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Abstract

Due to the success of the bag-of-word modeling paradigm, clustering histograms
has become an important ingredient of modern information processing. Clustering
histograms can be performed using the celebrated k-means centroid-based algorithm.
From the viewpoint of applications, it is usually required to deal with symmetric
distances. In this letter, we consider the Jeffreys divergence that symmetrizes the
Kullback-Leibler divergence, and investigate the computation of Jeffreys centroids. We
first prove that the Jeffreys centroid can be expressed analytically using the Lambert
W function for positive histograms. We then show how to obtain a fast guaranteed ap-
proximation when dealing with frequency histograms. Finally, we conclude with some
remarks on the k-means histogram clustering.

1 Introduction: Motivation and prior work

1.1 Motivation: The Bag-of-Word modeling paradigm

Classifying documents into categories is a common task of information retrieval systems:
Given a training set of documents labeled with categories, one asks to classify incoming
new documents. Text categorization [1] proceeds by first defining a dictionary of words (the
corpus). It then models each document by a word count yielding a word histogram per
document. Defining a proper distance d(·, ·) between histograms allows one to:

• Classify a new on-line document: we first calculate its histogram signature and then
seek for the labeled document which has the most similar histogram to deduce its tag
(e.g., using a nearest neighbor classifier).

• Find the initial set of categories: we cluster all document histograms and assign a
category per cluster.

It has been shown experimentally that the Jeffreys divergence (symmetrizing the
Kullback-Leibler divergence) achieves better performance than the traditional tf-idf
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method [1]. This text classification method based on the Bag of Words (BoWs) repre-
sentation has also been instrumental in computer vision for efficient object categorization [2]
and recognition in natural images. It first requires to create a dictionary of “visual words”
by quantizing keypoints of the training database. Quantization is then performed using the
k-means algorithm [8] that partitions n data points X = {x1, ..., xn} into k clusters C1, ..., Ck
where each data element belongs to the closest cluster center. From a given initialization,
Lloyd’s batched k-means first assigns points to their closest cluster centers, and then update
the cluster centers, and reiterate this process until convergence is met after a finite number
of steps. When the distance function d(x, y) is chosen as the squared Euclidean distance
d(x, y) = ‖x − y‖2, the cluster centroids updates to their centers of mass. Csurka et al. [2]
used the squared Euclidean distance for building the visual vocabulary. Depending on the
considered features, other distances have proven useful: For example, the Jeffreys diver-
gence was shown to perform experimentally better than the Euclidean or squared Euclidean
distances for Compressed Histogram of Gradient descriptors [3]. To summarize, k-means his-
togram clustering with respect to the Jeffreys divergence can be used to both quantize visual
words to create a dictionary and to cluster document words for assigning initial categories.

Let wh =
∑d

i=1 h
i denote the cumulative sum of the bin values of histogram h. We dis-

tinguish between positive histograms and frequency histograms. A frequency histogram h̃ is
a unit histogram (i.e., the cumulative sum wh̃ of its bins adds up to one). In statistics, those
positive and frequency histograms correspond respectively to positive discrete and multino-
mial distributions when all bins are non-empty. Let H = {h1, ..., hn} be a collection of n
histograms with d positive-valued bins. By notational convention, we use the superscript and
the subscript to indicate the bin number and the histogram number, respectively. Without
loss of generality, we assume that all bins are non-empty1: hi

j ≥ 0, 1 ≤ j ≤ n, 1 ≤ i ≤ d.
To measure the distance between two such histograms p and q, we rely on the relative
entropy. The extended KL divergence [8] between two positive (but not necessarily nor-

malized) histograms p and q is defined by KL(p : q) =
∑d

i=1 p
i log pi

qi
+ qi − pi. Ob-

serve that this information-theoretic dissimilarity measure is not symmetric nor does it
satisfy the triangular inequality property of metrics. Let p̃ = p

∑d
i=1 p

i
and q̃ = q

∑d
i=1 q

i

denote the corresponding normalized frequency histograms. In the remainder, the ˜ de-
notes this normalization operator. The extended KL divergence formula applied to nor-
malized histograms yields the traditional KL divergence [8]: KL(p̃ : q̃) =

∑d

i=1 p̃
i log p̃i

q̃i
since

∑d

i=1 q̃
i−p̃i =

∑d

i=1 q̃
i−

∑d

i=1 p̃
i = 1−1 = 0. The KL divergence is interpreted as the relative

entropy between p̃ and q̃: KL(p̃ : q̃) = H×(p̃ : q̃) − H(p̃), where H×(p̃ : q̃) =
∑d

i=1 p̃
i log 1

q̃i

denotes the cross-entropy and H(p̃) = H×(p̃ : p̃) =
∑d

i=1 p̃
i log 1

p̃i
is the Shannon entropy.

