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Abstract. How to effectively recognize English letters spoken by Chinese 
people is our major concern in the paper. Some efforts are made to build 
Chinese extended Initial/Final (XIF) based HMMs for English alphabet 
recognition which can be integrated with large vocabulary continuous Chinese 
speech recognition (Chinese LVCSR) system based on a same XIF set. The 
alphabet-specific XIF HMMs are built using context-dependent modeling, 
decision tree based state clustering method, state-based phonetic mixture tying 
and pronunciation modeling techniques. Experiments have been done over a 
32-speaker test set. Compared with English phoneme-based acoustic modeling, 
our proposed method can achieve a relative letter error rate reduction of 5.3% 
with a letter correctness of 97.2% for Chinese-accented English alphabet 
recognition. What’s more, the XIF-based HMMs for English alphabet can be 
integrated with Chinese LVCSR seamlessly to recognize Chinese as well as 
English letters simultaneously. 

Keywords: English alphabet recognition, Chinese speech recognition, acoustic 
modeling, pronunciation modeling, state-based phonetic mixture tying, state 
clustering.  

1   Introduction 

Handling non-native speech in automatic speech recognition (ASR) systems is an area 
of increasing interest. Most of the systems are built on native speech only and as a 
result the performance for non-native speakers is often not satisfactory. One effective 
way to deal with this problem is to adapt the acoustic models based on native speech 
to the non-native speaker [1]. Another important method is to cover the non-native 
pronunciations in the lexicon [2]. Additionally, in [3], it was shown that training on 
52 minutes of non-native data (German-accented English) was much better (with a 
word error rate of 43.5%) than training on 34 hours of native English data from 
exactly the same domain (with a word error rate of 49.3%). That is to say, using a 
small amount of non-native speech data could also achieve good performance for 
non-native speech recognition. In our task, the speech data is a mix of English letters 
and standard Chinese words. For Chinese, non-native English speakers, their 
utterances of English are influenced by their mother tongue more or less. In fact, it is 
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likely that Chinese speakers will pronounce an English phone as a similar phone in 
Chinese. Nowadays, the alphabet recognition has been applied successfully in some 
practical systems [4], nevertheless, how to recognize Chinese-accented English 
alphabet effectively and furthermore integrate it into a Chinese Initial/Final (IF) 
recognizer is still not deserved much attention. Besides, Some Chinese-market-
oriented products, such as PlayStation® and GameBox®, do hope that the recognizer 
can deal with English letters as well as Chinese at the same time during the interaction 
with player, by doing so, voice-controlled commands can have Chinese words and 
English letters mixed so that much friendly interface can be provided to players. 
However, due to the economy consideration and resource limitation of embedded 
devices, it is impractical to deal with this issue by means of automatic language 
identification [5] and multilingual speech recognition [6]. Taking these factors into 
consideration, we propose to work on Chinese-accented English alphabet recognition 
based on Chinese IF acoustic modeling. 

In this paper, we attempt to achieve comparable performance for alphabet 
recognition under the assumption that our methodology is much suitable for Chinese-
accented speech. We attempt to achieve the goal via: 1) Chinese extended 
Initial/Finals (XIFs) based context-dependent modeling where XIFs are derived from 
the Chinese Initial/Finals [7]; 2) State clustering, which is performed to tie the 
acoustically similar states so as to better the baseline XIF HMMs; and 3) State-based 
phonetic mixture tying, whose goal is to further reduce the redundant Gaussian 
mixtures and to build robust XIF HMMs, phonetic mixture tying at state level is 
adopted which can deal well with issue of the underestimation inherent in the mixture 
tying method; 4) Pronunciation modeling, which is to deal specifically with Chinese-
accented alphabet, pronunciation modeling is employed as another measure to 
improve the accuracy.  

The remainder of this paper is organized as follows. In Section 2, some 
background information for the task is described. In the following section, state 
clustering and state-based phonetic mixture tying are introduced briefly, and the 
pronunciation modeling method for alphabet recognition is also presented. In Section 
4, experiments based on Chinese XIF acoustic modeling are designed and done to 
verify the effectiveness for Chinese-accented alphabet recognition. The comparison 
between Chinese XIF-based HMMs and English phoneme-based HMMs is performed. 
The effectiveness for integration of English alphabet with Chinese LVCSR is also 
evaluated. Finally, conclusion is drawn in Section 5. 

