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Abstract. Inferring phylogenetic trees from multiple sequence alignments of-

ten relies upon Markov chain Monte Carlo (MCMC) methods to generate tree
samples from a posterior distribution. To give a rigorous approximation of the

posterior expectation, one needs to compute the mean of the tree samples and

therefore a sound definition of a mean and algorithms for its computation are
necessary. To the best of our knowledge, no existing method of phylogenetic

inference can handle the full set of sample trees, because such trees typically

have different topologies. We develop a statistical model for the inference of
phylogenetic trees based on the tree space due to Billera et al. [2001]. Since

it is an Hadamard space, the mean and median are well defined, which we

also motivate from a decision theoretic perspective. The actual approximation
of the posterior expectation relies on some recent developments in Hadamard

spaces (Bačák [2013], Miller et al. [2012]) and the fast computation of geodesics
in tree space (Owen and Provan [2011]), which altogether enable to compute

medians and means of trees with different topologies. We demonstrate our

model on the small ribosomal subunit rRNA sequence alignment. The poste-
rior expectations obtained on this data set are a meaningful summary of the

posterior distribution and the uncertainty about the tree topology.

1. Introduction

Phylogenetic inference is concerned with the estimation of trees that are meant
to reflect the evolutionary history of a set of species. Moreover, such point estimates
are instrumental to a variety of other inferential tasks, such as the analysis of ChIP-
Seq data for the prediction of regulatory elements (cf. Wasserman and Sandelin
[2004]). A well motivated statistical model with a sound estimation method is
therefore of utmost importance for many applications in computational genetics. A
variety of such methods already exist (e.g. Huelsenbeck and Ronquist [2001], Guin-
don and Gascuel [2003], Drummond and Rambaut [2007], Lartillot et al. [2009]),
which either search for a maximizer of the posterior or likelihood function, or rely on
Markov chain Monte Carlo (MCMC) methods to generate samples from the pos-
terior distribution. In phylogenetic inference, posterior samples are phylogenetic
trees and their average is usually not well defined unless all trees have the same
topology. If trees are restricted to one topology at some point of the estimation
task, the computed average inevitably neglects part of the data and is not good
summary of the full posterior distribution. A common approach is to construct
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a (majority rule) consensus tree from MCMC samples, for which some decision
theoretic arguments have been proposed (e.g. Holder et al. [2003], Huggins et al.
[2011]). However, arguments have been raised against this method (e.g. Wheeler
and Pickett [2008]) and a more rigorous approach is still lacking.

A first step towards solving this issue was made by Billera et al. [2001] who intro-
duced a space of trees, now called the BHV tree space, or simply tree space, where
a point in this space not only identifies the tree topology, but also the edge lengths.
We construct a posterior distribution on this space and show how the expectation
and other posterior quantities can be computed. More specifically, since tree space
is an Hadamard space, we have well-defined notions of a mean and median of proba-
bility distributions, which we motivate from decision theoretic grounds. The actual
computations of the posterior mean and median rely on approximation algorithms
developed by Bačák [2013], Miller et al. [2012], which in turn require additional
tools, mainly the algorithm due to Owen and Provan [2011] allowing to compute
geodesics between pairs of trees in polynomial time. It is important to emphasize
that the construction of the BHV tree space along with the Owen-Provan algo-
rithm provides us with a new way of measuring distances between (phylogenetic)
trees, which seem to surpass the conventional metrics (e.g. the NNI distance or the
Robinson-Foulds distance) at both mathematical and computational aspects.

In the present paper, we will give a full description of phylogenetic inference.
After a short decision theoretic motivation (Section 2) we will outline the space
of trees by Billera et al. [2001] in Section 3, on which our model is defined. To
construct a distribution on this space (Section 4), we first fix a tree topology and
thereby restrict the discussion to one orthant of tree space, say the i-th orthant. We
construct a posterior distribution µi on this orthant, which defines the probability
of phylogenetic trees of this topology given a multiple sequence alignment. The
posterior distribution µ on the full tree space is then obtained by combining the
single components µi, i.e. µ =

∑
i wiµi. The main obstacle of this model is the

evaluation of the weights wi since they depend on the partition function of the
individual distributions µi, which involves computing an intractable integral. We
therefore approximate µ with a finite combination of Dirac measures π representing
K samples from the posterior distribution. To obtain samples from µ a Markov
chain Monte Carlo (MCMC) method is used, which we will describe in Section 5.

