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On the Jeffreys–Lindley’s paradox∗

Christian P. Robert

Abstract: This note reassess the dual nature of the Jeffreys–Lindley’s
paradox and of its considerable impact on both classical and Bayesian
statistics, as well as on existing resolutions of the paradox. It also examines
a recent and critical viewpoint on the paradox by Spanos (2013).

Keywords and phrases: Bayesian inference, Testing statistical hypothe-
ses, Type I error, significance level, p-value.

1. Understanding the paradox setting

Maybe paradoxically, my own understanding of the Jeffreys–Lindley’s paradox
has always been that it pointed at the poor and even unacceptable behaviour
of vague prior distributions when testing point-null hypotheses. For instance,
my own attempt at solving the paradox (Robert, 1993) was definitely written
under this understanding and aimed at suppressing the impact of an arbitrary
normalising constant in improper priors. It is only very recently that I became
aware that most people (Dennis Lindley included) understand the paradox as
an irreconcilable divergence between the Bayesian

¯
and the frequentist (f) res-

olutions of the point-null hypothesis testing problem, blaming one of those for
the discrepancy. (It has been reasonably argued that there is no such thing as
one Bayesian resolution or one frequentist resolution. While I agree on principle
with this view, I will nonetheless restrict the discussion below to the opposition
between the p-value and the posterior probability—or equivalently the Bayes
factor, see e.g. Kass and Wasserman, 1996.)

I must acknowledge being rather surprised at this common focus as I see
no reason why both approaches should agree: (a) one

¯
is operating on the pa-

rameter space Θ, while the other (f) is produced on the sample space X , or,
in other words, one (f) is dealing with credibility while the other dabbles in
confidence; (b) one (f) relies solely on the point-null hypothesis H0 and the cor-
responding distribution, while the other

¯
opposes H0 to a marginal version of

H1 (integrated over the parameter space Θ against a specific prior distribution);
(c) following what may be the most famous quote from Jeffreys (1939, Section
7.2) one (f) could rejects “a hypothesis that may be true (...) because it has not
predicted observable results that have not occurred” ({X > xobs}, say), while
the other

¯
conditions upon the observed value xobs; (d) one (f) resorts to an

arbitrary fixed bound α on the p-value, while the other
¯
refers to the boundary

probability of 1/2 (unless a genuine loss function is constructed) A consequent
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/On the Jeffreys–Lindley’s paradox 2

literature (see, e.g. Berger and Sellke, 1987) has since then shown how divergent
those two approaches could be (to the point of being asymptotically incompat-
ible).

While the gap between frequentist and Bayesian degrees of evidence was cer-
tainly the reason for Lindley (1957) mentioning a statistical paradox, I thus
remain convinced that the richest consequence of Jeffreys’s (1939) and Lind-
ley’s (1957) exhibitions of this paradox is to highlight the genuine difficulty in
using improper or very vague priors in testing settings: as stressed by Lindley
(1957), “the only assumption that will be questioned is the assignment of a
prior distribution of any type” (p.188). This were also the arguments made by
both Shafer (1982) and DeGroot (1982) (see also DeGroot, 1973) in their dis-
cussion of the paradox. Note that Jeffreys does not address the general problem
of using improper priors in testing, using ad-hoc solutions when available and
developing a second (and under-appreciated) type of Jeffreys’s priors otherwise
(see Robert et al., 2009, Section 6.4, for a discussion).

The plan of this note is as follows: it reviews the paradox in Section 2, analyses
the recent criticism on Spanos (2013) in Section 3, discusses the Bayesian aspects
of the paradox in Section 4, and concludes in Section 5.

2. The paradox, paradoxes, or non-paradox

Let us first recall the setting set in Lindley (1957). If one considers a normal
mean testing problem,

x̄n ∼ N (θ, σ2/n) , H0 : θ = θ0 ,

using Jeffreys’s (1939) choice of prior, θ ∼ N (θ0, σ
2), leads to the Bayes factor

B(tn) = (1 + n)
1/2 exp

(

−nt2n/2[1 + n]
)

,

where tn =
√
n|x̄n − θ0|/σ is the classical t-test statistic.

