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Abstract

The Brier Score is a widely-used criterion to as-
sess the quality of probabilistic predictions of bi-
nary events. The expectation value of the Brier
Score can be decomposed into the sum of three
components called reliability, resolution, and un-
certainty which characterize different forecast at-
tributes. Given a dataset of forecast probabilities
and corresponding binary verifications, these three
components can be estimated empirically. Here,
propagation of uncertainty is used to derive expres-
sions that approximate the variances of these esti-
mators. Variance estimates are provided for both
the traditional estimators, as well as for refined esti-
mators that include a bias correction. Applications
of the derived variance estimates to artificial data
illustrate their validity, and application to a mete-
orological prediction problem illustrates a possible
use case. The observed increase of variance of the
bias-corrected estimators is discussed.

1 Introduction

The basis of the following discussion is a data set of
forecast probabilities {pn}

N
n=1, and corresponding

verifications {yn}
N
n=1. We assume a binary predic-

tion setting, that is, the verification at instance n,
yn, is either one if the event happens, or zero if it
does not happen. The forecast probability pn is a
probabilistic prediction for the event yn = 1. The
empirical Brier Score (Brier, 1950) assigned to the
set of forecasts {pn} is given by

Br =
1

N

N
∑

n=1

(pn − yn)
2. (1)

The Brier Score is negatively oriented, assigning
lower values to better forecasts. The Brier Score
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further has the property of being proper, which
means that a forecaster cannot improve his expected
Brier Score by issuing forecasts q that differ from his
best estimates p of the actual event probabilities. In
fact, any such deviance from p will increase his ex-
pected Brier Score, which makes the Brier Score a
strictly proper scoring rule (DeGroot and Fienberg,
1983).

It has been shown by Murphy (1973) that the Brier
Score can be decomposed additively into three non-
negative terms, called reliability, resolution, and
uncertainty:

Br = REL − RES + UNC. (2)

A qualitative interpretation of the individual com-
ponents is given next; mathematical details follow
below. The reliability term quantifies how far the
forecast probabilities pn differ from the correspond-
ing conditional event probabilities P(yn = 1 | pn).
Ideally, it should always hold that pn = P(yn = 1 |
pn); in this case the reliability component vanishes.
A systematic difference between the two terms is
penalized by a positive reliability component. The
resolution component rewards variations of the fore-
cast probabilities that are consistent with varying
event probabilities. A forecasting scheme that con-
stantly issues the same probabilities has zero res-
olution. Any meaningful variability of the fore-
cast leads to a positive resolution term which im-
proves the Brier Score. The uncertainty component
is equal to the Brier Score of the average (clima-
tological) probability. It thus serves as a bench-
mark to which the Brier Score of the forecast under
consideration can be compared. A ‘useful’ forecast
should have a Brier Score that is higher than its
uncertainty component, or in other words, the res-
olution should be larger than the reliability.

Consider the forecast probability p and the corre-
sponding verification y as two (dependent) random
quantities. Then the calibration function π(p) and
the climatology π̄ are defined as

π(p) = P(y = 1 | p), and (3)

π̄ = P(y = 1). (4)

Using these definitions, the three components of the
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Brier Score decomposition are formally given by

REL∗ = E [p− π(p)]
2
, (5)

RES∗ = E [π(p)− π̄]2 , and (6)

UNC∗ = π̄(1 − π̄), (7)

where E denotes the mathematical expectation value
(Bröcker, 2009). The star (∗) is used to differentiate
the exact analytical expressions from their empiri-
cal estimators, which are discussed below.

In practice, the three components of the Brier Score
decomposition must be estimated empirically from
the set of forecast probabilities and corresponding
verifications {pn, yn}. Such estimators are derived
in Murphy (1973); they are presented below in a
somewhat different notation, which is suitable for
variance estimation by propagation of uncertainty
(see Sec. 2).