Even though our target reader is primarily a practitioner in computational ge-
netics whom we provide with a detailed recipe for a rigorous approximation of
posterior distributions in phylogenetic inference, we would like to point out that
the presented methods stem from a fascinating mix of pure mathematics includ-
ing non-Euclidean geometry, convex analysis, optimization, probability theory and
combinatorics, which has recently attracted a great deal of interest among mathe-
maticians and keeps offering challenging mathematical problems.

Acknowledgments. We would like to thank Pierre-Yves Bourguignon, Stephan
Poppe, and Johannes Schumacher for very valuable discussions. We are extremely
grateful to Ezra Miller for his comments on the manuscript, which significantly
improved the exposition.

2. Decision theoretic motivation

Before discussing the details of our model and approximations of posterior ex-
pectations, we would like to give a brief motivation. The goal of any inferential task
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is to obtain predictions based on a well motivated statistical model and a set of
observations. In genetics, such predictions often rely on a phylogenetic tree, which
has to be estimated first. Given that we already have a posterior distribution on
phylogenetic trees, we need to decide on how to obtain a point estimate. Such a
tree should be a good summary of the observed data. For this, it is necessary to
define a loss function L(T̂ , T ′) that quantifies the error of selecting a tree T̂ if T ′

would be a better choice. To illustrate this, assume for the moment that Θ is a
real valued random variable with posterior distribution µΘ |X conditional on some
observations {X = x}. On the real line a common choice is the squared-error loss

L(θ̂, θ) = |θ̂ − θ|2. As best estimate we would take the minimum expected loss

arg min
θ̂∈R

∫

R
L(θ̂, θ)dµΘ |X(θ |x) ,

and by differentiating with respect to θ̂ we immediately find that the best estimate
is the first moment of µΘ |X , i.e.

θ̂ = E(Θ |X = x) =

∫

R
θdµΘ |X(θ |x) .

Similarly we can choose L(θ̂, θ) = |θ̂ − θ| for which we obtain the median, whereas
a zero-one loss results in a maximum a posteriori (MAP) estimate (cf. Schervish
[1995], Robert [2001]).

Except for the zero-one loss, such functions are not well defined since trees might
be of different topology, but we may take a much more direct approach. As we will
outline later, the posterior distribution µ of our model is defined on the tree space
Tn. In this space, all trees have n+ 1 leaves. By definition, Tn is a geodesic metric
space, which means that we have a metric d(T, T ′) that defines the distance between
T and T ′ and we also have a geodesic path from T to T ′, whose length is equal
to d(T, T ′). Actually computing the distance involves finding a geodesic path that
connects the two trees, which we will discuss later. A possible choice for the loss
function is for instance L(T̂ , T ′) := d(T̂ , T ′)2. We then obtain the estimate

T̂ = arg min
y∈Tn

∫

Tn
d(x, y)2dµ(x) ,

which is also called the barycenter b(µ) of the distribution µ, or the Fréchet mean.
In Euclidean spaces it coincides with the posterior expectation, which is why we
define

ET := b(µ) ,

where T is a random variable on tree space with distribution µ. For more details
on probability theory in Hadamard spaces, see Sturm [2002, 2003]. We will also use

VarT = min
y∈Tn

∫

Tn
d(x, y)2dµ(x)

as a notion of variance. Similarly, we can choose L(T̂ , T ) := d(T̂ , T ) and thereby
obtain

T̂ = arg min
y∈Tn

∫

Tn
d(x, y)dµ(x)

as estimate, which is the geometric median. The advantage of the geometric median
is that it is less sensitive to long tails of the distribution, but it may not have a
unique minimizer. Since the distance function on an Hadamard space is convex,
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computing a point estimate of µ reduces to finding a minimizer of a convex function.
In tree space, we cannot simply differentiate the loss function and follow the gradient
to find a minimizer. Appropriate algorithms for computing the mean and median
are referred to in Section 5.

Of course, a valid question is whether a single T̂ is a good summary of the full
posterior distribution µ. In real applications part of the data will favour one tree
topology, while another part clearly supports a different topology. Such seemingly
contradictory data sets are very frequent in biological applications and lead to
posterior distributions whose mass sits on many topologies. In this case a weighted
mixture of several trees, i.e. a model average, might be a better summary of the
posterior distribution. When computational time is a limiting factor, it might be
too costly to use a model average. However, we will demonstrate in Section 6
that also single point estimates in tree space may allow an intuitive interpretation
of multimodal posteriors. We would like to mention an alternative approach due
to Nye [2011] which instead of a point estimate uses principal component analysis
in tree space.