This distance is explained as the expected extra number of bits per datum that must be
transmitted when using the “wrong” distribution q̃ instead of the true distribution p̃. Often
p̃ is hidden by nature and need to be hypothesized while q̃ is estimated. When clustering
histograms, all histograms play the same role, and it is therefore better to consider the

1Otherwise, we may add an arbitrary small quantity ǫ > 0 to all bins. When frequency histograms are
required, we then re-normalize.
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Jeffreys [4] divergence J(p, q) = KL(p : q) + KL(q : p) that symmetrizes the KL divergence:

J(p, q) =

d∑

i=1

(pi − qi) log
pi

qi
= J(q, p). (1)

Observe that the formula for Jeffreys divergence holds for arbitrary positive histograms
(including frequency histograms).

This letter is devoted to compute efficiently the Jeffreys centroid c of a setH = {h1, ..., hn}
of weighted histograms defined as:

c = argmin
x

n∑

j=1

πjJ(hj , x), (2)

where the πj ’s denote the histogram positive weights (with
∑n

j=1 πj = 1). When all his-
tograms hj ∈ H are normalized, we require the minimization of x to be carried out over ∆d,
the (d − 1)-dimensional probability simplex. This yields the Jeffreys frequency centroid c̃.
Otherwise, for positive histograms hj ∈ H, the minimization of x is done over the positive
orthant Rd

+, to get the Jeffreys positive centroid c. Since the J-divergence is convex in both
arguments, both the Jeffreys positive and frequency centroids are unique.

1.2 Prior work and contributions

On one hand, clustering histograms has been studied using various distances and cluster-
ing algorithms. Besides the classical Minkowski ℓp-norm distances, hierarchical clustering
with respect to the χ2 distance has been investigated in [7]. Banerjee et al. [8] generalized
k-means to Bregman k-means thus allowing to cluster distributions of the same exponential
families with respect to the KL divergence. Mignotte [9] used k-means with respect to the
Bhattacharyya distance [10] on histograms of various color spaces to perform image segmen-
tation. On the other hand, Jeffreys k-means has not been yet extensively studied as the
centroid computations are non-trivial: In 2002, Veldhuis [11] reported an iterative Newton-
like algorithm to approximate arbitrarily finely the Jeffreys frequency centroid c̃ of a set
of frequency histograms that requires two nested loops. Nielsen and Nock [12] considered
the information-geometric structure of the manifold of multinomials (frequency histograms)
to report a simple geodesic bisection search algorithm (i.e., replacing the two nested loops
of [11] by one single loop). Indeed, the family of frequency histograms belongs to the expo-
nential families [8], and the Jeffreys frequency centroid amount to compute equivalently a
symmetrized Bregman centroid [12].

To overcome the explicit computation of the Jeffreys centroid, Nock et al. [13] generalized
the Bregman k-means [8] and k-means++ seeding using mixed Bregman divergences: They
consider two dual centroids c̃m and c̃∗m attached per cluster, and use the following divergence
depending on these two centers: ∆KL(c̃m : x : c̃∗m) = KL(c̃m : x) + KL(x : c̃∗m). However,
note that this mixed Bregman 2-centroid-per-cluster clustering is different from the Jeffreys
k-means clustering that relies on one centroid per cluster.
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This letter is organized as follows: Section 2 reports a closed-form expression of the
positive Jeffreys centroid for a set of positive histograms. Section 3 studies the guaranteed
tight approximation factor obtained when normalizing the positive Jeffreys centroid, and
further describes a simple bisection algorithm to arbitrarily finely approximate the optimal
Jeffreys frequency centroid. Section 4 reports on our experimental results that show that our
normalized approximation is in practice tight enough to avoid doing the bisection process.
Finally, Section 5 concludes this work.