First of all, the observed forecast probabilities {pn}
are binned into D mutually exclusive and collec-
tively exhaustive bins pd

⊔
, where d = 1, · · · , D. Here,

bins of equal width which are half-open to the left
are used, except the first bin which is closed (but
the theory also applies to variable bin widths). As
an example, if D = 3 we would have {pd

⊔
}3d=1 =

{[0, 1/3], (1/3, 2/3], (2/3, 1]}. Using this binning of
the forecast probabilities, the following matrices are
defined:

A ∈ {0, 1}N×D : And = I(pn ∈ pd
⊔
), (8)

B ∈ {0, 1}N×D : Bnd = I(pn ∈ pd
⊔
) yn, (9)

C ∈ [0, 1]N×D : Cnd = I(pn ∈ pd
⊔
) pn, (10)

Y ∈ {0, 1}N×1 : Yn = yn, (11)

where I(·) denotes the indicator function. Summa-
tion over a column or row of a matrix is abbreviated
by a bullet (•), for example

A
•d :=

N
∑

n=1

And. (12)

A bullet without a second index always refers to the
row vector of column sums of a matrix, as in

A
•
= 1

TA (13)

where 1 is the N×1 column vector with all elements
equal to one.

Using these definitions, A
•d is equal to the total

number of cases where pn ∈ pd
⊔
. B

•d is equal to the
number of cases where pn ∈ pd

⊔
and at the same

time yn = 1. Therefore, a binned estimator for the
calibration function is given by

π(p) ≈ πd := B
•d/A•d, (14)

where p ∈ pd
⊔
. The climatology is estimated by

π̄ ≈
Y

•

N
. (15)

Furthermore, C
•d/A•d is equal to the average fore-

cast probability in the d-th bin. Y
•

is equal to the
total number of events that have occurred. Lastly,
note that B

••
= Y

•
, and A

••
= N .

Using this notation, the estimators for the three
components of the Brier Score decomposition orig-
inally proposed by Murphy (1973) are given by

REL = REL(A
•
, B

•
, C

•
)

=
1

N

∑

d∈D0

1

A
•d

(B
•d − C

•d)
2
, (16)

RES = RES(A
•
, B

•
, Y

•
)

=
1

N

∑

d∈D0

A
•d

(

B
•d

A
•d

−
Y

•

N

)2

(17)

UNC = UNC(Y
•
)

=
Y

•
(N − Y

•
)

N2
, (18)

where D0 = {d : A
•d > 0}. In the following we

refer to REL, RES, and UNC as the traditional es-
timators of the components of Brier Score decom-
position.

In Ferro and Fricker (2012) it is shown that the
traditional estimators are biased. They show that
the bias can be corrected to some extent, although
never perfectly eliminated. Using our notation, the
estimators proposed by Ferro and Fricker (2012) are
given by

REL′(A
•
, B

•
, C

•
)

= REL −
1

N

∑

d∈D1

{

B
•d(A•d −B

•d)

A
•d(A•d − 1)

}

, (19)

RES′(A
•
, B

•
,Y

•
)

= RES−
1

N

∑

d∈D1

{

B
•d(A•d −B

•d)

A
•d(A•d − 1)

}

+
Y

•
(N − Y

•
)

N2(N − 1)
, (20)

and

UNC′(Y
•
) = UNC +

Y
•
(N − Y

•
)

N2(N − 1)

=
Y

•
(N − Y

•
)

N(N − 1)
, (21)

where D1 = {d : Ad > 1}. We refer to REL′, RES′,
and UNC′ as the bias-corrected estimators.
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Due to the analytical expressions Eq. (5) – Eq. (7),
it holds that REL∗ ∈ [0, 1], RES∗ ∈ [0, 1] and
UNC∗ ∈ [0, 0.25]. One could argue that estima-
tors for the individual components should be con-
fined to these intervals as well. While the tradi-
tional estimators always satisfy this restriction, the
bias-corrected estimators do not. Ferro and Fricker
(2012) acknowledge the possibilities REL′ < 0 and
RES′ < 0, and recommend a suitable modifica-
tion to their bias correction. Unfortunately, this
modification does not account for the possibilities
UNC′ > 0.25 and RES′ > 1. In Appendix B a
modification of the bias-corrected estimators is sug-
gested which avoids all possible inconsistencies.