3. Phylogenetic trees and tree space

We will now describe the construction of tree space due to L. Billera, S. Holmes,
and K. Vogtmann. For the details, the interested reader is referred to the original
paper Billera et al. [2001]. We first need to make precise what we mean by a
(phylogenetic) tree. Given n ∈ N with n ≥ 3, a metric n-tree is a combinatorial
tree (connected graph with no circuit) with n + 1 terminal vertices called leaves
that are labeled 0, 1, . . . , n. In phylogenetics, the labels represent the species in
question. The vertex connected with leaf 0 is called the root, since it represents a
common ancestor of all species in the tree, but it will have no distinguished role in
the construction of tree space.1 (As a matter of fact, such trees can be considered
as unrooted.) Vertices other than leaves have no labels since we consider them just
as “branching points”. The edges which are adjacent to leaves are called leaf edges,
and the remaining edges are called inner. We see an example of a 6-tree with three
inner edges e1, e2, and e3 in Figure 1. All edges, both leaf and inner, have positive

0

1
2 3

4

5 6

e1
e2

e3

Figure 1. An example of a 6-tree with three inner edges.

lengths. We will refer to a metric n-tree simply as a tree. The number n will be
fixed and clear from the context. Later, when we consider a set of trees instead

1Some authors however use the term root for the leaf vertex 0 itself.
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of an individual tree, it will be important that they all have the same number of
leaves. For the inference of phylogenetic trees, the number of leaves is determined
by the number of nucleotide sequences in the data set.

Each inner edge of a tree determines a unique partition of the set of leaves L
into two disjoint and nonempty subsets L1∪L2 = L called a split, which we denote
L1|L2. A split is defined as the partition of leaves that arises if we removed the
inner edge under consideration. For instance, the inner edges e1, e2, and e3 of the
tree in Figure 1 have splits (0, 4, 5, 6|1, 2, 3), (0, 1, 2, 3|4, 5, 6), and (0, 1, 2, 3, 4|5, 6),
respectively. On the other hand, given a set of leaves and splits subject to certain
conditions, we can uniquely construct a tree. Namely, we require any two splits
L1|L2 and L′1|L′2 be compatible, that is, one of the sets

L1 ∩ L′2, L′1 ∩ L2, L1 ∩ L′1, L2 ∩ L′2
be empty. We say that a set of inner edges I is compatible if for any two edges
e, e′ ∈ I, the corresponding splits are compatible. For further details, see Dress
et al. [2012], Semple and Steel [2003].

We will now proceed to construct a full space of trees, denoted Tn, that is, a space
whose elements will be all metric n-trees. First, it is useful to realize that one can
treat leaf edges and inner edges separately. Since the former can be represented in
Euclidean space of dimension n+ 1, the whole space Tn is a product of a Euclidean
space and a space that represents the inner edges. We may hence for simplicity
ignore the leaf edges in the following construction.

Fix now a metric n-tree T with r inner edges of lengths l1, . . . , lr, where 1 ≤ r ≤
n−2. Clearly (l1, . . . , lr) lies in the open orthant (0,∞)r, and conversely, any point
of (0,∞)r can be mapped to an n-tree of the same combinatorial structure as T.
Note that a tree S is said to have the same combinatorial structure as T if it has
the same number of inner edges as T and all its inner edges have the same splits
as the inner edges of T. In other words, the trees S and T differ only by inner edge
lengths.

To any point from the boundary ∂(0,∞)r we associate a metric n-tree obtained
from T by shrinking some inner edges to zero length. Hence, each point from the
closed orthant [0,∞)r corresponds to a metric n-tree of the same combinatorial
structure as T.

Binary n-trees have the maximal possible number of inner edges, namely n− 2,
which is of course equal to the dimension of the corresponding orthant. An orthant
of an n-tree that is not binary appears as a face of the orthants corresponding to
(at least three) binary trees. In Figure 2, we see a copy of [0,∞)2 representing all
4-trees of a given combinatorial structure, namely, all 4-trees with two inner edges
e1 and e2, such that the split of e1 is (1, 2|0, 3, 4), and the split of e2 is (1, 2, 3|0, 4).
If the length of e1 is zero, then the tree lies on the vertical boundary ray. If the
length of e2 is zero, then the tree lies on the horizontal boundary ray. In summary,
any orthant O = [0,∞)r, where 1 ≤ r ≤ n − 2, corresponds to a compatible set
of inner edges, and conversely, any compatible set of inner edges I = (e1, . . . , er)
corresponds to a unique orthant O(A), which is a copy of [0,∞)r.

The tree space Tn consists of (2n−3)!! := (2n−3)(2n−5) · · · · ·5 ·3 copies of the
orthant [0,∞)n−2 glued together along lower-dimensional faces, which correspond
to non-binary trees, that is, compatible sets of inner edges of cardinality < n− 2.

