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Propagation of initial errors on the parameters

for linear and Gaussian state space models

Salima El Kolei

Abstract

For linear and Gaussian state space models parametrized by θ0 ∈ Θ ⊂
R

r, r ≥ 1 corresponding to the vector of parameters of the model, the
Kalman filter gives exactly the solution for the optimal filtering under
weak assumptions. This result supposes that θ0 is perfectly known. In
most real applications, this assumption is not realistic since θ0 is unknown
and has to be estimated. In this paper, we analysis the Kalman filter for
a biased estimator θ of θ0. We show the propagation of this bias on the
estimation of the hidden state. We give an expression of this propagation
for linear and Gaussian state space models and we extend this result for
almost linear models estimated by the Extended Kalman filter. An illus-
tration is given for the autoregressive process with measurement noises
widely studied in econometrics to model economic and financial data.

Keywords: Kalman filter, Extended Kalman filter, State space mod-
els, Autoregressive process

1 Introduction

Let (Ω,F ,Pθ0) be a probability space parametrized by θ0 ∈ Θ ⊂ Rr, r ≥ 1 cor-
responding to the vector of parameters of the model. We define two real vectors
{xt, t ∈ N} defined on (Ω,F ,Pθ0) with value in X and {yt, t ∈ N

∗} defined on
(Ω,F ,Pθ0) with value in Y. The process {xt, t ∈ N} (respectively {yt, t ∈ N∗})
is called the unobserved signal process (resp. the observation process).

The Kalman filter (KF) and the Extended Kalman filter (EKF) commonly
used in some engineering applications have been successfully employed in various
areas. These filters may be easily understood by reading the first publication of
Kalman in 1960 [Kal60] or the Bayesian interpretation of Harrison and Stevens
in 1971 [HS71].
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1.1 The (Extended) Kalman filter: motivation

Let y1, · · · , yT be the data (which may be either a scalar or a vector) at time
1, · · · , T . We assume that yt depends on the unobservable variable xt. The aim
of the (Extended) Kalman filter is to make inference about the hidden state xt

(which may also be a scalar or a vector) conditionally to the data y1, · · · , yt. The
relationship between the observed variable yt and the hidden state xt is linear
and described by a function h depending on the unknown vector of parameters
θ0. This relation is specified by the following observation equation:

yt = h(θ0, xt) + σε
θ0
εt, t ≥ 1

where εt is the vector of noises assumed to be normally distributed with mean
zero and unit variance, denoted as: εt ∼ N (0, Iny×ny

) where ny is the dimension
of the observation space Y.
The hidden state xt is assumed to be varying with time and its dynamic feature
is given by the following state equation:

xt = b(θ0, xt−1) + ση
θ0
ηt

where b is a known function and ηt is the state error assumed to be normally
distributed with mean zero and unit variance, i.e ηt ∼ N (0, Inx×nx

) where nx

is the dimension of the state space X .
In addition to the usual Kalman filter assumptions (see [Kal60]), we also assume
that the noises εt and ηt are independent.
Hence, this paper is concerned with the following discrete time state space model
with additives noises:

{
yt = h(θ0, xt) + σε

θ0
εt, t ≥ 1

xt = b(θ0, xt−1) + ση
θ0
ηt

(1)

Under the usual Kalman assumptions, the model (1) can be rewritten as
follows:

{
yt = dt(θ0) + Cθ0xt + σε

θ0
εt t ≥ 1,

xt = ut(θ0) +Aθ0xt−1 + ση
θ0
ηt,

(2)

If the vector of parameters θ0 is perfectly known, the optimal filtering pθ0(xt|y1:t)
is Gaussian and the Kalman filter gives exactly the two first conditional mo-
ments: x̂t = Eθ0 [xt|y1:t] and Pt = Eθ0 [(xt − x̂t)(xt − x̂t)

′|y1:t] where
′

stands for
the transpose. In particular, the Kalman filter estimator is the BLUE (Best Lin-
ear and Unbiased Estimator) among linear estimators. Nevertheless, in most
applications the linearity assumption of the functions h and b is not always
satisifed. A linearization by a one order Taylor series expansion can be per-
formed and the Extended Kalman filter consists in applying the Kalman filter
on this linearized model.
For the EKF, the matrix Cθ0 is the differential of the function h with respect to
(w.r.t.) x computed at the point (θ0, x̂