A note on terminology: In order to limit confusion
due to repeated use of the word estimate, we shall
always use the term estimator to refer to the com-
ponents of the Brier Score decomposition estimated
by Eq. (16) – Eq. (21), and the term variance esti-
mates to refer to the approximated variance of these
components.

In Sec. 2 of this article it is shown how propagation
of uncertainty can be applied to calculate variance
estimates for the estimators of a Brier Score decom-
position. The variance estimates are validated in an
artificial prediction setting in Sec. 3. Application to
a meteorological prediction problem in Sec. 4 illus-
trates a possible use case. In Sec. 5 the simplifying
assumptions, validity of the new variance estimates,
and variance increase of the bias-corrected estima-
tors are discussed. Section 6 concludes the article.
The article is complemented with Supplementary
Online Material which includes source code written
in the R programming environment (R Core Team,
2012) to reproduce all calculations. A library for
the R environment (Siegert and R Core Team, 2013)
is available to apply the results of this study in prac-
tice.

2 Variance estimation by prop-

agation of uncertainty

The general setting is now that we have scalar es-
timators F for the components of a Brier Score de-
composition, which depend nonlinearly on the col-
umn sums x of a matrix X :

F (X
•
) =: F (x). (22)

For example if F = REL we have

X = [A|B|C] ∈ R
N×3D (23)

x = 1
TX = [A

•
|B

•
|C

•
] ∈ R

1×3D. (24)

It is possible to apply propagation of uncertainty
(e. g. Mood et al., 1974) to estimate the variance
of F (x) as a function of the covariances of its ar-
guments. The first-order Taylor expansion of F
around x̄ (the expectation value of x) is given by

F (x) ≈ F (x̄) +
∂F (x̄)

∂x
(x− x̄)T , (25)

where ∂F (x̄)/∂x is shorthand for the Jacobian of
F (x) evaluated at x̄. Under this approximation,
the variance of F (x) is given by

V[F (x)] = E[F (x) − EF (x)]2 (26)

=
∂F (x̄)

∂x
Cov(x)

∂F (x̄)

∂xT
, (27)

where Cov(x) = E[(x − x̄)T (x − x̄)]. Recall that
the i-th element of x is the sum over X(i), the i-th
column of X . Under the assumption that the rows
of X are iid, it can be shown that

Cov(x) ≈ XT

(

I−
1

N
11

T

)

X, (28)

using the fact that Cov(xi,xj) = NCov(X(i), X(j)),
and estimating the latter by the sample covariance.

Equation (27) combined with Eq. (28) provides a
recipe to estimate the variances of the estimators
REL, RES, and UNC, as well as their bias-corrected
counterparts. All data that is necessary to estimate
the variances has already been calculated for the
estimators themselves. The only tedious bit is the
calculation of the derivatives of the estimators with
respect to the individual column sums for the Ja-
cobian. These derivatives are given in Appendix A.

3 Application to artificial data

In order to illustrate their validity, we apply the
variance estimates to Brier Score decomposition in
an artificial prediction setting, for which the compo-
nents of the decomposition are known analytically.
The results are discussed in Sec. 5. The code to re-
produce the numerical computations of this article
is available in the Supplementary Online Material.

In the artificial example, we assume that the event
y ∈ {0, 1} is an independent realization of a Bernoulli
trial with success probability q. If y = 1, we say
that ‘the event occurs’. In our example, the event
probability q is itself a random variable that is equally
likely to assume one of 6 possible values, namely
q ∈ {qd}

6
d=1 = {0.05, 0.15, · · · , 0.55}. A forecasting

scheme for the event y which has nonzero resolu-
tion and nonzero reliability is constructed as fol-
lows: The forecast probability p corresponds to the
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actual event probability q whenever q 6= 0.55. But
whenever the event probability q = 0.55, the fore-
cast probability is equal to p = 1. That is, p ∈
{pd}

6
d=1 = {q1, · · · , q5, 1}, with equal probability of

1
6 .