2 Jeffreys positive centroid

We consider a set H = {h1, ..., hn} of n positive weighted histograms with d non-empty bins
(hj ∈ R

d
+, πj > 0 and

∑
j πj = 1). The Jeffreys positive centroid c is defined by:

c = arg min
x∈Rd

+

J(H, x) = arg min
x∈Rd

+

n∑

j=1

πjJ(hj, x). (3)

We state the first result:

Theorem 1 The Jeffreys positive centroid c = (c1, ..., cd) of a set {h1, ..., hn} of n weighted
positive histograms with d bins can be calculated component-wise exactly using the LambertW
analytic function: ci = ai

W (a
i

gi
e)
, where ai =

∑n

j=1 πjh
i
j denotes the coordinate-wise arithmetic

weighted means and gi =
∏n

j=1(h
i
j)

πj the coordinate-wise geometric weighted means.

Proof We seek for x ∈ R
d
+ that minimizes Eq. 3. After expanding Jeffreys divergence

formula of Eq. 1 in Eq. 3 and removing all additive terms independent of x, we find the
following equivalent minimization problem:

min
x∈Rd

+

d∑

i=1

xi log
xi

gi
− ai log xi.

This optimization can be performed coordinate-wise, independently. For each coordinate,
dropping the superscript notation and setting the derivative to zero, we have to solve log x

g
+

1− a
x
= 0, which yields x = a

W (a
g
e)
, where W (·) denotes the Lambert W function [14].

Lambert function2 W is defined by W (x)eW (x) = x for x ≥ 0. That is, the Lambert
function is the functional inverse of f(x) = xex = y: x = W (y). Although function W may
seem non-trivial at first sight, it is a popular elementary analytic function similar to the
logarithm or exponential functions. In practice, we get a fourth-order convergence algorithm
to estimate it by implementing Halley’s numerical root-finding method. It requires fewer
than 5 iterations to reach machine accuracy using the IEEE 754 floating point standard [14].
Notice that the Lambert W function plays a particular role in information theory [15].

2We consider only the branch W0 [14] since arguments of the function are always positive.
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3 Jeffreys frequency centroid

We consider a set H̃ of n frequency histograms: H̃ = {h̃1, ..., h̃n}.

3.1 A guaranteed approximation

If we relax x to the positive orthant Rd
+ instead of the probability simplex, we get the optimal

positive Jeffreys centroid c, with ci = ai

W (a
i

gi
e)
(Theorem 1). Normalizing this positive Jeffreys

centroid to get c̃′ = c
wc

does not yield the Jeffreys frequency centroid c̃ that requires dedicated
iterative optimization algorithms [11, 12]. In this section, we consider approximations of the
Jeffreys frequency histograms. Veldhuis [11] approximated the Jeffreys frequency centroid
c̃ by c̃′′ = ã+g̃

2
, where ã and g̃ denotes the normalized weighted arithmetic and geometric

means, respectively. The normalized geometric weighted mean g̃ = (g̃1, ..., g̃d) is defined by

g̃i =
∏n

j=1
(h̃i

j)
πj

∑d
i=1

∏n
j=1

(h̃i
j)

πj
, i ∈ {1, ..., d}. Since

∑d

i=1

∑n

j=1 πj h̃
i
j =

∑n

j=1 πj

∑d

i=1 h̃
i
j =

∑n

j=1 πj = 1,

the normalized arithmetic weighted mean has coordinates: ãi =
∑n

j=1 πj h̃
i
j.

We consider approximating the Jeffreys frequency centroid by normalizing the Jeffreys
positive centroid c: c̃′ = c

wc
.

We start with a simple lemma:

Lemma 1 The cumulative sum wc of the bin values of the Jeffreys positive centroid c of a
set of frequency histograms is less or equal to one: 0 < wc ≤ 1.

Proof Consider the frequency histograms H̃ as positive histograms. It follows from Theo-
rem 1 that the Jeffreys positive centroid c is such that wc =

∑d

i=1 c
i =

∑d

i=1
ai

W (a
i

gi
e)
. Now,

the arithmetic-geometric mean inequality states that ai ≥ gi where ai and gi denotes the
coordinates of the arithmetic and geometric positive means. Therefore W (a

i

gi
e) ≥ 1 and

ci ≤ ai. Thus wc =
∑d

i=1 c
i ≤

∑d

i=1 a
i = 1.

