation or parameter estimation, is not well studied. Our method ESCV is

based on estimation stability but also takes into account model fit via CV . With a similar paral-
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Figure 6: Feature selection results on cytokine data. The columns represent signal pathways

predictors and each block of four rows correspond to a cytokine. The four rows within each

block represent the selections of the four methods: the final minimal model (MM) and principal

component regression (PCR) from the original study, and Lasso with ESCV and CV . The white

squares corresponds to selected predictors. With only one exception, ESCV always selects the

pathways that MM (which we regard as ground truth) does, while having much smaller models

than CV .
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lelizable computational cost as CV , we have demonstrated that ESCV is an effective alternative

to the popular CV for choosing the regularization parameter for the Lasso. For the practical

situation of dependent predictors, ESCV has an overall performance better than CV for param-

eter estimation and significantly better for model selection. Their prediction performances are

comparable, unless the predictors are independent. In particular, we found much sparser models

of less than half the size in both the real data sets from neuroscience and cell biology without

sacrificing prediction accuracy, and these models are more plausible biologically based on subject

knowledge. We believe this result is not restricted to the Lasso but holds for other regularization

methods as well.

We also believe that this method can also be readily extended to the classification problem

through the generalized linear model, and leave this to future work.
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Estimation Prediction Model Selection Model Size

error error F -measure

ρ σ ESCV CV BIC ESCV CV BIC ESCV CV BIC ESCV CV BIC

0.3 0.5 0.437 0.406 0.697 0.428 0.378 0.626 0.636 0.422 0.229 21.4 37.4 77.4

0.3 1 0.845 0.798 1.36 0.824 0.747 1.23 0.594 0.438 0.235 22.3 35.0 73.3

0.3 2 1.48 1.47 2.50 1.45 1.39 2.30 0.465 0.407 0.211 22.1 30.6 62.1

0.5 0.5 0.457 0.445 0.811 0.395 0.363 0.625 0.586 0.441 0.229 24.1 35.3 77.4

0.5 1 0.908 0.899 1.62 0.783 0.735 1.25 0.544 0.433 0.222 25.2 35.1 77.2

0.5 2 1.56 1.57 2.82 1.39 1.32 2.27 0.454 0.403 0.204 22.2 29.6 62.7

0.9 0.5 0.876 0.904 1.77 0.346 0.345 0.618 0.501 0.452 0.218 28.8 33.1 77.8

0.9 1 1.54 1.59 3.30 0.648 0.629 1.16 0.444 0.403 0.192 25.9 30.5 74.2

0.9 2 2.17 2.33 5.18 1.09 1.03 1.98 0.310 0.291 0.164 19.4 23.9 57.7

Table 7: Performance of ESCV , CV and BIC in picking the regularization parameter for the

Lasso for the block correlation design. n = 100, p = 150.

Estimation Prediction Model Selection Model Size

error error F -measure

ρ σ ESCV CV BIC ESCV CV BIC ESCV CV BIC ESCV CV BIC

0.5 0.5 0.460 0.411 0.726 0.444 0.383 0.648 0.649 0.424 0.230 20.8 37.2 76.8

0.5 1 0.877 0.813 1.43 0.845 0.761 1.28 0.578 0.424 0.228 22.9 36.5 75.4

0.5 2 1.53 1.48 2.49 1.48 1.40 2.30 0.444 0.409 0.211 22.7 29.5 55.2

0.9 0.5 0.696 0.706 1.45 0.353 0.345 0.625 0.532 0.467 0.238 27.2 32.4 71.8

0.9 1 1.28 1.31 2.79 0.676 0.663 1.22 0.488 0.433 0.209 26.2 31.2 71.4

0.9 2 1.93 1.99 4.43 1.18 1.14 2.11 0.372 0.346 0.184 21.6 25.7 56.3

0.99 0.5 1.72 1.76 4.14 0.290 0.296 0.572 0.400 0.388 0.185 27.0 28.1 68.9

0.99 1 2.31 2.39 6.51 0.476 0.481 0.954 0.290 0.282 0.162 21.6 22.6 55.9

0.99 2 2.81 2.96 8.72 0.860 0.758 1.45 0.188 0.185 0.142 15.6 16.8 38.9

Table 8: Performance of ESCV , CV and BIC in picking the regularization parameter for the

Lasso for the Toeplitz correlation design. n = 100, p = 150.
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Constant correlation design

p = 150 p = 50 p = 500

True Positive False Positive True Positive False Positive True Positive False Positive

ρ σ ESCV CV ESCV CV ESCV CV ESCV CV ESCV CV ESCV CV

0 0.5 9.98 10.0 9.69 29.7 10.0 10.0 5.77 16.0 9.84 9.99 16.2 44.7

0 1 9.41 9.88 12.3 27.9 9.83 9.97 7.80 15.7 8.56 9.48 18.8 40.2

0 2 7.12 8.02 15.7 21.8 8.43 9.15 10.3 14.2 5.57 6.28 21.6 26.9

0.5 0.5 10.0 10.0 20.6 23.8 10.0 10.0 10.3 12.6 9.98 9.98 33.1 37.5

0.5 1 9.68 9.70 20.2 23.9 9.91 9.93 10.2 12.4 9.08 9.16 32.0 37.2

0.5 2 7.72 7.82 18.5 21.7 8.79 8.90 9.87 11.8 6.06 6.20 27.0 32.3

0.9 0.5 9.59 9.59 21.5 23.7 9.81 9.85 11.2 12.2 8.86 8.87 34.1 37.4

0.9 1 7.29 7.33 19.6 21.6 8.63 8.71 10.3 11.7 5.56 5.63 28.8 32.4

0.9 2 3.96 4.10 15.0 17.2 5.62 5.81 8.76 10.1 2.21 2.31 20.4 24.6

Block design, p = 150

True Positive False Positive

ρ σ ESCV CV ESCV CV

0.3 0.5 10.0 10.0 11.4 27.4

0.3 1 9.60 9.87 12.7 25.2

0.3 2 7.46 8.26 14.6 22.4

0.5 0.5 9.99 10.0 14.1 25.3

0.5 1 9.57 9.78 15.6 25.4

0.5 2 7.31 7.99 14.9 21.6

0.9 0.5 9.73 9.75 19.1 23.4

0.9 1 7.96 8.16 17.9 22.3

0.9 2 4.56 4.94 14.8 19.0

Toeplitz design, p = 150

True Positive False Positive

ρ σ ESCV CV ESCV CV

0.5 0.5 9.99 10.0 10.8 27.2

0.5 1 9.51 9.87 13.4 26.7

0.5 2 7.25 8.06 15.4 21.4

0.9 0.5 9.90 9.92 17.3 22.5

0.9 1 8.84 8.93 17.4 22.3

0.9 2 5.87 6.18 15.7 19.5

0.99 0.5 7.41 7.41 19.6 20.7

0.99 1 4.59 4.60 17.0 18.0

0.99 2 2.41 2.48 13.2 14.3

Table 9: Breakdown of the F -measure: the true positive and false positive rates of ESCV and

CV for all the simulation scenarios. In all the cases above, there are 10 true variables and p− 10

noise variables.
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