For the above scheme, the climatological probabil-
ity is equal to

π̄ =
1

6

6
∑

d=1

qd =
3

10
. (29)

The true uncertainty of this forecasting scheme is
thus given by

UNC∗ = π̄(1− π̄) =
21

100
. (30)

Furthermore, since the calibration function in this
setting is given by

π(pd) = qd, (31)

the true reliability component of the Brier Score of
the forecast p is calculated as

REL∗ =
1

6

6
∑

d=1

(pd − qd)
2 =

27

800
, (32)

and the true resolution of the forecast is given by

RES∗ =
1

6

6
∑

d=1

(qd − π̄)2 =
7

240
. (33)

Note that in this example REL∗ > RES∗, and there-
fore the forecast is ‘useless’ in the sense that the
constant climatological probability π̄ achieves a bet-
ter Brier Score (which is equal to UNC∗) than the
forecast probability p.

A single numerical experiment consists of N = 250
forecast probabilities pn, and corresponding event
indicators yn, independently sampled as outlined
above. Each such experiment results in a data set of
forecasts and verifications {pn, yn}

N
n=1 and a Brier

Score decomposition is estimated for this data set.
For the empirical decomposition, we bin the fore-
cast probabilities into 10 equally large non-overlapping
bins. Under this binning, in-bin-averages are ex-
actly equal to the actual forecast probabilities, as
the chosen binning is somewhat ‘natural’ in this
forecast scenario. For infinitely many forecast in-
stances the estimators would thus converge to the
true components, without further discrepancies in-
troduced by the binning. In our example, the first 5
bins and the 10-th bin are each occupied with prob-
ability 1

6 , and the others are never occupied. The
resulting estimators REL, RES, and UNC, as well
as their bias-corrected counterparts RES′, REL′,

and UNC′ are calculated for this data, together
with their corresponding variance estimates derived
in Sec. 2. This whole experiment is repeated 100
times, each time with a new realization of forecast
probabilities pn and corresponding event indicators
yn.

The results of these 100 trials are illustrated in
Fig. 1. For each trial, the traditional (left) and bias-
corrected (right) estimators for reliability, resolu-
tion, and uncertainty are shown, augmented with
error bars with a half width of two estimated stan-
dard deviations.

In Table 1, the outcome of the experiment is fur-
ther quantified by statistical summary measures.
To make the calculation of these summary mea-
sures precise, consider as an example the estima-
tor REL. Define REL = 1

100

∑100
i=1 RELi, where

RELi is the estimator REL obtained on the i-th
trial. The sample variance (first column) was calcu-

lated by 1
100

∑100
i=1(RELi−REL)2, the average esti-

mated variance (second column) was calculated by
1

100

∑100
i=1 VRELi, the average squared error (third

column) was calculated by 1
100

∑100
i=1(RELi−REL∗)2,

and the average bias (fourth column) was calculated

by 1
100

∑100
i=1(RELi − REL∗). Summary measures

for the other components were calculated accord-
ingly.

4 Meteorological application

We apply Brier Score decomposition to real fore-
cast data and use the variance estimates to quan-
tify the variability of the components of the decom-
position. We use daily maximum temperature ob-
servations measured at Dresden/Germany (WMO
no. 10488) between 1980/01/01 and 1999/12/31
(Deutscher Wetterdienst, 2012). Our (binary) pre-
diction target is the exceedance of a certain thresh-
old one day in the future.

The data between 1980/01/01 and 1989/12/31 is
used as training data. Denote this data by T ′

n,
where n is an integer that indicates ‘days since
1970/01/01’. We omit the unit of T ′

n and remem-
ber that it is measured in ◦C. We obtain the sea-
sonal cycle cn by fitting a second order trigonomet-
ric polynomial to the observations:

cn = β0 + β1 cos(ωn) + β2 sin(ωn)

+ β3 cos(2ωn) + β4 sin(2ωn), (34)

where ω = 2π/(365.2425 days) and the coefficients
were fitted by minimizing the sum of squared dif-
ferences between cn and T ′

n using ordinary linear
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Figure 1: Illustration of the experiment with artificial data. For each trial of the experiment, the traditional
and bias-corrected estimators of the Brier Score components are shown, augmented with error bars with a
half-width of 2 estimated standard deviations. The bold black line indicates the true value.

