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Abstract

In this note the relation between the range-renewal speed and entropy for i.i.d.

models is discussed.

In [2] the authors build an SLLN

lim
n→∞

Rn

ERn
= 1 almost surely (1)

with

ERn =
∑

x

[1− (1− πx)
n] (2)

for n samples of a discrete distribution π, where Rn denotes the number of distinct values

of the n samples. In this note we would like to study further the relation between entropy

of the distribution and the range-renewal speed ERn, where the entropy of a (discrete)

distribution π is defined as

S(π) :=
∑

x

−πx · log πx. (3)

As is already well known, for our i.i.d. model, we always have

lim
n→∞

Rn

n
= 0 almost surely.
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But an information of the entropy S(π) being finite or infinite would pose a constriction

on the range-renewal speed as the following:

Theorem 1 For our i.i.d. range-renewal model, in general we have

lim
n→∞

Rn

n
= 0 (4)

almost surely. If the entropy S(π) < ∞, then

lim
n→∞

log n

n
· Rn = 0 (5)

almost surely; Conversely, if the entropy S(π) = ∞, then almost surely

lim
n→∞

(log n)1+ε

n
· Rn = ∞, ∀ε > 0. (6)

Proof. We will always assume, for simplicity, that π is supported on N with

π1 ≥ π2 ≥ · · ·

and we would denote

ϕ−1(n) := #{x : πx >
1

n
}

for each n ≥ 1.

Eq. (4) can be proved easily via eq. (1) and (2) (to prove ERn/n → 0); it can also be

regarded as a consequence of the main result of [3] [4] (see also [1]). Hence the proof is

omitted here.

For (5), first notice that

log n

n
· ERn =

∑

x

[1− (1− πx)
n] ·

log n

n

=
{

∑

1/πx≤n

+
∑

1/πx>n

}

[1− (1− πx)
n] ·

log n

n
=: I1 + I2.

For the second part of the above equation, we have

I2 =
∑

1/πx>n

[1− (1− πx)
n] ·

log n

n

≤
∑

1/πx>n

πx · log n ≤
∑

1/πx>n

−πx · log πx → 0.
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For the first part, choose a large number N ∈ N (but still N < n). Noting φ(t) := −t · log t

is increasing on (0, e−1) (especially on [1/n, 1/N ] for all n > N), we have

I1 =
∑

1/πx≤n

[1− (1− πx)
n] ·

log n

n
≤ ϕ−1(N) ·

log n

n
+

∑

N<1/πx≤n

φ(
1

n
)

≤ ϕ−1(N) ·
log n

n
+

∑

N<1/πx≤n

φ(πx)

≤ ϕ−1(N) ·
log n

n
+

∑

x>ϕ−1(N)

−πx · log πx.

First letting n → ∞ then N → ∞, we get the desired result.

For (6), it’s equivalent to lim
n→∞

(log n)1+ε

n
· ERn = ∞. Suppose on the contrary that

there exists some ε > 0 such that lim
n→∞

(log n)1+ε

n
· ERn < ∞. This clearly implies

lim
n→∞

(log n)1+ε ·
∑

πx<1/n

πx < ∞ since ERn =
∑

x[1− (1− πx)
n]. We write

ak := #{x :
1

k + 1
< πx ≤

1

k
}, k ≥ 1.

Then the above implies Bn := (log n)1+ε ·

∞
∑

k=n

ak
k

≤ C for some C > 0 and all n ≥ 1.

Hence

an
n

=
Bn

(log n)1+ε
−

Bn+1

(log(n+ 1))1+ε
.

From this we shall derive the following result

∑

k

ak
k

· log k < ∞, (7)

which implies S(π) < ∞, a contradiction. In fact,

an
n

· log n =
Bn

(log n)ε
−

Bn+1 · log n

(log(n+ 1))1+ε

= [
Bn

(log n)ε
−

Bn+1

(log(n+ 1))ε
] +

Bn+1 · log(1 + 1/n)

(log(n+ 1))1+ε

= [
Bn

(log n)ε
−

Bn+1

(log(n+ 1))ε
] +O(

1

n · (log n)1+ε
),

which surely implies (7). ✷

Remark 1 (1) Let

πx :=
C

x[log(x+ 1)]β+1
, x = 1, 2, · · ·
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with β > 0 and C being a normalizing constant. By the results in [2] we know

ERn = O(1) ·
n

(log n)β

as n → +∞. When 0 < β ≤ 1, we always have S(π) = +∞, but

lim
n→+∞

log n

n
· ERn =















c ∈ (0,+∞), if β = 1

+∞, if 0 < β < 1

with c being some positive constant. Therefore the result in (6) cannot be strengthened

into the one with ε = 0;

(2) The lim in (6) cannot be replaced by lim. There exists distributions π such that

S(π) = +∞ with lim
n→∞

(log n)1+ε

n
·Rn < ∞, ∀0 < ε < 1. (8)

For the part (2) of the above remark, for example, let for any k ≥ 1,

bk := 22
k

, S0 := 0, Sk :=
k

∑

ℓ=1

2bℓ

bℓ
.

And for any Sk−1 < x ≤ Sk, we set πx := A · 2−bk , where A is the normalizing constant.

Obviously 2 < A < 4. It is easily to see that S(π) = ∞ since

S(π) =
∞
∑

k=1

Sk
∑

x=Sk−1+1

πx log(π
−1
x ) =

∞
∑

k=1

2bk

bk
· (A · 2−bk) log(

2bk

A
)

=

∞
∑

k=1

[

A · log 2−
A

bk
logA

]

= ∞.

The proof of (8) is as the following. For each k ≥ 1, let nk = 22bk . Then A ·2−bk+1 < 1
nk

≤

A · 2−bk for sufficiently large k and #{x : πx ≥ 1
nk
} = Sk. And

ERnk
=

∑

πx≥nk
−1

[1− (1− πx)
nk ] +

∑

πx<nk
−1

[1− (1− πx)
nk ]

≤
∑

πx≥nk
−1

1 + nk ·
∑

πx<nk
−1

πx = Sk + nk ·
∑

πx≤A·2−bk+1

πx

= Sk + nk ·
∞
∑

ℓ=k+1

2bℓ
bℓ

· (A · 2−bℓ) = Sk + nk ·
∞
∑

ℓ=k+1

1
bℓ

≤ 2bk+3

bk
+ 22bk+1

bk+1
= 2bk+3

bk
+ 22bk+1

b2
k

.
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Fix 0 < ε < 1. Furthermore,

(log2 nk)
1+ε

nk
· ERnk

≤ (2bk)
1+ε

22bk
·
(

2bk+3

bk
+ 22bk+1

b2
k

)

=
24+εbε

k

2bk
+ 22+εb−1+ε

k → 0

as k tends to infinity. As a result, (8) holds.
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