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ON NEAR(EST) CORRELATION MATRIX

PASHA ZUSMANOVICH

Abstract. We present an elementary heuristic reasoning based on Arnold’s theory of versal
deformations in support of a straightforward algorithm for finding a correlation matrix near
the given symmetric one.

Introduction

Bankers are interested in correlations between time series associated with various finan-
cial instruments (such as prices of stocks, options, futures and other derivatives, currency
exchange rates, etc.), presented in the form of a sample correlation matrix. As a bona fide

correlation matrix, it should be positive semidefinite. In practice, however, the computed
matrix almost always turns out to be not positive semidefinite. The main reason for this is
twofold: methodological errors (taking data for different instruments in different time ranges,
inconsistent approach to inventing of missing data), and floating point rounding errors.

The computed correlation matrix is utilized, however, in further analysis, like evaluation
of various risks; for this, its positive semidefiniteness is crucial. As in the most cases it is
impossible to backtrack the origin of the problem due to shortage of time, the large amount of
numerical data (a typical scenario may involve daily computed correlation matrices reaching
the size of ten thousands by ten thousands), and complexity of the methods used in its
retrieval, processing and storage, one usually resorts on “correcting” the symmetric matrix
at hand to make it positive semidefinite.

Naturally, this “correction” should be as small as possible. So, a practical problem arises:
for a given symmetric matrix, find the nearest, in some sense, correlation matrix. A quick
glance at the literature (mentioned below) suggests that this problem arises not only in
banking.

Not surprising then that this problem attracted a considerable attention. While the exact
expression for the nearest correlation matrix is not available, many papers – see [BH], [QXX]
and references therein – contain algorithms for its determination. These algorithms utilize
methods from convex analysis, semismooth optimization, and other sophisticated branches
of numerical mathematics. Earlier results in this direction are also surveyed in [Ge, §9.4.6].
In all these works, “nearest” is understood in the sense of the Frobenius matrix norm, or
some its (weighted) variation.

In the real life, however, bankers tend to ignore all this wisdom and implement a very
pedestrian approach to this problem (sometimes called “shrinking” and which can be found,
with some variations, in [DI], [QXX], [RM], [Ge, Exercise 9.14], and in many other places).
Namely, in the spectral decomposition A = BJB⊤ of a given n × n symmetric matrix A,
where B is an orthogonal matrix of eigenvectors, and

(1) J =




λ1

λ2 0
0

. . .

λn




Date: First written January 26, 2012. Last revised August 5, 2012.
2010 Mathematics Subject Classification. 14D99, 15A18, 15A21, 15B48, 62P05, 62P35, 65F35.
Key words and phrases. Correlation matrix; positive semidefinite matrix; matrix nearness problem; versal

deformations of matrices.
1

http://arxiv.org/abs/1303.3226v1


2 PASHA ZUSMANOVICH

is a diagonal matrix of eigenvalues of A, replace all negative eigenvalues by some small positive
number ε:

λ̂i =

{
ε if λi < 0

λi if λi > 0,

for i = 1, . . . , n (in practice, zero eigenvalues do not occur). The resulting matrix

(âij)
n
i,j=1 = B




λ̂1

λ̂2 0
0

. . .

λ̂n


B⊤

is a positive definite covariance matrix, and its normalization

(2)
( âij√

âiiâjj

)n

i,j=1

is declared to be the requested correlation matrix, allegedly close to the initial matrix A.
This pedestrian approach turns out to be very efficient in practice (in all banking numerical

examples we have observed, the initial and corrected matrices were very close with respect to
the max norm†, and no discrepancies occurred utilizing the corrected matrix in the subsequent
analysis). In this note we offer a heuristic argument explaining this, perhaps, unreasonable at
the first glance, efficiency. The argument, presented in §2, is an easy application of Arnold’s
theory of versal deformation of matrices. A fragment of the theory needed for our purposes
is briefly recalled in §1.