sample variance avg. est. variance avg. squared error avg. bias

REL 1.540× 10−4 1.665× 10−4 1.641× 10−4 3.182× 10−3

REL′ 1.548× 10−4 1.687× 10−4 1.563× 10−4 −1.184× 10−3

RES 7.062× 10−5 8.521× 10−5 8.093× 10−5 32.101× 10−4

RES′ 7.220× 10−5 8.746× 10−5 7.230× 10−5 −3.155× 10−4

UNC 1.561× 10−4 1.336× 10−4 1.565× 10−4 −6.195× 10−4

UNC′ 1.573× 10−4 1.347× 10−4 1.574× 10−4 2.214× 10−4

Table 1: Summary of the artificial example. All averages are taken over the 100 trials of Fig. 1. The first
column shows the sample variance of the estimators. The second column shows the average of the estimated
variances. The third column shows the average squared difference between the estimator and the true value.
The fourth column shows the average bias, that is the average difference between the estimated value and
the true value.
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regression. For the data at hand, we obtain

{β0, · · · , β4} = {13.2,−10.7,−3.1,−0.6, 0.03}

over the training period. Using the seasonal cycle,
the anomalies Tn are defined by

Tn = T ′

n − cn. (35)

Next, a first-order autoregressive model is fitted to
the anomalies, using the R function ar provided by
the stats package (R Core Team, 2012). That is,
the temperature anomaly Tn+1, conditional on the
anomaly Tn is modeled by

Tn+1 = αTn + σǫn, (36)

where α is the AR parameter which quantifies the
serial dependence of successive temperature anoma-
lies, σ2 is the variance of the residuals, and ǫn is
a realization of Gaussian white noise. We obtain
α = 0.77 and σ = 2.97 in the training data.

Our prediction target is whether the temperature
anomaly at time n exceeds a threshold τ◦C on the
next day, that is yn = I(Tn > τ). Using the au-
toregressive model, we produce a probabilistic 24h
exceedance forecast using the formula

pn ≡ P(Tn > τ | Tn−1 = t) = 1− Φαt,σ(τ), (37)

where Φµ,σ(x) is the cumulative Gaussian distribu-
tion function with mean µ and variance σ2, eval-
uated at x. Using Eq. (37) and the parameters
obtained from the training data, daily forecasts are
produced for the time between 1990/01/01 and 1999/12/31.
The forecast probabilities pn for the targets yn are
analyzed by decomposition of the Brier Score.

The result of the analysis is presented in Table 2
for the choice of the threshold τ = 5. Estimators
of the three components REL, RES, and UNC, in
the traditional and the bias-corrected version are
given in the first row. Using these estimated com-
ponents, we get REL−RES+UNC = 0.0875. The
empirical Brier Score calculated by Eq. (1) is equal
to Br = 0.0868. In the second row of Table 2, the
corresponding variance estimates are shown.

In Fig. 2, the bias-corrected components of the au-
toregressive exceedance forecast and the empirical
Brier Score are shown as functions of the threshold.
The error bars of half widths two standard devia-
tions provide an estimate of the sampling variability
of the components.

5 Discussion

The assumptions and simplifications that entered
the derivation of the variance estimates must be
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Figure 2: Brier Score decomposition of the temper-
ature anomaly exceedance forecasts by an autore-
gressive model. Upper panel: REL′ and RES′ as
a function of the threshold which defines the ex-
ceedance event, augmented with errorbars of half
width two estimated standard deviations. Please
note the different y-scales for REL′ and RES′.
Lower panel: Same as above for UNC′ and Br. In
this plot the y-scale is the same for both quantities.
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REL RES UNC REL′ RES′ UNC′

estimate 9.060× 10−4 0.0542 0.1408 4.130× 10−4 0.0537 0.1408
variance 2.096× 10−7 1.157× 10−5 1.684× 10−5 2.173× 10−7 1.163× 10−5 1.685× 10−5

