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Propagation of initial errors on the parameters
for linear and Gaussian state space models

Salima El Kolei

Abstract

For linear and Gaussian state space models parametrized by 6y € © C
R",r > 1 corresponding to the vector of parameters of the model, the
Kalman filter gives exactly the solution for the optimal filtering under
weak assumptions. This result supposes that 0y is perfectly known. In
most real applications, this assumption is not realistic since 0y is unknown
and has to be estimated. In this paper, we analysis the Kalman filter for
a biased estimator 0 of . We show the propagation of this bias on the
estimation of the hidden state. We give an expression of this propagation
for linear and Gaussian state space models and we extend this result for
almost linear models estimated by the Extended Kalman filter. An illus-
tration is given for the autoregressive process with measurement noises
widely studied in econometrics to model economic and financial data.

Keywords: Kalman filter, Extended Kalman filter, State space mod-
els, Autoregressive process

1 Introduction

Let (9, F,Py,) be a probability space parametrized by 6y € © C R",r > 1 cor-
responding to the vector of parameters of the model. We define two real vectors
{xt,t € N} defined on (Q, F,Py,) with value in X and {y:, ¢t € N*} defined on
(Q, F,Py,) with value in ). The process {z,t € N} (respectively {y:,t € N*})
is called the unobserved signal process (resp. the observation process).

The Kalman filter (KF) and the Extended Kalman filter (EKF) commonly
used in some engineering applications have been successfully employed in various
areas. These filters may be easily understood by reading the first publication of

Kalman in 1960 [Kal60] or the Bayesian interpretation of Harrison and Stevens
in 1971 [HST1].
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1.1 The (Extended) Kalman filter: motivation

Let y1,--- ,yr be the data (which may be either a scalar or a vector) at time
1,---,T. We assume that y; depends on the unobservable variable ;. The aim
of the (Extended) Kalman filter is to make inference about the hidden state x;
(which may also be a scalar or a vector) conditionally to the data y1,--- ,y:. The
relationship between the observed variable y; and the hidden state z; is linear
and described by a function h depending on the unknown vector of parameters
0. This relation is specified by the following observation equation:

Yt = h,(o(),l't) + o-gogtv t 2 1

where ; is the vector of noises assumed to be normally distributed with mean
zero and unit variance, denoted as: g, ~ N (0, In, Xny) where n,, is the dimension
of the observation space Y.

The hidden state x; is assumed to be varying with time and its dynamic feature
is given by the following state equation:

xy = b(0o, x1—1) + g Mt

where b is a known function and 7, is the state error assumed to be normally

distributed with mean zero and unit variance, i.e 7 ~ N(0, I, xn,) Where n,

is the dimension of the state space X.

In addition to the usual Kalman filter assumptions (see [Kal60]), we also assume

that the noises €; and 7; are independent.

Hence, this paper is concerned with the following discrete time state space model

with additives noises:

{ ye = h(bo, ¢) + 0 et t>1 1)
xy = b(0o, x¢—1) + 0307715

Under the usual Kalman assumptions, the model (1) can be rewritten as
follows:
Yt = di(0o) + Copwe + 05 60 > 1,
— 0 A n (2)
zt = ut(0o) + ApyTe—1 + g Mt

If the vector of parameters 6 is perfectly known, the optimal filtering po, (x+|y1.¢)
is Gaussian and the Kalman filter gives exactly the two first conditional mo-
ments: &; = Eg, [2¢|y1.¢] and P, = Eg,[(z: — &) (2t — &)’ |y1.¢] where " stands for
the transpose. In particular, the Kalman filter estimator is the BLUE (Best Lin-
ear and Unbiased Estimator) among linear estimators. Nevertheless, in most
applications the linearity assumption of the functions h and b is not always
satisifed. A linearization by a one order Taylor series expansion can be per-
formed and the Extended Kalman filter consists in applying the Kalman filter
on this linearized model.