We equip the tree space Tn with the induced length metric. Then it becomes a
geodesic metric space, that is, given a pair of trees, we have a well-defined distance
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Figure 2. 4-trees of a given combinatorial structure.

between them and moreover they are connected by a geodesic path. One can easily
observe that each geodesic consists of finitely many Euclidean line segments. An
algorithm for the computation of distances and geodesics is due to Owen and Provan
[2011]. The following important theorem from Billera et al. [2001] states that the
tree space has nonpositive curvature.

Theorem 3.1. The space Tn is an Hadamard space.

An Hadamard space is a geodesic metric space, which is complete and has non-
positive curvature. Intuitively, in such spaces triangles appear “slimmer” than in
Euclidean space, see Figure 3.

p

r

q

(a)

p̄

r̄

q̄

(b)

Figure 3. (a) Triangle in a space of nonpositive curvature. (b)
Comparison triangle in Euclidean space.

It is impossible to isometrically embed the tree space into the Euclidean space
and therefore also difficult to visualize. A piece of the tree space T4 is shown in
Figure 4. The geometrically oriented reader may notice that triangles in this space
are deformed and squeezed inwards, that is, they are “slim” as explained above.

Since this space is not a linear space, one cannot multiply its elements by a real
number and addition of two elements of tree space is also not defined. However,
convex combinations of a given pair of points are meaningful. Indeed, let T, T ′ ∈ Tn
and λ ∈ [0, 1], then we define a formal convex combination

Tλ := (1− λ)T + λT ′,
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Figure 4. Five out of 15 orthants of T4.

which represents a unique tree Tλ ∈ Tn lying on the geodesic from T to T ′ satisfying
d (T, Tλ) = λd (T, T ′) . Convex combinations are important in the algorithms for
computations of medians and means.

4. Statistical model

The posterior distribution is a conditional probability measure that depends on
a multiple sequence alignment. Such an alignment is represented as a matrix, where
each row is a sequence of nucleotides from one species. Within each column, ob-
served nucleotides are assumed to have evolved according to a phylogenetic tree.
The same tree is assumed for the whole alignment. A most intuitive way to de-
scribe this process is to look at it from a generative model perspective. We assume
that there existed a common ancestor of all species that we are considering and
the nucleotides that we observe are generated from the sequence of the common
ancestor. Whenever a mutation occurs between an ancestor and its descendant,
a new nucleotide is generated from the stationary distribution of the process, at
which point it might happen that the same nucleotide is generated again. The
stationary distribution therefore plays a crucial role. It is specific to each column
of the alignment and reflects the external selective pressure that acts on each site.
This is where our model differs from other commonly used methods that assume
the same stationary distribution among all sites. In some improved methods it is
possible to group sites into distinct classes that share a stationary distribution (e.g.
Lartillot and Philippe [2004]). The nucleotide substitution model we use belongs to
the family of general time reversible models with gamma prior (GTR+Γ, cf. Nielsen
[2005]). To explicate the differences to other methods and how prior parameters
should be interpreted we fully outline our model in the following.

For a more formal description it is sufficient for the first part to develop the
statistical model on the set of observations within a single column of the alignment.
Let n+ 1 be the number of species for which we have sequences in the alignment.
We introduce the random variables X = {X0, X1, . . . , Xn}, where Xi takes values
in an alphabet A and represents the nucleotide of the i-th sequence. The alphabet
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contains a character for each nucleotide and one to represent gaps in the alignment2.
One of the sequences in the alignment is used for the outgroup, for which we use
the random variable X0 associated with the leaf which is attached to the root of
the tree. A phylogenetic tree equipped with an evolutionary model is used to relate
sequences of different species. We first consider a particular phylogenetic n-tree T
with r = n − 2 inner edges. The leaves of the tree {v0, v1, . . . , vn} are associated
with the n + 1 random variables X. Inner vertices are labeled from n + 1 to
n+ r − 1 and we associate with each inner vertex vk a random variable Xk, where
k ∈ {n+1, . . . , n+r−1}. To discuss the evolutionary model, assume that vi and vj
are leaves or inner vertices that are connected to the k-th inner vertex vk. We need
to define the probability of an event {Xi = xi, Xj = xj} knowing that {Xk = xk}.
First note that