Table 2: Summary of Brier Score decomposition of 10 years’ worth of temperature anomaly exceedance
forecasts (1 day lead time, threshold 5◦C) by an autoregressive model.

discussed. The first simplification of the problem
was the first order Taylor expansion in Eq. (25).
Its validity relies on the assumption, that the differ-
ence between the observed values of the arguments
and their expectation values is small enough that
quadratic terms can be ignored. This need not be
the case, especially if the number N of forecasts
and verifications is small. To estimate the covari-
ance matrix by Eq. (28), we make implicit use of
the assumption that the pairs of forecast probabil-
ities and event indicators {pn, yn} are independent
for different n. This assumption might not hold in
meteorological applications because the probability
of rain on day n + 1, for example, is often similar
to the probability of rain on day n. In the light of
the above criticism we should expect that more ac-
curate variance estimates than the ones presented
here ought to exist. Nonetheless, Fig. 1 suggests
that we obtain reasonable variance estimates de-
spite all the simplifying assumptions.

Figure 1 further suggests that the two-standard de-
viations confidence intervals cover the true value
with probability of around 95%, which is the cor-
rect value assuming Gaussianity and unbiasedness
of the estimators. For non-Gaussian and biased
estimators, coverage probability is not a suitable
criterion. In the artificial example the biases are
about one order of magnitude smaller than the over-
all variability of the estimators, and the variations
of the estimators appear symmetric around their
mean and without large deviations. Unbiasedness
and Gaussianity thus seem to be good first approxi-
mations to the statistical behavior of the data. Ad-
equate coverage frequency is thus taken as evidence
for the quality of the variance estimates.

Table 1 illustrates the decrease of the biases by
the estimators derived by Ferro and Fricker (2012).
The magnitude of the average difference between
the estimator and the true values is substantially
lower for the bias-corrected estimators than for the
traditional estimators. At the same time, however,
the variances (both estimated and sampled) of these
bias-corrected estimators are slightly larger than
the variances of the traditional estimators. This is
an example of the bias-variance tradeoff, regularly
encountered in statistical estimation problems (e. g.
Eldar, 2008). In fact, Table 1 shows that the reduc-
tion of the bias in the uncertainty, which comes at

the cost of an increased variance, leads to a slight
increase in the average squared error of this esti-
mator. That is, even though the bias is reduced,
the average squared difference between the estima-
tor and the true value has increased. For the other
two estimators, this is not the case - the increase in
variance does not offset the bias-correction.

In Sec. 4 Brier Score decomposition has been ap-
plied to autoregressive forecasts of exceedance events
of temperature anomalies. The Brier Score decom-
position was applied to 10 years’ worth of daily
data. The two-standard-deviation error bars of all
estimators are relatively wide, considering that the
decomposition is based on more than 3000 data
points. In evaluation studies of weather forecasts,
usually much less data is available and the variabil-
ity of the estimators must be expected to be higher
in these cases. Reliable estimates of the variability
of the components of the Brier Score decomposi-
tion are required for an honest assessment of the
siginificance of the results.

6 Summary and conclusions

The components of the Brier Score decomposition
can be used to assess the forecast attributes relia-
bility and resolution, as well as the inherent uncer-
tainty of the underlying process. The decomposi-
tion thus provides insight that goes beyond quan-
tifying the performance by calculating the average
Brier Score. We have derived variance estimates
for the traditional and bias-corrected estimators of
the components of Brier Score decomposition. The
variances are approximated by propagation of un-
certainty. The validity of the variance estimates
was illustrated using artificial data, where the true
values of the components are known. An actual
meteorological forecast setting illustrated a possible
application. A discussion was provided about the
implied assumptions, as well as the consequences of
bias-correction.

We conclude that, in the cases considered, the vari-
ance estimates provide meaningful approximations
as to the statistical variability of the components
of Brier Score decomposition. Confidence inter-
vals have reasonable coverage probabilities, and es-
timated and empirical variances coincide, despite

7



numerous simplifying assumptions. Furthermore,
we note that bias-correction comes at the cost of
an increased estimator variance. An example was
shown where the bias-correction was not able to
decrease the average squared difference of the esti-
mator from its true value.