For the EKF, the matrix Cpy, is the differential of the function i with respect to
(w.r.t.) a computed at the point (fy,£; ) where &, corresponds to the condi-
tional expectation Eg, [2+|y1:+—1]. Additionally, the matrix Ay, is the differential
of the function b w.r.t. = computed at the point (6g, #;—1). Furthermore, the
functions u¢(6p) and di(6p) are defined as:



{ ut(6o) = b(6o, T1—1) — Agg®r—1
di(00) = h(0o, %, ) — Coo 2y

In this paper, we assume that the vector of parameters 6y is not perfectly
known such that the inference of the hidden state x; conditionnally to yi.+ is
made with errors of specification. This typical case is frequent in practice since
in general the vector of parameters is unknown and need to be estimated by an
ordinary method. The resulting estimator can be biased and consequently this
bias is propagated on the estimation of the hidden state. More precisely, if we
denote by # a biased estimator of f such that Eg,[0] = 0 = 0y + ¢ where € is
a fixed and unknown error corresponding to the bias, we want to evaluate the
propagation of the error a posteriori and of the residues a posteriori given by:

er = xy — Ko [wtlyu] (3)
&=y — Ky [yt|y1:t]- (4)

Many papers concerned the propagation of the initial error on the state
(xo — Zp) through the filter, and, to the best of our knowledge, there don’t ex-
ist in the literature, an analysis of the propagation of the initial errors on the
vector of parameters. In this paper, we derive an expression of these propaga-
tions for the Kalman and the Extended Kalman filters. Our main result shows
that a correlation between the error a posteriori e; and the unobserved state x;
appeared at each time ¢ of the filter. The Kalman filter is now a biased estima-
tor and a new Lyapunov dynamic equation for the variance matrix P; is induced.

Applications of this result include epidemiology, meteorology, neuroscience,
ecology (see [IBAK11]) and finance (see [JPS09]). For example, our result can
be applied to the five ecological state space models described in [PHH10]. Al-
though the scope of our method is general, we have chosen to focus on the
so-called autoregressive process AR(1) with measurement noise which has been
widely studied and on which our main result can be easily applied and under-
stood. A full illustration of this result is given for a more complex model as
the Heston model which is very used in finance for pricing options and hedging
portfolios (see [E1K12]).

The paper is organized as follows. Section 2 presents the model assumptions
and states all of the theoretical results. The application is given and discussed
in Section 3. Some concluding remarks are provided in the last section. The
proofs are gathered in Appendix 4.



2 Main result

2.1 General setting and assumptions

In this section, we introduce some preliminary main notations and provide the
assumptions of model (2).

2.1.1 Notations

Subsequently, we denote by E; the pair of the unobservable states vectors given

by < fct > and by &; the pair of the observations vectors ( gt > where e; and
t t

& are defined in (3) respectively. Their variances matrix are denoted by X and
¥ respectively.

Regarding the partial derivatives, for any function h, [0h/00] is the vector
of the partial derivatives of h w.r.t 6.

: e e n _'n :
Finally, Ry, denotes o o4 and Qg, denotes oy o, and are the covariances
matrix of e, and of 7, respectively.

2.1.2 Assumptions
We consider the state space models (2), the following assumption ensures some

smoothness for the functions h and b.

(A1) The functions b and h are differentiable with respect to 6y and .

2.1.3 Main result

Before running into the main theorem of this paper, let us explain some existing
results. It is well known that if the vector of parameters is exactly known, the
error a posteriori e; is given by the following formula:

et = (In, xn, — KiCoy)Agyer—1 — Ki(0g et + Coyogone) + og e

where K is called the Kalman matrix that minimizes the variance matrix P;.
Under some assumptions on the model (2), a CLT is obtained for e; as ¢ tends to
infinity (see [ANCdL94]). The following Theorem gives the propagation of the
error a posteriori e; and of & for the Kalman filter and the Extended Kalman
filter when 6y is not exactly known. In this respect, we further assume that
assumption (A1) holds true and the usual Kalman assumptions are satisfied.

Theorem 2.1. Consider the model (2). If e << 1, then:

€t = (Inmxnm - KtCG)Aeet—l - Kt(Ugft + 0003771:) + 0;77715
+E5(0,t) + Fy(0,t) w1 + W5 (0,1) + o(e) (5)

with:



ou od oC
£5(6.6) = ¢ (oo, — KiCo) 5 (6) ~ K5 0) ~ K50 6)) 6)
0A oC
Fo(0,t) = —e <(Inxm - KtC’g)a—; - Kta—;Ag) (7)
. o] oy 9Cy o
Wm(e,t) = —¢€ <a—;nthCQa—;nthUantha—;€t) (8)
Additionally, the propagation of & is equal to:
& = Coer + oger + E,(0,1) + F, (0, 1)z + W, (0,1) + o(e) (9)
with:
. _ 0dy . _0Cy . 0oy
E,(0,t) = €59 (0), F,(0,t)=—€ 50 Wy (0,t) = —e 90 <t (10)

Moreover, when the linearity assumption of the funtions b and h is not sat-
isfied, the formulas above remain true with the notations of the EKF defined in
Section 1.