We consider approximating Jeffreys frequency centroid on the probability simplex ∆d by
using the normalization of the Jeffreys positive centroid: c̃′ = ai

wW (a
i

gi
e)
, with w =

∑d

i=1
ai

W (a
i

gi
e)
.

To study the quality of this approximation, we use the following lemma:

Lemma 2 For any histogram x and frequency histogram h̃, we have J(x, h̃) = J(x̃, h̃) +
(wx − 1)(KL(x̃ : h̃) + logwx), where wx denotes the normalization factor (wx =

∑d

i=1 x
i).

Proof It follows from the definition of Jeffreys divergence and the fact that xi = wxx̃
i that

J(x, h̃) =
∑d

i=1(wxx̃
i− h̃i) log wxx̃

i

h̃i
. Expanding and mathematically rewriting the rhs. yields

J(x, h̃) =
∑d

i=1(wxx̃
i log x̃i

h̃i
+wxx̃

i logwx+ h̃i log h̃i

x̃i − h̃i logwx) = (wx− 1) logwx+ J(x̃, h̃)+

(wx−1)
∑d

i=1 x̃
i log x̃i

h̃i
= J(x̃, h̃)+(wx−1)(KL(x̃ : h̃)+logwx), since

∑d

i=1 h̃
i =

∑d

i=1 x̃
i = 1.
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The lemma can be extended to a set of weighted frequency histograms H̃:

J(x, H̃) = J(x̃, H̃) + (wx − 1)(KL(x̃ : H̃) + logwx),

where J(x, H̃) =
∑n

j=1 πjJ(x, h̃j) and KL(x̃ : H̃) =
∑n

j=1 πjKL(x̃, h̃j) (with
∑n

j=1 πj = 1).
We state the second theorem concerning our guaranteed approximation:

Theorem 2 Let c̃ denote the Jeffreys frequency centroid and c̃′ = c
wc

the normalized Jeffreys

positive centroid. Then the approximation factor αc̃′ =
J(c̃′,H̃)

J(c̃,H̃)
is such that 1 ≤ αc̃′ ≤ 1 +

( 1
wc

− 1)KL(c,H̃)

J(c,H̃)
≤ 1

wc
(with wc ≤ 1).

Proof We have J(c, H̃) ≤ J(c̃, H̃) ≤ J(c̃′, H̃). Using Lemma 2, since J(c̃′, H̃) =
J(c, H̃) + (1 − wc)(KL(c̃′, H̃) + logwc)) and J(c, H̃) ≤ J(c̃, H̃), it follows that 1 ≤ αc̃′ ≤

1 + (1−wc)(KL(c̃′,H̃)+logwc)

J(c̃,H̃)
. We also have KL(c̃′ : H̃) = 1

wc
KL(c, H̃)− logwc (by expanding the

KL expression and using the fact that wc =
∑

i
ci). Therefore αc̃′ ≤ 1 + (1−wc)KL(c,H̃)

wcJ(c̃,H̃)
. Since

J(c̃, H̃) ≥ J(c, H̃) and KL(c, H̃) ≤ J(c, H̃), we finally obtain αc̃′ ≤
1
wc
.

When wc = 1 the bound is tight. Experimental results described in the next section shows
that this normalized Jeffreys positive centroid c̃′ almost coincide with the Jeffreys frequency
centroid.

3.2 Arbitrary fine approximation by bisection search

It has been shown in [11, 12] that minimizing Eq. 2 over the probability simplex ∆d amounts
to minimize the following equivalent problem:

c̃ = arg min
x̃∈∆d

KL(ã : x̃) + KL(x̃ : g̃), (4)

Nevertheless, instead of using the two-nested loops of Veldhuis’ Newton scheme [11], we can
design a single loop optimization algorithm. We consider the Lagrangian function obtained
by enforcing the normalization constraint