Xi ⊥⊥ Xj |Xk

and therefore the conditional probability of {Xi = xi, Xj = xj} given {Xk = xk}
factorizes. Hence, it is sufficient to specify the probability of {Xi = xi} given
{Xk = xk}. We use the model by Felsenstein [1981], which defines a continuous-
time finite Markov chain. It is given by

pXi |Xk(xi |xk) :=

{
pMi

p∗(xi) + pM̄i
if xi = xk ,

pMi
p∗(xi) if xi 6= xk ,

where pMi is the probability of a mutation and pM̄i
= 1 − pMi . The distribution

p∗ is the stationary probability distribution of the process, which is common to the
full tree. In this model, the case where xi 6= xk is simple, we have a mutation and
generate the nucleotide xi which we do with probability p∗(xi). More interestingly,
if xi and xk are the same nucleotides, there is either no mutation and no nucleotide
has to be generated or there is a mutation and the same nucleotide is generated
again. As we will outline later, the entropy of p∗ defines the level of conservation
of a site. The probability of a mutation pMi

depends on the evolutionary time
t between species i and its ancestor k, but also on the evolutionary rate α. In
Felsenstein’s evolutionary model, we set

pMi
:= 1− e−l ,

where l := αt is defined as the length of the edge between vi and its ancestor vk.
The model is time-reversible, which means that inference is restricted to unrooted
trees. This property allows us to define our statistical model on the BHV tree space.
As discussed in Section 3, our phylogenetic trees have three vertices attached to the
root, which essentially makes the tree unrooted. The leaf associated with X0 can be
seen to represent an outgroup. The position of the root is purely instrumental and
has no importance for the computation of the likelihood (cf. Isaev [2006]). Since
no observations are available for the inner vertices, it is necessary to marginalize
over all corresponding random variables, such that for instance

pXi,Xj (xi, xj) =
∑

xk∈A
p∗(xk)pXi,Xj |Xk(xi, xj |xk) .

In this fashion we obtain the full likelihood of {X = x}.

2By including a symbol for gaps in the alphabet we explicitly state that no nucleotide is present
at positions filled with a gap. If however gaps are modeled as missing data, the meaning of gaps

is different, i.e. a gap indicates that any of the nucleotides is present but which one is unknown.
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In this model we have two sets of unobserved parameters, namely the lengths
of edges and the stationary probability distribution. We proceed by discussing the
stationary distribution first, which is specific to each column of the alignment. The
distribution will be integrated out in the full model, since we are only interested
in the inference of phylogenetic trees. We introduce a random variable Θ that
represents the stationary distribution and obtain the conditional probability

pX |Θ(x |ϑ) = ϑx = p∗(x) ,

of generating nucleotide x ∈ A. We assume that Θ is a priori Dirichlet distributed
with pseudocounts α = (αx)x∈A. The probability of observing {X = x} becomes

pX(x) =

∫

∆

pX |Θ(x |ϑ)fΘ(ϑ)dϑ ,

where fΘ is the density function of the Dirichlet distribution. The integral is defined
on the (|A| − 1)-dimensional probability simplex ∆ and can be solved analytically
by first expanding the polynomial of the distribution pX |Θ.

It is important to select an appropriate set of parameters α for the Dirichlet
distribution, as they control the expected entropy of distributions ϑ drawn from
it. Phylogenetic trees are commonly learned on multiple sequence alignments of
genes. Such genomic regions are highly conserved, which means that selective
pressure causes nucleotides in a column of the alignment to be the same with high
probability. To reflect this knowledge in our prior assumption, it is important that
the expected entropy is low, i.e. that only the probability of one or two nucleotides is
high. This can be achieved by choosing αx < 1, which puts mass on the boundaries
of the probability simplex. The choice of α has a strong influence on inferred
edge lengths. If we increase α, we observe that inferred branch lengths shorten to
compensate for the increase in entropy of the stationary distribution. The choice
of pseudocounts α therefore reflects our a priori assumption of how conserved we
expect a genomic region to be. It is well known that within codons a heterogeneous
selective pressure exists (e.g. Li et al. [1985], Yang [1996]), which can be modeled
by introducing pseudocounts specific to codon positions.

The next step is to formulate a prior distribution on the edge lengths where we
keep the topology fixed. By this we obtain the posterior µi for a single orthant Oi.
The same phylogenetic tree is assumed for all columns in the alignment. In fact,
columns in the alignment are conditionally independent given a fixed phylogenetic
tree. Since we now want to let the tree vary within one orthant of tree space,

it is necessary to consider the full alignment. Let X(ν), where ν = 1, 2, . . . , N ,
denote the random variables for the ν-th column of the alignment. We also use the

shorthand notation X̄ = (X(1), . . . ,X(N)) for the full alignment. Let L = (Lk)
denote the random variables for the edge lengths of a tree T in orthant Oi. Each
Lk is a priori gamma distributed with shape parameter r and scale parameter λ.
The likelihood of the full alignment is given by

pX̄ |L,Oi(x̄ | l) =

N∏

ν=1

pX(ν) |L,Oi(x
(ν) | l) ,

where the stationary distribution is integrated out, and we obtain the posterior
distribution µi restricted to orthant Oi with density function

fL | X̄,Oi(l | x̄) =
1

pX̄ | Oi(x̄)
pX̄ |L,Oi(x̄ | l)fL(l) .
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The full posterior distribution of n-trees is given by