Proof. See Appendix (A). O

We note that the terms depending on e: E5(0,t), F5(0,t) and WE(0,t) (resp.
E(0,1), Fy(0,t) and W(0,t)) are the corrective terms arising from the bias of
the parameters estimates.

Besides, we can see in Eq.(5) that at time ¢, the propagation of the state error
e:+ depends on e;_; but also on the true state variable x;_1. Therefore, the vari-
ance of the error e; depends on the variance of e;_; but also on the covariance
between e;_1 and x;_1.

Theorem 2.1 gives an expression of the error a posteriori e; and of the residues
& which can be rewritten as follows:

e = m— Eg[ze|yr]
= (@ — Eg[zelyna]) + (Eo, [ze]y1:4] — Eo[ze|yr:e])
(1) error of estimation (2) correctives terms arising from the bias of parameters.
Additionally,
& = xr— Eol&t|y1]
= (& — Eoo[&elyaae]) + (Eoo [€tly1:¢] — Eo[&e|yr:e])
—_———
(1) true residues (2) correctives terms arising from the bias of parameters.

The expression of the correctives terms (2) are given in Corollary 1.



Corollary 1. Let e; given in Eq.(5), the mean of the error a posteriori is given
by:

Eeo [€t|y1:t] = Eeg [$t|y1:t] —Eq [$t|y1:t]
((In, xn, — K:Co)Ag + F5(0,1))Eqy[e1—1|y1:4—1]
+E&3(0,t) + F5 (0, )Eg[2i—1[y1:-1] + o(e) (11)

where E5(0,t) and F5(0,t) are given in Eq.(6) and Eq.(7).

Besides, let & given in Eq.(9), the mean of & is given by:

Eeo [§t|y1:t] = E00 [§t|y1:t] —Eq [§t|y1:t]
= (Co+ F;(0,1) Eg,lec|yr:e] + £;,(0,t) + Fy (0, t)Eglz|y1.e] + (2)

where E(0,t) and F5(0,t) are given in Eq.(10).

Corollary 1 which is just a consequence of Theorem (2.1) gives a computable
recursive expression of the expected error Eg, [e;|y1.1]. Given Eg,[eg] one can de-
duce all the values of this expectation for all t =1,--- | T.

3 Illustration on the linear Gaussian AR(1) model:

3.1 The model

Let us consider the linear AR(1) model with measurement noise given by:
yt::Ct-i-O'EEt, t:l,’T (13)
Tir1 = GoT¢ + OpMig1-

Since this model is linear and Gaussian we can apply Eq.(11) in Corollary 1
to recover the expectation of e; when the state x; is estimated with a biased
vector of parameters. For this straighforward example, 6y is equal to ¢y. For
the simulation, we take ¢o = 0.7, o7 = 0.3 and 0? = 0.5.

3.2 Numerical result:

We run a Kalman filter by assuming that the parameter estimate ¢ is biased
and we take ¢ = 0.85, that is € = 0.15. For this model, the functions b and h
are given by:

b(0p, x) = ¢dox and h(fy,x) = x

The variable Ay, is equal to ¢9 and Cp, is equal to one. The control variables
u+(0o) and di(6p) are equal to zero.

Furthermore, the functions £5(0,t), F<(0,t) are easily computable and given in
the following lemma.



Lemma 1. For the linear AR(1) model, the functions E5(0,t) and F5(0,t) are
equal to:

E:(0,t) =0, and Fg(0,t) = —e(1 — Ky)
Therefore, by using Eq.(11) of Corollary 1, the expectation By, [et|y1.¢] s given
by

Eo, let|y1:] = (1 — Ki) (¢ — €))Egy[er—1]y1:4-1] — €(1 — Ki)Eg[we—1]y1:4-1] + 0(€)
(14)
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Figure 1: Red: True Error Eg,[e¢|y1.t] x 100. Blue: Approximation (14)x100.

This example shows that the approximation (14) explains the true error
Eg, [et|y1:¢] for an easy model. The term F£(0,t) corresponds to the bias of z;
induced by the bias of the parameter estimate. Furthermore, we can see that
the error between the true expectation Eg,[e;|y1.:] and the approximation (14)
corresponds to o(e). A full application is given in [E1K12].

The following Theorem regards the expression of the variances matrix X¥
and XY of E; and €, respectively.