2   Background 

2.1   Database 

The database used in the study was of read-style Chinese, consisting of speech data 
spoken by 132 speakers (with gender balanced and age ranging from 11 to 49) with 
236 utterances per speaker. Each speaker uttered 100 long sentences (12~18 words), 
100 short phrases (4~8 words), 26 English letters, and 10 digits. To verify the 
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effectiveness of XIF-based alphabet recognition, only the utterances containing 
English letters were used. That is to say, a sub-database containing only English 
letters spoken in isolation by 132 speakers was used. All speakers spoke Chinese as 
their native language, with different levels of Chinese-accented pronunciation for 
English letters. Speech was recorded with a Logitech USB Headset (LPAC-50000) in 
a quiet studio and sampled at 48 kHz. Each speaker read the alphabet set once and 
each utterance consisted of only a single letter. The training set included 50 males' 
and 50 females' speech, while the test set included 16 females' and 16 males' speech. 

2.2   Chinese XIFs 

The Initial/Final structure is a particular characteristic of Chinese syllables. Mostly 
each Chinese syllable consists of an Initial and a Final; however, some of them have a 
Final only. To make them consistent, 6 zero-Initials are designed so that the syllable 
without Initial is preceded by a zero-Initial. As a result, the basic speech recognition 
unit set in our Chinese LVCSR system is an extended Initial/Final set with 27 Initials 
and 38 Finals, among which 6 so-called zero-Initials are added so that each Chinese 
syllable is composed of an extended-Initial and a Final. The paper, [8], showed that 
the adoption of zero-Initials can help improve the performance effectively and build 
the tri-XIF HMMs consistently. 

3   XIF-Based Acoustic Modeling 

3.1   Decision Tree Based and Data-Driven State Clustering 

In most of the state-of-the-art ASR systems, context-dependent acoustic modeling is 
commonly used, however, it is common that a quite large set of HMMs are built but a 
relatively small amount of training data is available for each HMM. In order to reduce 
the total number of parameters without significantly altering the models' ability to 
represent the different contextual effects, it is often to tie all of the central states 
across all models derived from a same mono-XIF. There are two popular dynamic 
clustering methods, the data-driven clustering method and the decision tree based 
clustering method, which actually are bottom-up and top-down, respectively [9]. 

However one limitation of the data-driven clustering procedure is that it does not 
deal with those tri-XIFs without examples seen in the training data. Although when 
building the intra-word tri-XIF systems, this problem can often be avoided by careful 
design of the training database but when building large vocabulary cross-word tri-XIF 
systems unseen tri-XIFs are unavoidable. As a matter of fact, the decision tree based 
clustering method can provide a similar quality of clustering but offer a solution to 
cover the unseen tri-XIFs [10, 11], which is commonly adopted in LVCSR systems. 
What’s more, decision tree based state clustering can be integrated closely with 
LVCSR modeling where minor modification is made for alphabet recognition. 
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3.2   State-Based Phonetic Mixture Tying 

Due to the computing limitation of embedded devices, mixture tying is often used to 
further reduce the complexity in ASR systems. In the mixture tying (MT) [12] method, 
a single set of Gaussian mixtures is shared by all HMMs while each state has a 
different composition of mixture weights. As a result, the overlapping mixture 
distributions can be modeled properly with less Gaussians. As a variant of mixture 
tying, phonetic mixture tying (PMT) can define a set of Gaussian components 
independently in which each phone and the triphone variants of the phone share a 
certain Gaussian set [13]. In both MT and PMT, underestimation is likely to happen 
since each state has a large number of mixture weight parameters to estimate, and a 
large number of mixture weights are extremely small in magnitude. In the paper, to 
address this issue, a state-based phonetic mixture tying (SDPMT) [14] is adopted to 
build a robust recognizer for alphabet recognition. The key idea is illustrated in Figure 
1. The SDPMT is performed based on the decision tree for a tri-XIF. The Gaussian 
mixtures from tied-states are pooled to become a Gaussian set and shared by these 
tied-states. In the figure, the second states of the triphones centered by the Initial, an, 
are presented by a decision tree and the leaf nodes stand for the tied-states. In SDPMT, 
the tied-states share a number of Gaussian mixtures, just encircled by the oval in the 
figure. The number of mixtures in a Gaussian set is determined by a threshold, which 
is usually a percentage of the total numbers of mixtures in all tied-states of a decision 
tree involved.  
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Fig. 1.  State-based phonetic mixture tying for Initial an. 