−

t ) where x̂−

t corresponds to the condi-
tional expectation Eθ0 [xt|y1:t−1]. Additionally, the matrix Aθ0 is the differential
of the function b w.r.t. x computed at the point (θ0, x̂t−1). Furthermore, the
functions ut(θ0) and dt(θ0) are defined as:
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{
ut(θ0) = b(θ0, x̂t−1)−Aθ0 x̂t−1

dt(θ0) = h(θ0, x̂
−

t )− Cθ0 x̂
−

t

In this paper, we assume that the vector of parameters θ0 is not perfectly
known such that the inference of the hidden state xt conditionnally to y1:t is
made with errors of specification. This typical case is frequent in practice since
in general the vector of parameters is unknown and need to be estimated by an
ordinary method. The resulting estimator can be biased and consequently this
bias is propagated on the estimation of the hidden state. More precisely, if we
denote by θ̂ a biased estimator of θ0 such that Eθ0 [θ̂] = θ = θ0 + ǫ where ǫ is
a fixed and unknown error corresponding to the bias, we want to evaluate the
propagation of the error a posteriori and of the residues a posteriori given by:

et = xt − Eθ[xt|y1:t] (3)

ξt = yt − Eθ[yt|y1:t]. (4)

Many papers concerned the propagation of the initial error on the state
(x0 − x̂0) through the filter, and, to the best of our knowledge, there don’t ex-
ist in the literature, an analysis of the propagation of the initial errors on the
vector of parameters. In this paper, we derive an expression of these propaga-
tions for the Kalman and the Extended Kalman filters. Our main result shows
that a correlation between the error a posteriori et and the unobserved state xt

appeared at each time t of the filter. The Kalman filter is now a biased estima-
tor and a new Lyapunov dynamic equation for the variance matrix Pt is induced.

Applications of this result include epidemiology, meteorology, neuroscience,
ecology (see [IBAK11]) and finance (see [JPS09]). For example, our result can
be applied to the five ecological state space models described in [PHH10]. Al-
though the scope of our method is general, we have chosen to focus on the
so-called autoregressive process AR(1) with measurement noise which has been
widely studied and on which our main result can be easily applied and under-
stood. A full illustration of this result is given for a more complex model as
the Heston model which is very used in finance for pricing options and hedging
portfolios (see [ElK12]).

The paper is organized as follows. Section 2 presents the model assumptions
and states all of the theoretical results. The application is given and discussed
in Section 3. Some concluding remarks are provided in the last section. The
proofs are gathered in Appendix 4.
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2 Main result

2.1 General setting and assumptions

In this section, we introduce some preliminary main notations and provide the
assumptions of model (2).

2.1.1 Notations

Subsequently, we denote by Et the pair of the unobservable states vectors given

by

(
et
xt

)

and by Et the pair of the observations vectors

(
ξt
yt

)

where et and

ξt are defined in (3) respectively. Their variances matrix are denoted by Σx
t and

Σy
t respectively.

Regarding the partial derivatives, for any function h, [∂h/∂θ] is the vector
of the partial derivatives of h w.r.t θ.

Finally, Rθ0 denotes σε
θ0
σ

′ε
θ0

and Qθ0 denotes ση
θ0
σ

′η
θ0

and are the covariances
matrix of εt and of ηt respectively.

2.1.2 Assumptions

We consider the state space models (2), the following assumption ensures some
smoothness for the functions h and b.

(A1) The functions b and h are differentiable with respect to θ0 and x.

2.1.3 Main result

Before running into the main theorem of this paper, let us explain some existing
results. It is well known that if the vector of parameters is exactly known, the
error a posteriori et is given by the following formula:

et = (Inx×nx
−KtCθ0)Aθ0et−1 −Kt(σ

ε
θ0
εt + Cθ0σ

η0

θ0
ηt) + ση

θ0
ηt

where Kt is called the Kalman matrix that minimizes the variance matrix Pt.
Under some assumptions on the model (2), a CLT is obtained for et as t tends to
infinity (see [dNCdL94]). The following Theorem gives the propagation of the
error a posteriori et and of ξt for the Kalman filter and the Extended Kalman
filter when θ0 is not exactly known. In this respect, we further assume that
assumption (A1) holds true and the usual Kalman assumptions are satisfied.