µ :=

(2n−3)!!∑

i=1

wiµi ,

where

wi :=
pX̄ | Oi(x̄)∑
j pX̄ | Oj (x̄)

is the weight of the i-th component. We will denote the density function of µ
simply as f . The weight wi depends on the normalized partition function of µi,
which involves computing an intractable integral. Another difficulty is that the
number of orthants grows super-exponentially with the number of leaves. It is
therefore necessary to approximate µ with a Dirac mixture of posterior samples,
which does not require to compute any partition functions.

5. Approximation of the posterior distribution

To summarize the posterior µ, we would like to compute a point estimate

T̂ = arg min
y∈Tn

∫

Tn
L(x, y)dµ(x) ,

for an appropriate loss function L, as discussed in Section 2. Unfortunately, the
expected loss is difficult to compute and we therefore rely on an approximation by
replacing µ with the Dirac mixture

π :=
1

K

K∑

k=1

δTk

of K samples from µ. By the ergodic theorem, we have the convergence

∫

Tn
L(x, y)dπ(x) =

1

K

K∑

k=1

L(Tk, y)
a.s.→
∫

Tn
L(x, y)dµ(x) ,

for any y ∈ Tn asK →∞ (cf. Robert and Casella [1999]). A set of posterior samples
can be obtained with the Metropolis-Hastings algorithm (Metropolis et al. [1953],
Hastings [1970]) without having to evaluate the weights wi of the single components
of µ. The algorithm constructs a Markov chain with µ as the stationary distribution.
Let Tk be a sample from µ with edge set E . A new sample Tk+1 is generated by
the Markov chain conditional on the current sample Tk. The algorithm relies on
a proposal distribution with density function q(· |Tk), which selects an edge e ∈ E
and replaces it with another edge. We thereby obtain a new tree T ′ that we accept
as the next sample Tk+1 with probability

ρ(Tk, T
′) = min

{
1,
f(T ′)q(Tk |T ′)
f(Tk)q(T ′ |Tk)

}
,

and otherwise Tk+1 = Tk, where f denotes the density function of µ. Note that
the normalization constant of µ cancels in the ratio. The proposed tree T ′ lies
in the same orthant as Tk with probability τ . In this case, a new edge length is
proposed, which is a draw from a normal distribution centered at |e|. However,
with probability 1−τ the proposed tree lies within one of the neighboring orthants,
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by replacing the edge e with one of two other possible edges (see Figure 5). The
transition measure of the Markov chain is given by

κ(x, dy) = ρ(x, y)q(y |x)dy + (1− r(x))δx(dy)

with r(x) =
∫
Tn ρ(x, y)q(y |x)dy, which satisfies the detailed balance condition and

therefore has µ as invariant distribution (cf. Robert and Casella [1999]).

e

3

21

0

(a)

e′

1

23

0

(b)

e′

2

31

0

(c)

Figure 5. Possible MCMC moves to neighboring orthants. The
edge e of tree (a) can be replaced by two other edges in neighboring
orthants shown in trees (b) and (c). The leaves labeled from zero
to three may also represent more complex subtrees.

In this paper, we will focus on approximating the mean and median of the
posterior distribution. The problem of finding a point estimate therefore reduces
to computing the geometric median

Ψ
(
T̄
)

:= arg min
x∈Tn

K∑

k=1

d (x, Tk) ,(1)

and the Fréchet mean

Ξ
(
T̄
)

:= arg min
x∈Tn

K∑

k=1

d (x, Tk)
2
,(2)

of a finite set T̄ := (T1, . . . , TK) of trees from Tn. Since both the median and
mean are defined as minimizers of “nice” convex functions on tree space, we get
the following. The median Ψ

(
T̄
)

always exists and it is unique unless all the

trees T1, . . . , TK lie on a geodesic. The existence and uniqueness of Ξ
(
T̄
)

is a
consequence of strong convexity of the minimized function. The interested reader
is referred to [Jost, 1997, Theorem 3.2.1] and [Sturm, 2003, Proposition 4.4]. The
proofs can be also found in [Bačák, 2013, Theorem 2.4]. Note that medians and
means are well-defined on arbitrary Hadamard spaces.