1. Arnold’s theory of versal deformations

In 1971, Vladimir Arnold developed a theory of versal deformations of matrices, which
triggered a wake of subsequent work. The original paper [A] is still the best exposition of
this theory. The main result of this theory can be formulated in many different ways, one of
them runs as follows.

Let A be a complex n×n matrix with distinct eigenvalues λ1, λ2, . . . , λk, and with a Jordan
normal form

J =




Jλ1

n11,...,n1m1

Jλ2

n21,...,n2m2 0
0

. . .

Jλk

nk1,...,nkmk




where

Jλ
ℓ =




λ 1

λ 0
. . .

0 λ 1
λ




† In §2, we use at a certain place submultiplicativity (i.e., ‖AB‖ ≤ ‖A‖‖B‖ for any two matrices A, B) of
the matrix norm ‖ · ‖ measuring the “nearness”. The max norm is not submultiplicative, so, formally, it does
not fit those arguments. This can be remedied, however, by a minor (and well-known) fix: the max norm
becomes submultiplicative when multiplied by the matrix size (see, for example, [HJ, p. 292]). Even taking
into account this factor (< 105 in practice), the absolute values of differences between the corresponding
elements of the initial and corrected matrices remained very small in all examples we have seen.
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is one Jordan block of size ℓ× ℓ, and

Jλ
n1,...,nm

=




Jλ
n1

Jλ
n2 0

0
. . .

Jλ
nm




consists of all Jordan blocks of sizes n1 × n1, n2 × n2, . . . , nm × nm, arranged in the non-
increasing order (i.e., n1 ≥ n2 ≥ · · · ≥ nm), corresponding to a single eigenvalue λ with
algebraic multiplicity n1 + n2 + · · ·+ nm.

Let us define a parametric deformation

J(ξ11, ξ12, . . . , ξ1N1
, ξ21, ξ22, . . . , ξ2N2

, . . . , ξk1, ξk2, . . . , ξkNk
)

of J , with complex parameters ξ11, . . . , ξkNk
, where

Ni = ni1 + 3ni2 + 5ni3 + · · ·+ (2mi − 1)nimi

for i = 1, . . . , k.
First, all blocks corresponding to different eigenvalues are deformed independently:



Jλ1

n11,...,n1m1

(ξ11, . . . , ξ1N1
)

Jλ2

n21,...,n2m2

(ξ21, . . . , ξ2N2
) 0

0
. . .

Jλk

nk1,...,nkmk

(ξk1, . . . , ξkNk
)


 .

Second, a single Jordan block Jλ
ℓ is deformed as follows:

Jλ
ℓ (χ1, . . . , χl) =




λ 1 0
0 λ
...

...
. . .

0 0 . . . λ 1
χ1 χ2 . . . χl−1 λ+ χl




and, finally, the deformation Jλ
n1,n2,...,nm

(χ1, . . . , χn1+3n2+···+(2m−1)nm
) of all blocks correspond-

ing to a single eigenvalue λ is defined in the following recursive way:



λ 1

0 λ 0
...

...
. . .

0 0 . . . λ 1
χ1 χ2 . . . χn1−1 λ+ χn1

χn1+1 χn1+2 . . . χn1+n2+···+nm−1 χn1+n2+···+nm

χn1+n2+···+nm+1

χn1+n2+···+nm+2
... 0 Jλ

n2,...,nm

(
χn1+2n2+···+2nm+1, . . . , χn1+3n2+···+(2m−1)nm

)

χn1+2n2+···+2nm−1

χn1+2n2+···+2nm




.