Theorem 2.1. Consider the model (2). If ǫ << 1, then:

et = (Inx×nx
−KtCθ)Aθet−1 −Kt(σ

ε
θεt + Cθσ

η
θ ηt) + ση

θ ηt

+Eǫ
x(θ, t) + F ǫ

x(θ, t)xt−1 +Wǫ
x(θ, t) + o(ǫ) (5)

with:
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Eǫ
x(θ, t) = −ǫ

(

(Inx×nx
−KtCθ)

∂ut

∂θ
(θ)−Kt

∂dt
∂θ

(θ)−Kt

∂Cθ

∂θ
ut(θ)

)

(6)

F ǫ
x(θ, t) = −ǫ

(

(Inx×nx
−KtCθ)

∂Aθ

∂θ
−Kt

∂Cθ

∂θ
Aθ

)

(7)

Wǫ
x(θ, t) = −ǫ

(
∂ση

θ

∂θ
ηt −KtCθ

∂ση
θ

∂θ
ηt −Ktσ

η
θ

∂Cθ

∂θ
ηt −Kt

∂σε
θ

∂θ
εt

)

(8)

Additionally, the propagation of ξt is equal to:

ξt = Cθet + σε
θεt + Eǫ

y(θ, t) + F ǫ
y(θ, t)xt +Wǫ

y(θ, t) + o(ǫ) (9)

with:

Eǫ
y(θ, t) = −ǫ

∂dt
∂θ

(θ), F ǫ
y(θ, t) = −ǫ

∂Cθ

∂θ
, Wǫ

y(θ, t) = −ǫ
∂σε

θ

∂θ
εt (10)

Moreover, when the linearity assumption of the funtions b and h is not sat-
isfied, the formulas above remain true with the notations of the EKF defined in
Section 1.

Proof. See Appendix (A).

We note that the terms depending on ǫ: Eǫ
x(θ, t), F

ǫ
x(θ, t) and Wǫ

x(θ, t) (resp.
Eǫ
y(θ, t), F

ǫ
y(θ, t) and Wǫ

y(θ, t)) are the corrective terms arising from the bias of
the parameters estimates.
Besides, we can see in Eq.(5) that at time t, the propagation of the state error
et depends on et−1 but also on the true state variable xt−1. Therefore, the vari-
ance of the error et depends on the variance of et−1 but also on the covariance
between et−1 and xt−1.

Theorem 2.1 gives an expression of the error a posteriori et and of the residues
ξt which can be rewritten as follows:

et = xt − Eθ[xt|y1:t]

= (xt − Eθ0 [xt|y1:t])
︸ ︷︷ ︸

(1) error of estimation

+ (Eθ0 [xt|y1:t]− Eθ[xt|y1:t])
︸ ︷︷ ︸

(2) correctives terms arising from the bias of parameters.

Additionally,

ξt = xt − Eθ[ξt|y1:t]

= (ξt − Eθ0 [ξt|y1:t])
︸ ︷︷ ︸

(1) true residues

+ (Eθ0 [ξt|y1:t]− Eθ[ξt|y1:t])
︸ ︷︷ ︸

(2) correctives terms arising from the bias of parameters.

The expression of the correctives terms (2) are given in Corollary 1.
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Corollary 1. Let et given in Eq.(5), the mean of the error a posteriori is given
by:

Eθ0 [et|y1:t] = Eθ0 [xt|y1:t]− Eθ[xt|y1:t]

=
(
(Inx×nx

−KtCθ)Aθ + F ǫ
x(θ, t)

)
Eθ0 [et−1|y1:t−1]

+Eǫ
x(θ, t) + F ǫ

x(θ, t)Eθ[xt−1|y1:t−1] + o(ǫ) (11)

where Eǫ
x(θ, t) and F ǫ

x(θ, t) are given in Eq.(6) and Eq.(7).

Besides, let ξt given in Eq.(9), the mean of ξt is given by:

Eθ0 [ξt|y1:t] = Eθ0 [ξt|y1:t]− Eθ[ξt|y1:t]

=
(
Cθ + F ǫ

y(θ, t)
)
Eθ0 [et|y1:t] + Eǫ

y(θ, t) + F ǫ
y(θ, t)Eθ [xt|y1:t] + o(ǫ)(12)

where Eǫ
y(θ, t) and F ǫ

y(θ, t) are given in Eq.(10).

Corollary 1 which is just a consequence of Theorem (2.1) gives a computable
recursive expression of the expected error Eθ0 [et|y1:t]. Given Eθ0 [e0] one can de-
duce all the values of this expectation for all t = 1, · · · , T .