Forecasters who want to compare competing prob-
abilistic forecasting schemes based on finite data
will certainly find the competing Brier Score com-
ponents to be different due to statistical fluctua-
tions alone. Using the variance estimates proposed
here, the magnitude of these statistical fluctuations
can be quantified approximately. This makes pos-
sible a more realistic assessment of the significance
of the observed differences, and therefore a more
robust comparison in terms of true predictive skill.
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A Appendix: Derivatives

Note that some of the following derivatives can be
undefined due to vanishing denominators. These
derivatives must be set to zero.

A.1 REL

∂REL

∂A
•d

= −
(B

•d − C
•d)

2

NA2
•d

(38)

∂REL

∂B
•d

=
2(B

•d − C
•d)

NA
•d

(39)

∂REL

∂C
•d

= −
2(B

•d − C
•d)

NA
•d

(40)

A.2 RES

∂RES

∂A
•d

= −
1

N

(

B
•d

A
•d

−
Y

•

N

)(

B
•d

A
•d

+
Y

•

N

)

(41)

∂RES

∂B
•d

=
2

N

(

B
•d

A
•d

−
Y

•

N

)

(42)

∂RES

∂Y
•

= −
∑

d∈D0

2A
•d

N2

(

B
•d

A
•d

−
Y

•

N

)

= −
2

N2
B

••
+

2Y
•

N3
A

••
= 0 (43)

A.3 UNC

∂UNC

∂Y
•

=
1

N
−

2Y
•

N2
(44)

A.4 REL
′

∂REL′

∂A
•d

= −
1

NA2
•d

[

(B
•d − C

•d)
2

−
A

•dB•d

A
•d − 1

−
B

•d(B•d −A
•d)

(A
•d − 1)2

]

(45)

∂REL′

∂B
•d

=
2B

•d − 1

N(A
•d − 1)

−
2C

•d

NA
•d

(46)

∂REL′

∂C
•d

= −
2(B

•d − C
•d)

NA
•d

(47)

A.5 RES
′

∂RES′

∂A
•d

= −
1

N

(

B
•d

A
•d

−
Y

•

N

)(

B
•d

A
•d

+
Y

•

N

)

+
B

•d

NA2
•d(A•d − 1)2

[

(A
•d −B

•d)
2 −B

•d(B•d − 1)
]

(48)

∂RES′

∂B
•d

=
2

N

(

B
•d

A
•d

−
Y

•

N

)

−
A

•d − 2B
•d

NA
•d(A•d − 1)

(49)

∂RES′

∂Y
•

=
N − 2Y

•

N3(N − 1)
(50)

A.6 UNC
′

∂UNC′

∂Y
•

=
N − 2Y

•

N(N − 1)
(51)

8



B Appendix: Avoiding incon-

sistencies due to the bias cor-

rection

The bias-correction proposed by Ferro and Fricker
(2012) can be imagined as shifting the 3-vector d =
(REL,RES,UNC) to a new point

d
′ = (REL′,RES′,UNC′) = d+ c (52)

along a plane of constant Brier Score. Let the vari-
ables S and T be defined by REL′ = REL − S (cf.
Eq. (19)) and UNC′ = UNC + T (cf. Eq. (21)).
Denote by A = [0, 1] × [0, 1] × [0, 0.25] the space
of ‘allowed’ Brier Score decompositions. In order
to avoid inconsistencies due to d

′ 6∈ A, a possible
modification is to use the bias-correction

d
′′ = (REL′′,RES′′,UNC′′) = d+ γc, (53)

where γ is given by

γ = min

{

REL

S
,max

[

RES

S − T
,
RES − 1

S − T

]

,

1− 4UNC

4T
, 1

}

. (54)

The parameter γ is confined to the unit interval,
and ensures that neither REL′′ < 0 nor RES′′ < 0
nor RES′′ > 1 nor UNC′′ > 1/4. Essentially γ en-
sures that the decomposition d is shifted linearly
as far as possible to the bias-corrected decomposi-
tion d

′, but not too far as to carrying any of the
components out of their allowed range.
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