The first level of the paradox is that, when tn is fixed and n to infinity, the
Bayes factor goes to infinity while the p-value remains constant. In Lindley’s
words, “we [can be] 95% confident that θ 6= θ0 but have 95% belief that θ = θ0”
(p.187). As discussed previously in the literature, this is not a mathematical
paradox as the quantities measure different objects (the probability measure of
an event over the sample space versus the probability measure of an event over
the parameter space, the former being conditional on the parameter value and
the later on the observation of the sample) and this is not a statistical paradox
in that observing a constant1 tn as n increases is not of interest: when H0 is
true, tn has a limiting N (0, 1) distribution, while, when H0 does not hold, tn
converges almost surely to ∞, in which case the Bayes factor converges to 0.
This behaviour is thus entirely compatible with the result of the consistency of
the Bayes factor in this setting.2

1As pointed out by Lindley (1957): “5% in to-day’s small sample does not mean the same
as 5% in to-morrow’s large one” (p.189).

2One could almost argue that the true paradox is that this consistency is overlooked in
most commentaries on the Jeffreys–Lindley’s paradox.
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At a second level of interpretation for the above setting, if we shift the mean-
ing of n from being a sample size to being a prior scale factor, namely if we set
that the prior variance is n times larger than the observation variance (or that
the prior is n times less precise),3 the result derived from the above expression
is that when the scale n goes to infinity, the Bayes factor goes to infinity no
matter what the value of the observation is. (Note that both interpretations are
mathematically equivalent.) Now, under this new light, n becomes what Lindley
(1957) calls “a measure of lack of conviction about the null hypothesis” (p.189),
a sentence that I re-interpret as the prior (under H1) getting more and more dif-
fuse as n grows. I must however stress that nowhere in the paper is the difficulty
with improper (or very large variance) priors discussed.

In this perspective, I also consider that the phenomenon still is not a paradox
per se: when the diffuseness of the (alternative) prior (i.e., under H1) increases,
the only relevant piece of information becomes that θ could be equal to θ0, to the
extent that it overwhelms any evidence to the contrary contained in the data.
For one thing, and as put by Lindley (1957), “the value θ0 is fundamentally
different from any value of θ 6= θ0, however near θ0 it might be” (p.189).4

For another thing, the mass of the prior distribution in the vicinity of any fixed
neighbourhood of the null hypothesis and even in any set coherent with the data
at hand vanishes to zero. There is therefore a deep coherence in the selection
of the null hypothesis H0 in this case: being completely indecisive about the
alternative hypothesis means we simply should not chose it. It is impossible
to pick the alternative hypothesis against the very special value θ0 if we want
to be “completely non-informative” about θ under H1. Depending on one’s
perspective about Bayesian statistics, one might see this as a strength or as a
weakness since Bayes factors and posterior probabilities do require a realistic
model under the alternative when p-values and Bayesian predictives do not.

3. Don’t be afraid...

Under the provocative5 title of “Who should be afraid of Lindley’s paradox”,6

Spanos (2013) offers his frequentist reassessment of the paradox, arguing against
both Bayesian and likelihood ratio approaches and in favour of the postdata
severity evaluation he and Mayo have both been advocating since 2004.

First, let me stress that the notion of evidence is never defined throughout
the paper, even though it is repeatedly mentioned therein. My experience is that
the notion widely fluctuates according to its user, ranging from vague facts to

3Or yet that, in terms of de Finetti’s imaginary observations, the prior corresponds to the
information brought by one single imaginary observation, as opposed to n real observations.

4We will get back to this fundamental remark in the discussion of Spanos (2013) in the
next section.

5Although the overall style of the paper is quite antagonistic, I will not produce here
evidence towards the rethorical devices used therein, concentrating on the statistical aspects
and on their bearings on a re-analysis of the foundations of our field.