3 Illustration on the linear Gaussian AR(1) model:

3.1 The model

Let us consider the linear AR(1) model with measurement noise given by:

{
yt = xt + σεεt, t = 1, · · · , T
xt+1 = φ0xt + σηηt+1.

(13)

Since this model is linear and Gaussian we can apply Eq.(11) in Corollary 1
to recover the expectation of et when the state xt is estimated with a biased
vector of parameters. For this straighforward example, θ0 is equal to φ0. For
the simulation, we take φ0 = 0.7, σ2

η = 0.3 and σ2
ε = 0.5.

3.2 Numerical result:

We run a Kalman filter by assuming that the parameter estimate φ is biased
and we take φ = 0.85, that is ǫ = 0.15. For this model, the functions b and h
are given by:

b(θ0, x) = φ0x and h(θ0, x) = x

The variable Aθ0 is equal to φ0 and Cθ0 is equal to one. The control variables
ut(θ0) and dt(θ0) are equal to zero.
Furthermore, the functions Eǫ

x(θ, t),F
ǫ
x(θ, t) are easily computable and given in

the following lemma.
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Lemma 1. For the linear AR(1) model, the functions Eǫ
x(θ, t) and F ǫ

x(θ, t) are
equal to:

Eǫ
x(θ, t) = 0, and F ǫ

x(θ, t) = −ǫ(1−Kt)

Therefore, by using Eq.(11) of Corollary 1, the expectation Eθ0 [et|y1:t] is given
by

Eθ0 [et|y1:t] =
(
(1−Kt)(φ− ǫ)

)
Eθ0 [et−1|y1:t−1]− ǫ(1−Kt)Eθ[xt−1|y1:t−1] + o(ǫ)

(14)

Figure 1: Red: True Error Eθ0 [et|y1:t]× 100. Blue: Approximation (14)×100.

This example shows that the approximation (14) explains the true error
Eθ0 [et|y1:t] for an easy model. The term F ǫ

x(θ, t) corresponds to the bias of xt

induced by the bias of the parameter estimate. Furthermore, we can see that
the error between the true expectation Eθ0 [et|y1:t] and the approximation (14)
corresponds to o(ǫ). A full application is given in [ElK12].

The following Theorem regards the expression of the variances matrix Σx
t

and Σy
t of Et and Et respectively.

Theorem 3.1. The variance matrix Σx
t is given by:

Σx
t =

(

V x
t S

′x
t

Sx
t P x

t

)

where:

V x
t = (I −KtCθ)AθV

x
t−1A

′

θ(I −KtCθ)
′

+ F ǫ
x(θ)St−1(I −KtCθ)A

′

θ

+(I −KtCθ)AθS
′x
t−1F

′ǫ
x (θ) + F ǫ

x(θ)P
x
t−1F

′ǫ
x (θ) + Vθ[W̃

ǫ
x(θ)]

Sx
t = Aθ0S

x
t−1A

′

θ0
(I −KtCθ)

′

+Aθ0P
x
t−1F

′ǫ
x (θ) + Covθ

(

W̃ǫ
x(θ), σ

η
θ0
ηt

)

P x
t = Aθ0P

x
t−1A

′

θ0
+Qθ0

7



with:

W̃ǫ
x(θ) = Wǫ

x(θ) + ση
θ ηt −Ktσ

ε
θεt −KtCθσ

η
θ ηt (15)

where Eǫ
x(θ), F ǫ

x(θ) and Wǫ
x(θ) are given in Eq.(6), Eq.(7) and Eq.(8) in

Theorem 2.1.

If ǫ << 1, then Vθ[W̃ǫ
x(θ)] = Qθ+Kt (CθQθC

′

θ +Rθ)K
′

t and Covθ

(

W̃ǫ
x(θ), σ

η
θ0
ηt

)

is given by:

Covθ

(

W̃ǫ
x(θ), σ

η
θ0
ηt

)

= −ǫ

(
∂ση

θ

∂θ
Qθ0σ

′η
θ0

−Kt

(

Cθ

∂ση
θ

∂θ
+ ση

θ

)

Qθ0σ
′η
θ0

)

Additionally, the variance matrix Σy
t is given by

Σy
t =

(

V y
t S

′y
t

Sy
t P y

t

)

where:

V y
t = CθV

x
t C

′

θ + F ǫ
y(θ)StC

′

θ + CθS
′

tF
′ǫ
y (θ) + F̃ ǫ

y(θ)P
x
t F̃

ǫ
y(θ) + Vθ[W̃

ǫ
y(θ)]

Sy
t = Cθ0S

x
t C

′

θ + Cθ0P
x
t F

′ǫ
y (θ) + Covθ

(

W̃ǫ
y(θ), σ

ε
θ0
εt

)

P y
t = Cθ0P

x
t C

′

θ0
+Rθ0

with:

W̃ǫ
y(θ) = Wǫ

y(θ) + σε
θεt (16)

where Eǫ
y(θ), F

ǫ
y(θ) and Wǫ

y(θ) are given in Eq.(10) Theorem 2.1.