In SDPMT, due to sharing the overlapping Gaussian mixture distributions, the 
same amount of training samples is used to estimate the reduced number of mixtures, 
which leads to enhancement of model robustness. In addition, less time consumption 
is required during decoding which is of great benefit for embedded devices. 

3.3   Pronunciation Modeling for Alphabet Recognition 

It is well known that pronunciation modeling plays a significant role in non-native 
speech recognition. It is expected that it will also be helpful in the Chinese-accented 
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alphabet recognition. For example, letter c is pronounced as /si:/ in English, but often 
as either [s i] or [s uei] by some (or even many) Chinese people. In the paper, 
pronunciation modeling is used to derive or to predict Chinese-accented 
pronunciations for English letters from English pronunciations. A decision tree which 
predicts the mappings between the base form English phoneme and the surface form 
XIF obtained by the following procedures similar to [2] is adopted as a pronunciation 
modeling method:  

1. The base form transcription of English alphabet is obtained from a canonical 
lexicon with a single standard pronunciation for each English letter.  

2. The surface form XIF transcription is obtained from the output of continuous 
Chinese XIF-based recognizer, where the Viterbi search algorithm is applied with an 
unconstrained network. As a result, these non-native English letters are represented by 
Chinese XIFs in surface form transcription. In the surface form transcription, some 
pronunciation variants with less consistency are removed which is based on the 
assumption that if a phoneme is correctly recognized, it always appears more often 
than a phoneme that is erroneously recognized. 

3. The Chinese XIF-based transcriptions are used to train a decision tree, which 
maps the base form English pronunciation to the Chinese variants. The decision tree 
is then used to predict Chinese-accented variants from the English ones, which are 
added to the lexicon of the English alphabet ASR system. 

4   Experiments and Results 

4.1   Baseline 

The context-dependent HMMs were intra-word tri-XIFs built upon the training set. 
Each XIF was modeled by a 3-state, left-to-right, non-skip, and non-loop HMM 
except that the skip and the loop among the states were allowable for the silence 
model. The number of Gaussian mixture components for each state was 8. Each 
speech frame was represented by a 39-dimensional feature vector with 12 MFCCs, 
log energy, and their first and second order time derivatives. Cepstral Mean 
Normalization (CMN) [15] was performed. The covariance matrices for each model 
were diagonal. The training and the evaluation procedures were both conducted via 
HTK v3.2 [16]. 

Aiming at evaluating the effectiveness of the methods of interest, we only used a 
subset of XIFs to construct the acoustic model for alphabet recognition. The adopted 
subset of XIFs was the necessary ones for representing the alphabet in the base form 
lexicon, which consisted of 30 out of the 65 mono-XIF units as listed in Table 1. 
Initially the context-dependent tri-XHF HMMs were built based on the context-
independent mono-XIF ones, which resulted in. 57 tri-XIF HMMs and totally 171 
states. We refer to these tri-XIF HMMs as the baseline. Results for the baseline were 
evaluated by the 32-speaker test set and a letter correctness of 95.9% was achieved. 
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Table 1.  XIFs adopted in the base form lexicon for English alphabet recognition. 

Initial(18) Final(12) 
b, p, m, f, d, t, g, k, q, zh, ch, z, s, 

_a, _o, _e, _u, _v 
a, ai, ei, en, er, ou, i, i2, iao, iou, ua, 

uei 

4.2   Results for XIF-Based Acoustic Modeling 

In this section, experiments on state clustering, state-based phonetic mixture tying and 
pronunciation modeling were performed sequentially based on the baseline, and the 
overall results are listed in Figure 2. First we compared the decision tree based state 
clustering method with the data-driven state clustering method in Table 2. Results of 
the decision tree based state clustering method are listed in the left part while those of 
data-driven method in the right part. 