6Given the contents of the paper, the author presumably intends Bayesian statistics or
Bayesians as the recipient of this question.
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specific mathematical constructs (see, e.g., Skilling, 2006). Neither is the specific
purpose of conducting a test (against, say, constructing a confidence interval)
discussed at all. Reading the discourse of Spanos (2013) makes it sound as
though there were an obvious truth (H0 or H1) and as though one and only
one statistical approach could reach it, despite the evidence (!) to the contrary
brought by the consistency of the three approaches in Lindley’s (1957) setting.7

Indeed, what differentiates tests from other aspects of inference is that (a) there
is a question being asked about the statistical model under study and (b) the
answer to this question will impact the subsequent actions of the individual
who asked the question. Point (a) relates to Lindley’s (1957) stress on the fact
that θ0 is very special indeed and quite different from any neighbouring value:
it was select for a reason and with a motive, brought forward by a theoretical
construct rather than inspired from the data. From a Bayesian perspective,
this implies prior information is available as to why θ0 is a special value of
the parameter θ. Point (b) is about assessing the consequences of the answer
to the questions, especially the wrong answer. Both from a frequentist and
from a Bayesian perspective, this implies defining a loss or utility function that
quantifies the impact of a wrong answer and eventually determines the boundary
between acceptance and rejection.8 Unfortunately, the remark “the problem
does not lie with the p-value or the accept/reject rules as such, but with how
such results are transformed into evidence for or against H0 or a particular
alternative” (p.76) does not proceed into a decisional step but instead into
the introduction of a secondary p-value bound, the severity evaluation, coupled
with a parameter value that requires a distance from the null and in fine an
implicit loss function determining what is far and what is not. For instance,
when Spanos (2013, p.75) states that “there is nothing fallacious or paradoxical
about a small p-value or a rejection of the null, for a given significance level α;
when n is large enough, since a highly sensitive test is likely to pick up on tiny (in
a substantive sense) discrepancies from H0”, the “substantive sense” can only
be gathered from a loss function. The conclusion that “what goes wrong is that
the Bayesian factor and the likelihoodist procedures use Euclidean geometry
to evaluate evidence for different hypotheses when in fact the statistical testing
space is curved” (p.90) is mathematically meaningless when considering that the
Bayes factor is invariant under one-to-one reparameterisation, hence impervious
to the curvature of both the parameter and the sampling spaces.

Second, Spanos (2013) argues that the Jeffreys-Lindley paradox is demon-
strating against the Bayesian (and likelihood) resolutions of the problem for
failing to account for the large sample size.9 I do not disagree with this per-
spective to the extent that I consider that the most important lesson learned

7Ironically, the numerical example used in the paper (borrowed from Stone, 1997, also
father to the marginalisation paradoxes, see Dawid et al., 1973) is the very same as Bayes’s
billiard example (if with a larger value of n) and as Laplace’s example on births (with a similar
value of n).

8This is the simplest type of loss function: more advanced versions could include the case
of a non-decision, calling for more observations, as in Berger (2003).

9The argument about the invariance of the Bayes factor to n (p.84) is found missing as
the Bayes factor does depend on n as exhibited by B(tn) above.
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from Lindley (1957) is that vague priors require special caution when conducting
point-null hypothesis testing. There seems indeed to be little sense in arguing
in favour of a procedure that would always conclude by picking the null, no
matter what the value of the test statistics is. However, as already stressed in
the introduction, considering a fixed value of the t statistic has little meaning
in an asymptotic referential, i.e. when n increases to ∞. Either the t statistic
converges in distribution to the t distribution under the null hypothesis H0 or
it diverges to infinity under the alternative H1. This is the reason why both the
Bayesian and the likelihood ratio approaches are consistent in this setting.10