If ǫ << 1, then Vθ[W̃ǫ
y(θ)] = Rθ and Covθ

(

W̃ǫ
y(θ), σ

ε
θ0
εt

)

is given by:

Covθ

(

W̃ǫ
y(θ), σ

ε
θ0
εt

)

= −ǫ

(
∂σε

θ

∂θ
Rθ0σ

′ε
θ0

)

Proof. See Appendix (B).

The quantities F ǫ
x(θ, t) and Wǫ

x(θ, t) (resp. F
ǫ
y(θ, t) and Wǫ

y(θ, t)) correspond to
the correctives terms arising from the bias of the parameters and in particular
from the correlation between et and the true state xt (see Eq.(5)). This corre-
lation induces a new Lyapunov dynamic equation for the variance matrix V x

t .
For unbiased parameters estimates, these terms are dropped and a CLT is given
in [dNCdL94].

8



4 Concluding remarks and discussion

In this paper we provide an expression of the propagation errors on the hidden
state for an initial and fixed error on the vector of parameters.
We showed that the hidden state xt appaered in the propagation equation in-
ducing a correlation between et and the true state xt and most importantly a
new Lyapunov dynamic equation for the variance matrix. By using the same
assumptions than in [dNCdL94] and adding smoothness assumptions on the
functions b and h and on their derivatives, one can again obtain a CLT for et.
Nevertheless, it is not the subject of this paper.
Another remark concerns the case where ǫ is not fixed and is supposed to be a
random variable. This particular case refers to the approach proposed in [HK01]
for which the parameters are supposed time varying. A dynamical artificial evo-
lution is assumed for θ such that θt = θt−1 + σZZ where Z is a centered and
standard gaussian random variable. To the best of our knowledge, there does
not exist results about the convergence of this approach. This method fails in
practice when the variance σZ is not small. Some authors use σZ decreasing
with time. Hence, at each step of the filter, a small perturbation is added to
the parameters. This can be seen as a small bias ǫ introduced at the first step
of the filter.
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A Proof of Theorem 2.1:

The proof is essentially based on a one order Taylor expansion of the functions b

and h with respect to θ.

et = xt − Eθ[xt|y1:t] = xt − Eθ[xt|y1:t−1]−Kt(yt − ŷ
−

t )

= ut(θ0) + Aθ0xt−1 + σ
η
θ0
ηt − Eθ[ut(θ) + Aθxt−1 + σ

η
θ ηt|y1:t−1]−Kt(yt − ŷ

−

t )

= ut(θ0) + Aθ0xt−1 + σ
η
θ0
ηt − Eθ[ut(θ) + Aθxt−1|y1:t−1]−Kt(yt − ŷ

−

t )

= ut(θ0) + Aθ0xt−1 + σ
η
θ0
ηt − ut(θ)− AθEθ[xt−1|y1:t−1]−Kt(yt − ŷ

−

t )

= ut(θ0) + Aθ0xt−1 + σ
η
θ0
ηt − ut(θ)− Aθx̂t−1 −Kt(yt − ŷ

−

t ) (17)

Note that one can write:

ut(θ0) = ut(θ)− ǫ ∂u
∂θ

(θ) + o(ǫ), Aθ0 = Aθ − ǫ
∂Aθ

∂θ
+ o(ǫ), σ

η
θ0

= σ
η
θ0

− ǫ
∂σ

η
θ

∂θ
+ o(ǫ)

Pluging into (17), one gets:

et = Aθet−1 − ǫ
∂ut

∂θ
(θ)− ǫ

∂Aθ

∂θ
xt−1 + σ

η
θ ηt − ǫ

∂σ
η
θ

∂θ
ηt −Kt(yt − ŷ

−

t ) + o(ǫ) (18)