∑
i c

i = 1 similar to [11]. For each coordinate,

setting the derivative with respect to c̃i, we get log c̃i

g̃i
+ 1 − ãi

c̃i
+ λ = 0, which solves as

c̃i = ãi

W
(

ãieλ+1

g̃i

) . By multiplying these d constraints with c̃i respectively and summing up,

we deduce that λ = −KL(c̃ : g̃) ≤ 0 (also noticed by [11]). From the constraints that

all ci’s should be less than one, we bound λ as follows: ci = ãi

W
(

ãieλ+1

g̃i

) ≤ 1, which solves

for equality when λ = log(eã
i

g̃i) − 1. Thus we seek for λ ∈ [maxi log(e
ãi g̃i)− 1, 0]. Since

s =
∑

i c
i = 1, we have the following cumulative sum equation depending on the unknown

parameter λ: s(λ) =
∑

i c
i(λ) =

∑d

i=1
ãi

W
(

ãieλ+1

g̃i

) . This is a monotonously decreasing function

with s(0) ≤ 1. We can thus perform a simple bisection search to approximate the optimal
value of λ, and therefore deduce an arbitrary fine approximation of the Jeffreys frequency
centroid.
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αc(opt. positive) αc̃′(n
′lized approx.) wc ≤ 1(n′lizing coeff.) αc̃′′(Veldhuis)

avg 0.9648680345638155 1.0002205080964255 0.9338228644308926 1.065590178484613

min 0.906414219584823 1.0000005079528809 0.8342819488534723 1.0027707382095195

max 0.9956399220678585 1.0000031489541772 0.9931975105809021 1.3582296675397754

Table 1: Experimental performance ratio and statistics for the 30000+ images of the Caltech-
256 database. Observe that αc =

J(H,c)
J(H,c̃)

≤ 1 since the positive Jeffreys centroid (available in

closed-form) minimizes the average Jeffreys divergence criterion. Our guaranteed normalized
approximation c̃′ is almost optimal. Veldhuis’ simple half normalized arithmetic-geometric
approximation performs on average with a 6.56% error but can be far from the optimal in
the worst-case (35.8%).

4 Experimental results and discussion

We used a multi-precision floating point (http://www.apfloat.org/) package to handle
calculations and control arbitrary precisions. We chose the Caltech-256 database [16] con-
sisting of 30607 images labeled into 256 categories to perform experiments: We consider
the set of intensity3 histograms H. For each of the 256 category, we consider the set of
histograms falling inside this category and compute the exact Jeffreys positive centroids c,
its normalization Jeffreys approximation c̃′ and optimal frequency centroids c̃. We also con-
sider the average of the arithmetic and geometric normalized means c̃′′ = ã+g̃

2
. We evaluate

the average, minimum and maximum ratio αx = J(H,x)
J(H,c̃)

for x ∈ {c, c̃′, c̃′′}. The results are

reported in Table 1. Furthermore, to study the best/worst/average performance of the the
normalized Jeffreys positive centroid c̃′, we ran 106 trials as follows: We draw two random
binary histograms (d = 2), calculate a fine precision approximation of c̃ using numerical op-
timization, and calculate the approximation obtained by using the normalized closed-form
centroid c̃′. We gather statistics on the ratio α = J(c̃′)

J(c̃)
≥ 1. We find experimentally the

following performance: ᾱ ∼ 1.0000009, αmax ∼ 1.00181506, αmin = 1.000000. Although c̃′ is
almost matching c̃ in those two real-world and synthetic experiments, it remains open to
express analytically and exactly its worst-case performance.

5 Conclusion

We summarize the two main contributions of this paper: (1) we proved that the Jeffreys
positive centroid admits a closed-form formula expressed using the Lambert W function,
and (2) we proved that normalizing this Jeffreys positive centroid yields a tight guaran-
teed approximation to the Jeffreys frequency centroid. We noticed experimentally that the
closed-form normalized Jeffreys positive centroid almost coincide with the Jeffreys frequency

3Converting RGB color pixels to 0.3R+ 0.596G+ 0.11B I grey pixels.
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centroid, and can therefore be used in Jeffreys k-means clustering. Notice that since the k-
means assignment/relocate algorithm monotonically converges even if instead of computing
the exact cluster centroids we update it with provably better centroids (i.e., by applying one
bisection iteration of Jeffreys frequency centroid computation), we end up with a converging
variational Jeffreys frequency k-means that requires to implement a stopping criterion. Jef-
freys divergence is not the only way to symmetrize the Kullback-Leibler divergence. Other
KL symmetrizations include the Jensen-Shannon divergence [5], the Chernoff divergence [6],
and a smooth family of symmetric divergences including the Jensen-Shannon and Jeffreys
divergences [17].
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