In a global pondering about hypothesis testing, I would actually argue that
the Jeffreys-Lindley paradox expresses difficulties for all of the three method-
ological threads: when following Fisher’s approach, there is a theoretical and
practical difficulty as to one should decrease the acceptace bound α = α(n)
on the p-value when n increases. It fails to provide a principle on which this
bound (or sequence of bounds) α(n) should be chosen. For instance, the paper
mentions (p.78) that because “of the large sample size, it is often judicious to
choose a small type I error, say α = .003” but this sentence simply points at
the arbitrariness of this numerical value. Or, worse, that it was dictated by the
data since the observed p-value takes the nearby .0027 value. In addition, I find
the argument of consistence inconvincing in that case since both the Bayes fac-
tor and the likelihood ratio tests are then consistent testing procedures. In the
Neyman-Pearson referential, I have a difficulty in finding a proper balance or
imbalance between Type I and Type II errors, since such balance is not pro-
vided by the theory, which settles for the sub-optimal selection of a fixed Type
I error. In addition, I have troubles with the whole notion of power, due to the
fact that it is a function that depends on the unknown parameter. In particular,
the power decreases to the Type I error at the boundary of the parameter set
between the null and the alternative hypotheses. Without a prior distribution,
giving a meaning to something like (eon. (25), p.87)

P(x; d(X) < d(x0); θ > θ1 is false)

seems impossible.11 As discussed further in other sections of this note, apart
from the genuine difficulty in setting a prior distribution, following a standard
Bayesian approach with a flat prior on the binomial probability infered about
in Spanos (2013) leads to a Bayes factor of 8.115 (p.80). Since this is neither a
huge nor a tiny quantity per se, the very difficulty is in calibrating it, Jeffreys’s
(1939, Appendix) scale being highly formal.

Third, Spanos (2013) uses the failures (or fallacies?) of all three main ap-
proaches to address the difficulties with the Jeffreys–Lindley paradox to ad-
vocate his own criterion the “postdata severity evaluation” introduced in an

10In connection with this point, I fail to understand why a Bayes factor would “ignore
the sampling distribution (...) by invoking the likelihood principle” (p.90): the Bayes factor
incorporates the sampling distribution by integrating out against the associated prior under
the alternative hypothesis.

11After an exchange with D. Mayo (2013, personal communication), it appears that this
probability is computed under the distribution of X associated with the parameter θ1.
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earlier paper with Deborah Mayo (Mayo and Spanos, 2004).12 The notion of se-
vere tests has been advocated by Mayo and Spanos over the past years, but it has
not yet had any impact on the practice of statistics: in my opinion, the solution
seems to require even further calibration than the regular p-value and it is thus
bound to confuse practitioners. Indeed, the severity evaluation as explained13

in Spanos (2013) implies defining for each departure from the null, θ1 = θ0 + γ
the probability that a dataset associated with this parameter values “accords
less with θ > θ1 than x0 does” (p.87). (Note that the two-sided alternative has
been turned postdatum into a one-sided version.) This notion is therefore a mix
of p-value and of type II error that is supposed to “provide the ‘magnitude’
of the warranted discrepancy from the null” (p.88), i.e. to decide about how
close (in distance) to the null we can get and still be able to discriminate the
null from the alternative hypotheses. As discussed in the paper, the value of
this closest discrepancy γ—which is thus a bound on when we can discriminate
between H0 and H1 at a given sample size—does depend on another arbitrary
tail probability, the “severity threshold”,

Pθ1{d(X) ≤ d(x0)} ,

since this probability has to be chosen by the experimenter without being more
intuitive than the initial acceptance bound on the p-value.14 Further, once the
resulting discrepancy γ is found, whether it is far enough from the null is a
matter of informed opinion as, as duly noted by Spanos (2013), whether it
is “substantially significant (...) pertains to the substantive subject matter”
(p.88), implying once more some sort of loss function that is ignored (or implicit)
throughout the paper.15

In connection with the special meaning of the value θ0, several parts of
Spanos’ discussion of the Bayesian approach argue (see, e.g., p.81) about other
values of θ that are supported and even better supported by the data than the
null value θ0. This is a surprising argument as it pertains to the construction of
Bayesian credible intervals but not to testing. While it is correct that the ob-
served data x0 does “favor certain values more strongly” (p.81) than θ0, those

12Section 6 starts with the mathematically puzzling argument that, since we have observed
x0, the sign of x0 − θ0 “indicates the relevant direction of departure from H0”. First, random
variables may take values both sides of θ0 for most values of θ. Second, the fact that one is
testing H0 against a two-sided or a one-sided alternative hypothesis pertains to the motivation
of the test, not to the direction suggested by the data. The contentious modification of the
testing setting once the data is observed is an issue with Spanos’ (2013) perspective that we
will discuss further.