Then, according to [A, Theorem 4.4], any smooth family of complex n × n matrices con-
taining A, and parametrized by several complex variables t = (t1, t2, . . . ), can be represented,
in a sufficiently small neighborhood of 0 = (0, 0, . . . ), as the product

(3) B(ξ1(t), . . . , ξN(t)) J(ξ1(t), . . . , ξN(t))B(ξ1(t), . . . , ξN(t))
−1,

whereN =
∑k

i=1Ni, all ξi’s are smooth functions of their arguments vanishing at 0, B(ξ1, . . . , ξN)
is a smooth family of invertible matrices, and

A = A(0) = B(0) J(0)B(0)−1.
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If the spectrum of A is simple, than this picture is significantly streamlined. The total
number N of parameterizing functions in (3) is equal to n, the size of the matrix, and the
deformation family of the diagonal matrix (1) itself consists of diagonal matrices:

J(ξ1(t), . . . , ξn(t)) =




λ1 + ξ1(t)

λ2 + ξ2(t) 0
0

. . .

λn + ξn(t)




where ξi(0) = 0, i = 1, . . . , n.
There are corresponding results for matrices with real coefficients [Ga] and symmetric

matrices [PR] (as well as for many other situations in which a Lie group acts on a manifold,
see [S]), which are technically more complicated. However, for our purpose it suffices to use
Arnold’s original setting. Just note that as we are interested solely in symmetric matrices
which are brought to the diagonal form (1) by an orthogonal transformation, the combination
of results of [A] and [PR] shows that in the decomposition (3) we may assume that all matrices
in the family B are orthogonal, i.e.

B(ξ1(t), . . . , ξN(t))
−1 = B(ξ1(t), . . . , ξN(t))

⊤

for all t from an appropriate neighborhood of zero.

2. Just getting rid of negative eigenvalues is enough

It is well-known that the set of the correlation matrices coincides with the set of (real)
positive semidefinite matrices with units on the main diagonal (see, for example, [F, Chapter
III, §6, Theorem 4]), so we will use that two notions interchangingly.

Suppose A is a symmetric n × n matrix with units on the main diagonal. As the set of
matrices with a simple spectrum is Zariski-dense in the set of all real n×n matrices, we may
assume that A has a simple spectrum (a more down-to-earth incarnation of this fact is that all
correlation matrices appearing in banking practice, and, more generally, correlation matrices
based on a sufficiently large amount of real-world data, have simple spectrum; in fact, the
reasonings below could be modified for the case of arbitrary spectrum, but technically they
would become more complicated). Let (1) be its Jordan normal form, all λi’s being pairwise
distinct (and some of them are negative, of small absolute value).

Suppose further that there exists a correlation matrix C “near” A, and that A and C

are members of a smooth family of matrices. The latter assumption is justified both from
theoretical (correlation matrix is a smooth function of time series it correlates between) and
practical (the financial processes a correlation matrix is trying to capture, are assumed to be
satisfactorily modelled by smooth functions) perspectives.

According to the theory presented in §1, in a sufficiently small neighborhood U of A =
A(0), we may write this smooth family in the following parametric form:

(4) A(t) = B(t)




λ1 + ξ1(t)

λ2 + ξ2(t) 0
0

. . .

λn + ξn(t)


B(t)⊤

for some smooth functions ξi such that ξi(0) = 0 for all i = 1, . . . , n, and a smooth family
B(t) =

(
bij(t)

)n
i,j=1

of orthogonal matrices. In particular, C, being a member of the family,

is represented in the form (4) for some value t = t0.
The condition of positive definiteness of a member of the family A(t) is equivalent to

(5) ξi(t) > −λi
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for all i = 1, . . . , n, and the condition of having units on the main diagonal is equivalent to

(6) B◦2(t)




λ1 + ξ1(t)
λ2 + ξ2(t)

...
λn + ξn(t)


 =




1
1
...
1


 ,

where B◦2(t) =
(
bij(t)

2
)n
i,j=1

is the Hadamard square of B(t). The set of solutions of (6) is

nonempty (it contains at least two points, 0 and t0), hence it forms a hypersurface H in the
space of parameters, and the intersection of this hypersurface with the neighborhood U and
the open domain defined by conditions (5), defines a certain neighborhood U ′ of C = A(t0)
in H .