Furthermore,

(yt − ŷ
−

t ) = dt(θ0) + Cθ0xt + σ
ε
θ0εt − Eθ[yt|y1:t−1]

= dt(θ0) + Cθ0xt + σ
ε
θ0
εt − dt(θ)− CθEθ[xt|y1:t−1]

and

dt(θ0) = dt(θ)− ǫ
∂d

∂θ
(θ) + o(ǫ), C(θ0) = C(θ)− ǫ

∂C

∂θ
(θ) + o(ǫ), σ

ε
θ0 = σ

ε
θ0 − ǫ

∂σε
θ

∂θ
+ o(ǫ)

So that:

(yt − ŷ
−

t ) = −ǫ
∂dt

∂θ
(θ) + (σε

θ − ǫ
∂σε

θ

∂θ
)εt + (Cθ − ǫ

∂Cθ

∂θ
)
(

ut(θ0) + Aθ0xt−1 + σ
η
θ0
ηt
)

−CθEθ[xt|y1:t−1] + o(ǫ)

Rewrite,

Eθ[xt|y1:t−1] = AθEθ[xt−1|y1:t−1] + ut(θ)

we get:

= CθAθxt−1 − CθAθx̂t−1 + σ
ε
θεt + Cθσ

η
θηt

−ǫ

(

∂dt

∂θ
(θ) + Cθ

∂Aθ

∂θ
xt−1 +

∂σε
θ

∂θ
εt +Cθ

∂ut

∂θ
(θ) + Cθ

∂σ
η
θ

∂θ
ηt

+
∂Cθ

∂θ
ut(θ) +

∂Cθ

∂θ
Aθxt−1 +

∂Cθ

∂θ
σ
η
θηt

)

+ǫ
2

(

∂Cθ

∂θ

∂ut

∂θ
(θ) +

∂Cθ

∂θ

∂Aθ

∂θ
xt−1 +

∂Cθ

∂θ

∂σ
η
θ

∂θ
ηt

)

+ o(ǫ) (19)

Define,
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Eǫ
y−(θ) = −ǫ

(

∂dt

∂θ
(θ) + Cθ

∂ut

∂θ
(θ) +

∂Cθ

∂θ
ut(θ)

)

,

Fǫ
y−(θ) = −ǫ

(

Cθ
∂Aθ

∂θ
+

∂Cθ

∂θ
Aθ

)

,

Wǫ
y−(θ) = −ǫ

(

∂Cθ

∂θ
σ
η
θ ηt + Cθ

∂σ
η
θ

∂θ
ηt +

∂σε
θ

∂θ
εt

)

,

we obtain:

ξ
−

t = yt − Eθ[yt|y1:t−1]

= CθAθet−1 + σ
ε
θεt + Cθσ

η
θ ηt + Eǫ

y−(θ) + Fǫ
y−(θ)xt−1 +Wǫ

y−(θ) + o(ǫ)

By combining Eq.(18) and Eq.(19), we have:

et = xt − Eθ[xt|y1:t]

= (Inx×nx −KtCθ)Aθet−1 −Ktσ
ε
θεt −KtCθσ

η
θηt + σ

η
θ ηt + Eǫ

x(θ) + Fǫ
x(θ)xt−1 +Wǫ

x(θ) + o(ǫ)

where,

Eǫ
x(θ) = −ǫ

(

(Inx×nx −KtCθ)
∂ut

∂θ
(θ)−Kt

∂dt

∂θ
(θ)−

∂Cθ

∂θ
ut(θ)

)

,

Fǫ
x(θ) = −ǫ

(

(Inx×nx −KtCθ)
∂Aθ

∂θ
−

∂Cθ

∂θ
Aθ

)

,

Wǫ
x(θ) = −ǫ

(

∂σ
η
θ

∂θ
ηt −KtCθ

∂σ
η
θ

∂θ
ηt −Ktσ

η
θ

∂Cθ0

∂θ
ηt −Kt

∂σε
θ0

∂θ
εt

)

,

One can deduce the Propagation of the residues a posteriori:

ξt = yt − Eθ[yt|y1:t]

= dt(θ0) + Cθ0xt + σ
ε
θ0εt − Eθ[dt(θ) + Cθxt + σ

ε
θεt|y1:t]

= dt(θ0)− dt(θ) + (Cθ − ǫ
∂Cθ

∂θ
)xt − CθEθ[xt|y1:t] + (σε

θ − ǫ
∂σε

θ

∂θ
)εt + o(ǫ)

= Cθet + σ
ε
θεt − ǫ

(

∂dt

∂θ
(θ) +

∂Cθ

∂θ
xt +

∂σε
θ

∂θ
εt

)

+ o(ǫ)

By defining:

Eǫ
y(θ) = −ǫ

∂dt(θ)

∂θ

Fǫ
y(θ) = −ǫ

∂Cθ

∂θ

Wǫ
y(θ) = −ǫ

∂σε
θ

∂θ
εt

Eq.(9) follows.