13Let me remark that typos in both the last line in p.87, which is mixing the standard-
ised and the non-standardised versions of the test statistic, and Table 1, which introduces a
superfluous minus sign, do not help in clarifying the issue.

14When considering the severity as a function of θ1, complement to a probability cdf in
θ1, the most natural interpretation would be Bayesian, the bound being a quantile. However,
this solution is quite improbable to meet with the authors’ approval.

15While this is very much unlikely to be advocated either by the author or by Bayesian
statisticians, we note that, as a statistics, i.e. a transform of the data, both the Bayes factor and
the likelihood ratio could be processed in exactly the same way to produce severity thresholds
of their own.
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values are (a) driven by the data, i.e. will vary from one repetition of the ex-
periment to the next, and (b) of no particular relevance for conducting a test,
meaning that the experimenter or the scientist behind the experiment had not
expressed a particular interest in those values before they were exposed by the
data. The tested value, θ0 = 0.2 say, is chosen prior to the experiment because it
has some special meaning for the problem at hand. The fact that the likelihood
and the posterior are larger in other values of θ does not “constitute conflicting
evidence” against the fact that the null hypothesis holds. Or does not hold. It
simply reflects on the fact that the likelihood function is a random function of
the parameter θ, whose mode also varies with the data and is almost surely not
located at the true value of the parameter. Even under the null.

4. On some resolutions of the Bayesian version

While the divergence between the frequentist and Bayesian answers is reflecting
upon the difference between the paradigms in terms of purpose and evaluation,
the (Bayesian) debate about constructing limiting Bayes factors or posterior
probabilities that include improper prior modelling stands both open and rel-
evant. DeGroot’s (1982) warning that “diffuse prior distributions (...) must be
used with care” has now been impressed upon generations of students and it
is indeed a fair warning. There remains nonetheless a crucial need to produce
assessments of null hypotheses from a Bayesian perspective and under limited
prior information, once again without any incentive whatsoever to mimic, re-
produce or even come close to frequentist solutions like p-values. (I will there-
fore abstain from covering here the notion of matching priors, whose sole pur-
pose is to bring frequentist and Bayesian coverages as close as possible, see e.g.
Datta and Mukerjee, 2004.)

In Robert (1993), I suggested selecting the prior weights of the two hypothe-
ses, (̺0, 1 − ̺0), in order to compensate for the increased mass brought by the
alternative hypothesis prior.16 While the solution therein produced numerical
results that brought a proximity with the p-value, its construction is flawed
from a measure-theoretic point of view since the determination of the weights
involves the value of the prior density π1 at the point-null value θ0,

̺0 = (1 − ̺0)π1(θ0) ,

a difficulty also shared by the (related) Savage–Dickey paradox (Robert and Marin,
2009).17 I nonetheless remain of the opinion that the degree of freedom repre-
sented by the prior weight ̺0 in the Bayesian formalism should not be neglected
to overcome the difficulty in using improper priors.18

16The compensation cannot be probabilistic in that the overall mass of an improper prior
will remain improper.

17A solution to the measure-theoretic difficulty is to impose a version of π1 that is con-
tinuous at θ0 so that π1(θ0) is uniquely defined. It however equates the values of two density
functions under two orthogonal measures.