In terms of the procedure described in the introduction, getting C from A amounts to
“adjusting” eigenvalues, i.e., adding to each eigenvalue λi in the diagonal form (1) a small
correction ξi(t0), and subsequent “normalization” (2), what corresponds to getting back
correlation matrix

B(t0)




λ1 + ξ1(t0)

λ2 + ξ2(t0) 0
0

. . .

λn + ξn(t0)


B(t0)

⊤

from the covariance matrix

B(0)




λ1 + ξ1(t0)

λ2 + ξ2(t0) 0
0

. . .

λn + ξn(t0)


B(0)⊤.

Assuming that the neighborhood U ′ is small enough, any matrix from it will do, but what
will be the best choice? As mentioned in the introduction, this is, generally, a difficult problem
not admitting a closed-form solution. Intuitively, there is no need to adjust the positive
eigenvalues, but only the negative ones, and the following imprecise reasoning supports this.

Assuming that the matrix norm ‖ · ‖ measuring the “nearness” is submultiplicative and
is invariant under transposition (the latter assumption is not essential but slightly simplifies
the expressions below), we have:

‖A(t)− A(0)‖

= ‖B(t) diag
(
λ1 + ξ1(t), . . . , λn + ξn(t)

)
B(t)⊤ − B(0) diag

(
λ1, . . . , λn

)
B(0)⊤‖

≤ ‖ diag
(
ξ1(t), . . . , ξn(t)

)
‖‖B(t)−B(0)‖2

+2‖ diag
(
ξ1(t), . . . , ξn(t)

)
‖‖B(t)−B(0)‖‖B(0)‖(7)

+ ‖ diag
(
ξ1(t), . . . , ξn(t)

)
‖‖B(0)‖2

+ ‖B(t)− B(0)‖2‖ diag
(
λ1, . . . , λn

)
‖

+2‖B(t)− B(0)‖‖B(0)‖‖ diag
(
λ1, . . . , λn

)
‖.

Both theoretical considerations in [A], and computational procedures developed in [M] sug-
gest that matrix entries of the parametric family B(t) providing the transformation to the
canonical form (4) of the versal deformation, have, as power series of the parameter t, the
same order of magnitude as matrix entries of the canonical form itself. In particular, in a
sufficiently small neighborhood of zero, which can be assumed lying inside U ,

‖B(t)−B(0)‖ ≤ α‖ diag
(
ξ1(t), . . . , ξn(t)

)
‖

for some (positive) constant α. This, together with (7), implies that ‖A(t)−A(0)‖ is bounded
by a cubic polynomial in ‖ diag

(
ξ1(t), . . . , ξn(t)

)
‖ with positive coefficients. The latter poly-

nomial is a monotonic function, so to minimize ‖A(t) − A(0)‖ one may wish to minimize
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‖ diag
(
ξ1(t), . . . , ξn(t)

)
‖ instead. Subject to restriction (5), for all matrix norms appearing

in practice, this amounts to setting ξi(t) to a positive value “just a little bit” bigger than
−λi if λi is negative, and to zero otherwise.

We stress that these are merely non-rigorous, heuristic, arguments, and by no means they
can substitute a rigorous analysis given in [BH], [QXX] and similar papers. However, these
arguments perfectly suit the practical nature of the problem: one knows a priori that a very
close correlation matrix exists. In such a situation, Arnold’s theory guarantees existence of
such matrix in the simple form (4). Though it is not guaranteed that this will be the nearest
correlation matrix, it certainly will be a near one, and this suffices in practice.

Of course, arguments of this sort can be used in other similar situations – for example,
to justify adjusting (“cutoff”) of some unwanted, from the physical perspective, eigenvalues
of (valid) correlation matrices arising in lattice gauge theory (see [YJJL] and references
therein), or correcting the degenerate covariance matrix from an insufficient amount of data
in the situation when the number of observations is much less then the number of variables
(see [TW] and references therein).
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