The proof of Corollary 1 is obtained by taking the expectations in Eq.(5) and
Eq.(9).
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B Proof of Theorem 3.1:

By using the system (2) and Eq.(5)-Eq.(9) we can rewrite the model as follows:

Et =

(

Eǫ
x(θ)

ut(θ0)

)

+

(

(I −KtCθ)Aθ Fǫ
x(θ)

0 Aθ0

)

Et−1 +

(

W̃ǫ
x(θ)

σ
η
θ0
ηt

)

(20)

and,

Et =

(

Eǫ
y(θ)

dt(θ0)

)

+

(

Cθ Fǫ
y(θ)

0 Cθ0

)

Et +

(

W̃ǫ
y(θ)

σε
θ0
εt

)

(21)

Hence, the variance matrix Σx
t is given by:

Σx
t =

(

(I −KtCθ)Aθ Fǫ
x(θ)

0 Aθ0

)

Σx
t−1

(

(I −KtCθ)Aθ Fǫ
x(θ)

0 Aθ0

)
′

+

(

V[W̃ǫ
x(θ)] Cov(W̃ǫ

x(θ), σ
η
θ0
ηt)

Cov(W̃ǫ
x(θ), σ

η
θ0
ηt) σ

η
θ0
σ

′η
θ0

)

Additionally, the variance matrix Σy
t is given by:

Σy
t =

(

Cθ Fǫ
y(θ)

0 Cθ0

)

Σx
t

(

Cθ Fǫ
y(θ)

0 Cθ0

)
′

+

(

V[W̃ǫ
y(θ)] Cov(W̃ǫ

y(θ), σ
ε
θ0
ηt)

Cov(W̃ǫ
x(θ), σ

ε
θ0
ηt) σε

θ0
σ

′ε
θ0

)

Proposition 2.1 gives that:











Wǫ
x(θ) = −ǫ

(

∂σ
η
θ0

∂θ
ηt −KtCθ

∂σ
η
θ0

∂θ
ηt −Ktσ

η
θ

∂Cθ0

∂θ
ηt −Kt

∂σε
θ0

∂θ
εt

)

Wǫ
y(θ) = −ǫ

∂σε
θ0

∂θ
εt

Hence, if ǫ << 1, then

V[Wǫ
x(θ)] = Qθ +Kt

(

CθQθC
′

θ +Rθ

)

K
′

t and V[Wǫ
y(θ)] = Rθ

Furthermore, the covariances are given by:

Covθ

(

W̃ǫ
x(θ), σ

η
θ0
ηt

)

= −ǫCovθ

(

∂σ
η
θ0

∂θ
ηt, σ

η
θ0
ηt

)

+ ǫ

(

KtCθ

∂σ
η
θ0

∂θ
ηt, σ

η
θ0
ηt

)

+ ǫCovθ
(

Ktσ
η
θ ηt, σ

η
θ0
ηt
)

+ ǫCovθ

(

Kt

∂σ
η
θ0

∂θ
εt, σ

η
θ0
ηt

)

= ǫ
∂σ

η
θ0

∂θ
Qθ0σ

′η
θ0

+ ǫKtCθ

∂σ
η
θ0

∂θ
Qθ0σ

′η
θ0

+ ǫKtσ
η
θQθ0σ

′η
θ0

by assumption A2

= −ǫ

(

∂σ
η
θ0

∂θ
Qθ0σ

′η
θ0

−Kt

(

Cθ

∂σ
η
θ0

∂θ
+ σ

η
θ

)

Qθ0σ
′η
θ0

)

Additionally,

Covθ

(

W̃ǫ
y(θ), σ

ε
θ0εt

)

= −ǫCovθ

(

∂σε
θ0

∂θ
εt, σ

ε
θ0εt

)

= −ǫ

(

∂σε
θ0

∂θ
Rθ0σ

′ε
θ0

)
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