18Some will object at this choice on Bayesian grounds as it implies that the prior does
depend on the sample size n.
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Another direction worth pursuing is Berger et al.’s (1998) partial validation
of the use of identical improper priors on the nuisance parameters, a notion
already entertained by Jeffreys (1939, see the discussion in Robert et al., 2009,
Section 6.3). While arguing about the “same” constant in both models towards
using the “same” improper prior for both models has no mathematical nor
statistical validation, using the same prior eliminates quite conveniently the
major thorn in the side of Bayesian testing of hypotheses. As demonstrated in
Marin and Robert (2007) and Celeux et al. (2012), it allows in particular for the
use of a partly improper g-prior in linear and generalised linear models (Zellner,
1986).19

Yet another resolution to the paradox is apparently found in DeGroot’s (1982)
recommendation to keep “in mind that the assignment of a prior distribution to
the parameter θ induces a predictive distribution for the observation” (p.337),
as comparing predictives allows for an assessment of Bayesian models (meaning
that either the sampling or the prior distribution may be inadequate). However,
I think Morrie DeGroot meant in this text using the prior predictive,

m(y) =

∫

Θ

π(θ)f(y|θ) dθ .

in which case this approach is essentially equivalent to the Bayes factor, hence
does not solve the improperness issue, and suffers from the same calibration
difficulty. If, instead, one considers the posterior predictive, this is the solution
advocated in, among others, Gelman et al. (2003), under the name of posterior
predictive checking, but it implies using the data twice (once for building the
posterior and one for deriving the assessment), and has been reinterpreted by
Aitkin (1991, 2010) in his integrated likelihood theory, drawing strong criticism
from many, including Dennis Lindley’s now famous “One hardly advances the
respect with which statisticians are held in society by making such declarations”
(1991, p.131). (See also Gelman et al., 2013.)20

A last direction worth investigating is the recent development of the use of
score functions S(x,m) that extend the log score function associated with the
Bayes factor:

logB12(x) = logm1(x)− logm2(x) = S0(x,m1)− S0(x,m2) ,

wheremi is the prior predictive associated with model Mi. Indeed, there exists a
whole family of proper scoring rules that are independent from the normalising

19Once again, choosing g = n should attract criticism from some Bayesian corners for
being dependent on the sample size, even though it boils down to picking an imaginary sample
(Smith and Spiegelhalter, 1982) size of 1. See Liang et al. (2008) for an alternative approach
setting an hyperprior on g.

20Although a huge literature has been dedicated to partial Bayes factors like fractional
and intrinsic Bayes factors where a part of the dataset is used to make the posterior
distribution well-defined and the remainder addresses the testing question, as started in
Smith and Spiegelhalter (1982), I will not pursue this direction as (a) it is very rarely a
truly Bayesian procedure, i.e. cannot be expressed as a genuine Bayes factor against a pair of
proper prior distributions, and (b) it suffers from facing too many competing variants to be
advocated. See e.g. Berger and Pericchi (2001) or Robert (2001) for a review.
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/On the Jeffreys–Lindley’s paradox 9

constant of the prior predictive (Parry et al., 2012) and can thus be used on
improper priors as well. For instance, Hyvärinen’s (2005) score is one of these
scores. While the scores are delicate to calibrate, i.e. the magnitude of S(x,m1)−
S(x,m2) is not absolute, they provide a consistent method for selecting models
(REF) and avoid the delicate issue of selecting priors that differ for model
selection and for regular inference (conditional on the model).

5. Reflections

The appeal of great paradoxes21 is to exhibit foundational issues in a field, either
to reinforce the arguments in favour of a given theory or, on the opposite, to
cast serious doubts on its validity. The fact that the Jeffreys–Lindley’s paradox
is still discussed in papers (as exemplified by the recent Spanos, 2013) and blogs,
by statisticians and non-statisticians alike, is a testimony to its impact on the
debate about the very nature of (statistical) testing. The irrevocable opposition
between frequentist and Bayesian approaches to testing, but also the persistent
impact of the prior modelling in this case, are fundamental questions that have
not yet met with definitive answers. And they presumably never will for, as
put by Lad (2003), “the weight of Lindley’s paradoxical result (...) burdens
proponents of the Bayesian practice”. However, this is a burden with highly
positive features in that it paradoxically (!) drives the field to higher grounds.22
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