Table 2.  Results for the decision tree based vs. the data-driven clustering methods. (Two 
columns, Threshold, between the decision tree based and the data-driven methods are not 
comparable.) 

Decision tree based state clustering Data-driven state clustering 

Threshold States Letter 
Correctness Threshold  States Letter 

Correctness 
100.0 175 96.5% 0.18 153 96.7% 
250.0 161 96.8% 0.22 148 97.0% 
300.0 156 97.1% 0.26 140 97.2% 
350.0 155 97.1% 0.30 136 97.1% 

 
It can be seen from Table 2 that the threshold can be used to adjust the number of 

the states effectively. Both the total number of states decreases with the increase of 
Threshold. For the decision tree based state clustering method, the XIF HMMs can 
reach an optimal point at 350.0, with 11.4% states reduction; accordingly for the data-
driven method, 0.26 is the optimal threshold with 140 states in total. Furthermore, the 
tree-based and the data-driven methods, make a close match, 97.1% vs. 97.2%. 
Generally speaking, the data-driven state clustering is more appropriate for the small 
vocabulary tasks with sufficient training data. Thus, to some extent, it is more 
preferable for the data-driven method to be tailored to the current task. However the 
decision tree based clustering is more extensible which is able to cover unseen tri-
XIFs in the training data, and what is more, it is expected that decision tree based 
state clustering can be integrated with Chinese LVCSR in which the decision tree 
based state clustering method is also adopted, we chose decision tree as our state 
clustering method in the following experiments. As a result, the letter correctness is 
improved from 95.9% in baseline to 97.1%, which is denoted by the columns, CD and 
DTBST, respectively in Figure 2.  

With application of SDPMT preceded by decision tree based state clustering, the 
number of Gaussian mixtures among tri-XIF HMMs was reduced from 1,240 to 1,100 
without causing performance degradation. The result, 97.1% in letter correctness, 
corresponds to column SBPMT, in Figure 2. SBPMT achieved an equal accuracy in 
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comparison with decision tree based state clustering. It can be seen that 1) redundant 
Gaussian mixtures can be shared by tied-states at state level; 2) equally robust HMMs 
can be obtained with fewer Gaussian mixtures; 3) SDPMT results in no performance 
degradation for English alphabet recognition. 

 

Letter Correctness (%)
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Fig. 2.  Overall results for XIF-based acoustic modeling for alphabet recognition. CD stands 
for context-dependent modeling (baseline), DTBST stands for decision tree based state 
clustering, SBPMT stands for state-based phonetic mixture tying, and PM stands for 
pronunciation modeling. 

In our task, most of the letters were designed to have one pronunciation entry in the 
lexicon and only several letters were designed to have 2 pronunciation entries, which 
is based on the experience that too many pronunciations can lead to performance 
degradation [17]. In total, 36 pronunciation entries were contained in the alphabet 
lexicon. By combining XIF-based acoustic modeling with pronunciation modeling, a 
letter correctness of 97.2% was achieved at best, as listed in column PM, in Figure 2, 
that is to say, the pronunciation modeling can lead to a letter correctness increase of 
5.3% relatively for alphabet recognition. In a sense, the pronunciation modeling is 
modestly beneficial for alphabet recognition. 