We will now turn to the question of how to compute medians and means of a
given set of trees, since the formulas (1) and (2) do not provide us with direct
algorithms. It turns out that efficient approximation methods from optimization
can be extended into Hadamard spaces and applied to median and mean compu-
tations. For explicit algorithms, the reader is referred to [Bačák, 2013, Section 4],
who presents a random and a cyclic-order version of an approximation algorithm.
Note that we consider unweighted medians and means here, which slightly simplifies
the formulas in [Bačák, 2013, Section 4]. Interestingly, the random-order version
of the algorithm for computing the mean can be alternatively justified via the law
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of large numbers due to Sturm [2002], as was independently observed by Bačák
[2013] and Miller et al. [2012]. For reader’s convenience, the random-order version
for unweighted medians and means is outlined in Appendix A.

The approximation algorithms for computing medians and means use (at each
step) the algorithm for finding a geodesic in tree space by Owen and Provan [2011].
At a crucial stage, the Owen-Provan algorithm computes a maximal flow. Our im-
plementation [1] does this using an encoding of the max flow problem as an integer
program. In contrast, our implementation [2] uses the push-relabel algorithm due
to Goldberg and Tarjan [1988].

6. Results

We tested the model on the small ribosomal subunit rRNA sequence3 contained
in the UCSC Hg19 multiz46way alignment. Two example computations are pre-
sented in the following. For both, a gamma prior on edge lengths with shape
parameter r = 1 and scale parameter λ = 0.1 is used. This choice of parameters
reflects our believe that edge lengths can be very small and allows the sampler to
easily switch between orthants. On the other hand, a shape parameter of r > 1
would cause the posterior to have more distinct modes. The Dirichlet prior on the
stationary distribution has pseudocounts αx = 0.2 for all x ∈ A, which reflects our
believe that the data set is a conserved genomic region. The unnormalized log pos-
terior of MCMC samples is shown in Figure 6 for both examples, which indicates
that the Markov chain mixes well.

In the first example we considered only five species, namely Cavia porcellus
(cavPor3), Dipodomys ordii (dipOrd1), Mus musculus (mm9), Ochotona princeps
(ochPri2), and Spermophilus tridecemlineatus (speTri1). The approximated poste-
rior expectation was computed on the last 16000 samples and is shown in Figure 7.
In this plot, edge lengths are visualized as distances in the horizontal direction only.
Consider the edge

e1 : (ochPri2,mm9 | dipOrd1, speTri1, cavPor3) ,

which connects the subtree of ochPri2 and mm9 with the rest of the phylogenetic
tree. It has a relatively small length, caused by an uncertainty about the tree
topolgy. The density of the full posterior µ is of course difficult to visualize, but we
can have a look at a small section. For this, consider the edges

e2 : (ochPri2,dipOrd1 | mm9, speTri1, cavPor3) , and

e3 : (ochPri2, speTri1 | dipOrd1,mm9, cavPor3) ,

which are not compatible with e1 and can replace it in the phylogenetic tree. Fig-
ure 8 shows histograms of lengths for the three edges, which can be interpreted
as an estimate of a marginal posterior density. The histogram was generated by
counting how often each of the edges appeared in the set of samples. We call the
density marginal, because we did not consider a specific topology of the remaining
tree. Hence, it does not reflect a single orthant of tree space. The estimate has
positive support on all three edges. While Figure 8(a) shows only a single mode,
we clearly have a bimodality in Figure 8(b). Although the edge e1 is present in the
posterior expectation (Figure 7), its length is reduced due to the mass on |e2| and

3The Hg19 coordinates of the sequence are chrM: 1686-2059.
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|e3|. This correctly represents our uncertainty about the topology of the tree. For
instance, an equal weight on all three edges would cause the posterior expectation
to have a non-binary branching point.

In a second example we increased the number of species to 14 and used 10
Markov chains in parallel. The mean and median are shown in Figure 9. Both
trees are almost identical, which shows that the posterior distribution seems to
have no long tails. However, two inner edges that separate dipOrd1, cavPor3, and
speTri1, have very small length, which indicate that also in this example there
is uncertainty about the exact topology of the tree. Figure 10 shows a marginal
posterior estimate for the edges

e4 : (cavPor3, speTri1 | ochPri2, oryCun2,dipOrd1,mm9, rn4, ...) , and

e5 : (dipOrd1, speTri1 | ochPri2, oryCun2, cavPor3,mm9, rn4, ...) ,

which shows a strong bimodality. However, the interpretation of such marginal
estimates is difficult because of the much richer structure of the full tree space.
In both examples, edge lengths are much larger than in the phylogenetic trees
published by UCSC. For instance, the leaf edge connected to hg19 in Figure 9 has
a length of 0.0628 while the same edge in the UCSC tree has only a length of
0.006591. This is a consequence of having a site specific stationary distribution.