Theorem 3.1. The variance matriz X7 is given by:

1% s’w)
o _ [ Vi t
where:

Vi = (I — K;Cy)AgVF | Ap(I — K,Cy) + F(0)Si—1(I — K+Cy) A,
(I — KiCy)ApS,™ 1 F,E(0) + FE(0)PE F.(0) + Vo VS(0)]
S = Agy ST Ay (I — K,Cy)' + Ag, P FL¥(8) + Covg (Vv ), 0% m)

P = Aeoptz—lAOO + Qo,

1] QD oo
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with:

W;(G) =W;(0) + o)n: — Keoger — KiCoon; (15)

where EE(0), Fe(0) and WE(0) are given in Eq.(6), Eq.(7) and Eq.(8) in
Theorem 2.1.

Ife << 1, then Vo[WE(0)] = Qo+K; (CoQaClh + Ry) K| and Covg (W;(G), Ugont)
s given by:

~ o) / o) '
Covy (W;(H), Ugom) = —¢ <5—96Q00092 - K <065—96 + O'g) QQOO'OZ)

Additionally, the variance matriz XY is given by

AR
- t t
= (% )

where:
VY = CoViCy + F(0)S:Cy + CoS, F,5(0) + F(0) P F5(0) + Vo W5 (0)]
S¥ = Co,SECy + Co, PEF,(0) + Covg (Wy(0), 05,2 )

P} = Coy PFCy, + Ry,

with:

WE(0) = WE(0) + oes (16)

where E(0), Fy(0) and Wg(0) are given in Eq.(10) Theorem 2.1.
If e << 1, then VQ[W;(o)] = Ry and Covy (W;(G), 0505,5) is given by:

~ doj ’
Covg (W;(G),Usoat) = —¢ (a—;RGUUOEO)

Proof. See Appendix (B). O

The quantities 7 (60,t) and Wg (0,t) (resp. Fy(0,t) and Wi (0,t)) correspond to
the correctives terms arising from the bias of the parameters and in particular
from the correlation between e; and the true state x; (see Eq.(5)). This corre-
lation induces a new Lyapunov dynamic equation for the variance matrix V;*.

For unbiased parameters estimates, these terms are dropped and a CLT is given
in [ANCdL94].



4 Concluding remarks and discussion

In this paper we provide an expression of the propagation errors on the hidden
state for an initial and fixed error on the vector of parameters.

We showed that the hidden state x; appaered in the propagation equation in-
ducing a correlation between e; and the true state x; and most importantly a
new Lyapunov dynamic equation for the variance matrix. By using the same
assumptions than in [dNCdL94] and adding smoothness assumptions on the
functions b and h and on their derivatives, one can again obtain a CLT for e;.
Nevertheless, it is not the subject of this paper.

Another remark concerns the case where ¢ is not fixed and is supposed to be a
random variable. This particular case refers to the approach proposed in [HK01]
for which the parameters are supposed time varying. A dynamical artificial evo-
lution is assumed for @ such that 6; = 6,_1 + 02 Z where Z is a centered and
standard gaussian random variable. To the best of our knowledge, there does
not exist results about the convergence of this approach. This method fails in
practice when the variance oZ is not small. Some authors use o# decreasing
with time. Hence, at each step of the filter, a small perturbation is added to
the parameters. This can be seen as a small bias € introduced at the first step
of the filter.



A Proof of Theorem 2.1:

The proof is essentially based on a one order Taylor expansion of the functions b
and h with respect to 6.

€t = Tt — Ee[xt|y1:t] = Tt — E9[$t|y1:t—1] - Kt(yt - Z)t_)
= wu(6o) + Agyzi—1 + Ugont — Eo[ue(0) + Agzi—1 + ogne|yre—1]
= ut(00) + Agyxi—1 + og me — Eo[ur(0) + Agxe—1]yr:e—1] — Ki(ye —
= ut(00) + Agyxi—1 + og me — ur(0) — AgEglre—1]yrie—1] — Ki(ye —
= we(bo) + Agywe—1 + og me —ue(0) — Aode—1 — Kie(ye — J; )

Note that one can write:

ur(0o) = ur(0) — €224(0) + o(e), Ag, = Ao — 6%9- +o(e), o

)
o = 960

Pluging into (17), one gets:

0 0A o -
et = Ager—1 — e%(&) — 68—00%71 +ogn — e%m — Ki(y: — §; ) + o(e) (18)
Furthermore,
(e —19;) = di(6o) + Coywe + 06,61 — Eolye|yr:i—1]
= di(0o) + Coyxt + 0,6t — di(0) — CoEglxe|y1:6—1]
and

di(00) = du(6) —

So that:

(e —9:) =

Rewrite,

we get:

Define,

od acC dog

‘o0 20" 00

ad aC,
—e=(6) + (0§ — er4 (Co— e=2

50 ) (ue(Bo) + Apgxe—1 + oy 1t)

20
00 06
—CoEglxe|y1:e—1] + o(e)

Eglxe|yr:i—1] = AoBolxe—1|yr:e—1] + ue(0)

CoAgxi—1 — CoAoli—1 + oger + Coogny

 (0d 0, 905 dus 9o
‘ < a0 O+ g 20 g &)+ Coggm
aC, aCs aC,
—+ 20 us(0) + 20 — Apxi_1 + 20 Ugnt)
L (0C)Bue ) | 9Co0Ay  0C, 00}
e (aa 20 ") 20 20 “ 7t og a0 ™) T (19)

10

) n
767099- + o(e)

6) +0(c), Cl00) = C(0) — e 5 () + o(c), 05, = o5, — €L + 0(c)

— Ki(y: — 9r )
()
()
(17)



a0 00 090
€ 8149 809
Fy-(0) = —€ <CGW + Wz%) ;
€ _ ac@ 8 7] 80’@
W;_(0) (89 UngrCea 20 ¢
we obtain:
& = yr— Ee[yt|y1:t—1]

= (CpApei_1 + O'gEt —+ Cgagnt + 5;7 ((9) + .7:;7 (H)xt_1 + ng ((9) + 0(6)

By combining Eq.(18) and Eq.(19), we have:

€t = wt—E9[$t|y1:t]

= (Inyxne — KtCp)Ager—1 — Kiopet — Ktcetfg??t + agm +E.(0) + Fr(0)xi—1 + W5(0)

where,

0 od oC,
E200) = = (e — KiCo) Gt (0) = K 55(0) = o).

FE(0) = — <(IW,LI K,Cp) 20 _ 2C0 4 )

20~ 00
) P 907 e 05, _
Wa(0) = ( a9 1~ KiCoggrm — Kuod =5 — Ki=5pte

One can deduce the Propagation of the residues a posteriori:

& = yr—Eolye|yra]
di(60) + Coy e + 050& — Eg[d:(0) + Cozt + opet|y1:4]

= di(60) — di(8) + (Co — 2l

o Yae = Coalulyna] + (05 — €5 )eu + o)
Coer + oger — € <%(9) + 88(:;9 88095 6t> + o(e)
By defining:
£5(0) = ~2%0)
F3(0) = 2
wi(0) =~ 2ie,
Eq.(9) follows. 0O

The proof of Corollary 1 is obtained by taking the expectations in Eq.(5) and
Eq.(9).

11
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B  Proof of Theorem 3.1:

By using the system (2) and Eq.(5)-Eq.(9) we can rewrite the model as follows:

e () (T A () o

and,
E0)) , (Co Fil0) (ww)
= By 21

& (dt(eo) Lo o, T\ op, e (21)
Hence, the variance matrix Xf is given by:
- (KO0 FO | (U= KOs ZOY VDVIO)]  Cov(Wi(0), opm)

0 Ag, 0 Ag, Cov(W;(0), 04, mt) a4 g

Additionally, the variance matrix XY is given by:
sw_ (Co F5(0) g (Co f_;(e)) N VJW;(G)] (COU(W;(G),,UZUm)
PN Gy )TN0 Coy Cov(Ws (), 75,m¢) 5006,

Proposition 2.1 gives that:

do )l e aC 9§
0, 6 6 6
WE(B) = —e < 55> — KiCo—552m — Kiog —55% 1 — Ki—5>€r
dof
€ _ 6o
WE(D) = —e 2200,

Hence, if € << 1, then

VVE(0)] = Qo + K+ (CoQoCo + Ro) K, and VIW;(0)] = Ro

Furthermore, the covariances are given by:
- dog. oy . "
Covg 2(0),00 ) = —eCove | 2,00 me ) + €| KeCo—2ne, 09 ne | + eCovg (Kiopne, o e
L) 89 o o0 o o
9ol
+ eCouvg (Kt 20 6t,09077t>

8 " doy
= Q%er + eKth ngaeo + eKio) Q%er by assumption A2

80'90 /n 8 90
—€ 90 QGUUQO - Co 90 +‘79 Q90‘790

Additionally,

o
C’ovg< ;(9),050&) = feCov(;( 50 st,0606t>

80'9 e
= —¢ 20 Reo 090
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