4.3   Comparison with Phoneme-Based Acoustic Model 

In order to evaluate the effectiveness of the proposed method, we also built the 
acoustic model based on English phonemes to compare with the proposed Chinese 
XIF-based acoustic model. For simplicity, in the remaining part of this paper we will 
refer to the two models as the XIF-based modeling and the Phoneme-based modeling, 
respectively. For the Phoneme-based modeling, the exactly same training set and test 
set were utilized. The Phoneme-based modeling consisted of 27 English phonemes 
[15] for context-independent modeling. Additionally, similar measures were also 
taken to build the Phoneme-based model (triphone HMMs), i.e., context-dependent 
modeling, decision tree based state clustering, state-based phonetic mixture tying and 
pronunciation modeling. As a result, a letter correctness of 97.1% was achieved by 
Phoneme-based HMMs which was slightly lower than XIF-based HMMs with a letter 
correctness of 97.2%. It is shown that the XIF-based method outperforms the 
phoneme-based method with a letter correctness increase of 5.3% relatively.  
Moreover, detailed comparisons between the two methods for every test speaker are 
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listed in Figure 3. By analyzing the results, we found out XIF-based modeling could 
improve effectively for the test speakers with strong Chinese accent, namely, 
Chinglish speakers. In the test set, the speakers, No. 1, No. 3, No. 11, No. 12, etc., 
were the ones with much strong Chinese accent. Taking speaker No. 1 for example, 
who was a native Beijing teenager, the utterance for letter n sounded much more like 
Chinese pronunciation [_e eng] than English pronunciation [en], and k was 
pronounced as “ke” [k e] or “ki” [k i]. With respect to speakers with less Chinese 
accent, the English phoneme-based modeling showed better performance than the 
XIF-based modeling, which was consistent with the expectation.  
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Fig. 3.  Each speaker's letter correctness percentage for the XIF-based and the Phoneme-based 
modeling methods. 

4.4   Integration with Chinese LVCSR System 

To evaluate the effectiveness of Chinese LVCSR in combination with English 
alphabet modeling, A Chinese LVCSR model was built together with English 
alphabet. It is assumed that when a Chinese LVCSR system attempts to recognize the 
utterances containing English letters, the performance will deteriorate due to the 
increasing confusability introduced by English letters. Our goal here was to achieve 
good performance for continuous Chinese speech as well as English letters. In the 
experiment, exactly the same database as English alphabet modeling was used to train 
Chinese LVCSR acoustic model. A set of 65 XIFs was exploited as basic unit set. The 
identical 100 speakers were used as training set in which each speaker had 100 long 
sentences and 26 English letters. Accordingly the same group of 32 speakers was used 
for testing. In this experiment, two test sets, test1 and test2, were selected. In test1, 
each speaker had 100 utterances each of which consisted of one or two commands in 
Chinese; and a lexicon was composed of 200 commands for game interaction. In test2, 
besides the data in test1, each utterance was mixed with one or several English letters; 
likewise, another lexicon was composed of 200 identical commands and 36 
pronunciations for English letters. The results are presented in Table 3. 

From Table 3, it can be seen clearly that the performance is deteriorated due to the 
combination of English letters with Chinese syllables, dropping from 96.9% to 94.8% 
in syllable error rate, which lies in the fact that English letters are always confused 
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with some Chinese syllables. To a great extent, the result was consistent with the 
expectation that no great degradation was brought in Chinese LVCSR system by the 
integration with English alphabet. In other words, it is shown that our proposed 
methods for alphabet recognition can well collaborated with Chinese LCVSR system 
on the basis of a same XIF set. Among the errors, some confusion is inherent in XIF-
based acoustic modeling, such as ‘yi’ vs. ‘E’. However, some confusion, such as ‘er’ 
vs. ‘R’, can be discriminated by refined modeling. 

Table 3.  Evaluation with and without English letters via Chinese LVCSR system. 

  Syllable Error Rate    Model  
Test1 Test2 

Chinese LVCSR 96.9% 94.8% 

5   Conclusion 

In the paper, aiming at the Chinese-accented alphabet recognition, we propose to 
build the context-dependent tri-XIF HMMs, upon which the decision tree based state 
clustering is performed to refine the models. Subsequently, state-based phonetic 
mixture tying is adopted to further reduce the complexity while no performance 
degradation is introduced. The pronunciation modeling is performed as well to make 
it much suitable for Chinese-accented speech. Eventually, a letter correctness of 
97.2% was achieved on English alphabet. In contrast to traditional English phoneme-
based HMMs, our proposed method has achieved comparable accuracy for English 
alphabet recognition. Specifically, it is much effective for strong Chinese-accented 
alphabet recognition. Integrated with Chinese LVCSR system, it achieves the 
acceptable degradation on the utterances comprising Chinese words and English 
letters in comparison with those comprising Chinese words only. At present, to some 
extent, the alphabet has negative effect on overall performance in speech recognition, 
to which much effort should be made in the future. 
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