7. Conclusion

We have presented a statistical model for the inference of phylogenetic trees
from multiple sequence alignments. The model is formulated on tree space by
Billera et al. [2001], which is an Hadamard space and therefore allows to define the
mean and median of a probability distribution. The approximation of posterior
quantities is complicated and we have summarized some recent developments that
contributed to this work. Despite the fact that the posterior distribution will in
most cases be highly nontrivial, we demonstrated on a simple example that the
mean or median as a point estimate can reflect the uncertainty about the topology
of the tree. Methods for phylogenetic tree inference that rely on MCMC sampling
often compute a (majority rule) consensus tree. Such a tree can be justified from
decision theoretic principles. However, we believe that we have proposed a more
rigorous approach to solve this issue. Since our statistical model is defined on tree
space, its inherent properties become part of the model, which clearly has implica-
tions on posterior estimates. Certainly, a disadvantage of MCMC approximations
in phylogenetic inference is that the number of different topologies grows super-
exponentially with the number of leaves. The method might thus be inappropriate
for the inference of large trees as the approximation of the posterior quantities
might require too many samples.

We provide two freely available implementations at [1] and [2].
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Figure 6. Value of the log posterior density (not normalized) of
MCMC samples on the small ribosomal subunit rRNA sequence a
lignment.
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Figure 7. Example 1: Fréchet mean of posterior samples with an
approximate variance of 0.0248.
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Figure 8. Example 1: Marginal posterior density estimate of
three edges. The posterior expectation is shown as a vertical li
ne.
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Figure 9. Example 2: Fréchet mean and median of posterior sam-
ples. The estimated posterior variance is 0.072.
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Appendix A. Algorithms for computing medians and means

The approximation algorithms for computing medians and means were intro-
duced by Bačák [2013] and we refer the interested reader therein for the proofs of
convergence and further details. The algorithms rely upon a well-known optimiza-
tion technique called the proximal point method. Interestingly, the algorithm for
computing the mean can be alternatively justified via the law of large numbers due
to Sturm [2002], as was independently observed by Bačák [2013] and Miller et al.
[2012].

A.1. Algorithms for computing medians. Let us first describe the algorithm
for computing a median of a given set T1, . . . , TK ∈ Tn.
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We set x0 := T1 and suppose that at the i-th iteration we have an approximation
xi ∈ Tn of Ψ

(
T̄
)
. To find xi+1, a tree Tk is selected from our set of trees T1, . . . , TK

at random and we define xi+1 as a point on the geodesic between xi and Tk. (In
other words xi+1 is a convex combination of xi and Tk.) The position of xi+1 on
this geodesic is determined by a parameter ti ∈ [0, 1], which is computed at each
iteration. By this procedure, we obtain a sequence of trees x1, x2, . . . which is
known converge to a median of T1, . . . , TK .

Algorithm A.1 (Computing median, random order version). Let x0 := T1. At each
step i ∈ N0, choose randomly ri ∈ {1, . . . ,K} according to the uniform distribution
and put

(3) xi+1 := (1− ti)xi + tiTri ,

with ti defined by

ti := min

{
1,

1

(i+ 1)d (Tri , xi)

}
,

for each i ∈ N0.

It is important to insist on the uniform distribution on the set {1, . . . ,K}, that
is, no tree of T1, . . . , TK be privileged. Only then we obtain a sequence of trees
x1, x2, . . . which converges to a median of T1, . . . , TK .

A.2. Algorithms for computing means. Computing the mean is similar to
the computation of the median. As a matter of fact it only differs in the coef-
ficients determining the position of xi+1 on the geodesic from xi to Tk. Again, let
T1, . . . , TK ∈ Tn be a finite set of trees from Tn. The following approximation algo-
rithms generate a sequence of trees x1, x2, . . . from Tn which converges to Ξ

(
T̄
)
. At

each iteration a tree Tk is selected at random and we obtain the following algorithm.

Algorithm A.2 (Computing mean, random order version). Let x0 := T1 and
at each step i ∈ N0, choose randomly ri ∈ {1, . . . ,K} according to the uniform
distribution and put

xi+1 :=
1

i+ 1
xi +

i

i+ 1
Tri .

The above algorithms have also their deterministic counterparts, where we choose
the trees from the input set in a cyclic order instead of randomly; see Bačák [2013].
Even though both random and cyclic versions converge to the same value, there
is no theorem on which one converges faster. Our computational studies however
suggest that the random version is better.
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