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ABSTRACT 

In this paper, we present an Equivalent-Class Based Maximum 
Mutual Information (ECB-MMI) learning method for our 
previously proposed Mixed Gaussian Continuous Probability 
Model (MGCPM). Similar to HMMs, the defined object 
function for MGCPM training considers the mutual information 
among different models so as to maximally separate the Speech 
Recognition Units (SRUs) in model space. Experimental result 
shows that for MGCPM the MMI training method can improve 
the recognition rate by 5% compared to the traditional training 
method MLE (Maximum Likelihood Estimation). Because the 
computation amount of MMI algorithm is very large, we 
propose an N-Best strategy to find the corresponding equivalent 
class (EC) in order to reduce complexity. Our experimental 
result shows that this criterion works very well. 

Keywords: Equivalent Class Based-MMI, Mixed Gaussian 
Continuous Probability Model, Speech Recognition Unit, MLE, 
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1. INTRODUCTION 

It is well known that Hidden Markov Models (HMMs)[1] are 
popular in recent speech recognition. They include continuous 
mixture density HMMs [2] with full covariance matrices or 
diagonal covariance matrices, semi-continuous HMMs, and 
VQ-based discrete HMMs [3].  

A continuous HMM (CHMM) is represented by the state 
transition probability matrix A , the observation probability 
density function matrix B  and the initial probability 
distribution vector π . In our research, we found that the state 
transition probability matrix in a HMM is not significant. This 
motivates us to propose a new model named MGCPM [4] to 
overcome the shortcomings inherent in the conventional HMM, 
one is the inaccurate modeling of state duration while another is 
the inaccurate assumption of the conditional independence of 
observations given the state sequence. The MGCPM eliminates 
the state transition matrix while using the mixed Gaussian 
densities to described the intra-state feature spaces. The state 
transition is controlled by a non-linear segmentation (NLS) 
algorithm in the initial training step and a modified Viterbi 
algorithm or a frame synchronous network search algorithm 
both in the iterative training steps and the recognition procedure. 
Compared to the Continuous Densities HMM, MGCPM 
achieves a fast recognition speed with only a little loss in 
recognition rate.   

Many algorithms are developed to estimate the HMM 
parameters, for example Maximum Likelihood Estimation 
(MLE) method, Maximum Mutual Information (MMI)[5][6]. The 
MMI method was firstly introduced by L.R. Bahl, but it is not 
very straightforward for MGCPM. When applied to MGCPM, 
the MMI training procedure should be modified.  

This paper begins with a review of Maximum Likelihood 
Estimation. In the third section, we propose an Equivalent-Class 
based MMI learning method for MGCPM, including the object 
function and formula deduction etc. Then the experiment results 
are reported in Section 4. We also give our conclusion 
according to this experiment. 

2. MLE 

Normally a speech recognition system has two primary parts: 
the acoustic model and the language model. Suppose the input 
of the acoustic model, or the utterance is A , and the output of 
the acoustic model which is also the input of the language 
model, or possible word strings, is W , the system’s task is to 
find the most likely work string 'W which satisfies the following 
equation 
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This equation is derived from the Bayesian rule. Because )(AP  
is a prior probability that is not a function of the string W , it 
dropped from the maximization. )|( WAP  is the conditional 
probability of the utterance on the specific word string given by 
the acoustic model while )(WP is the word string probability 
given by the language model. While the language model is 
obtained independently on the acoustic model. So the acoustic 
modeling process is aimed to specify the model that better 
describe the given training data. In order to get better 
performance in speech recognition process when using 
formulation (1), many techniques are presented in parameter 
estimation. MLE is just one of them. 

MLE (Maximum Likelihood Estimation) attempts to maximize 
the likelihood of generating the training data with the right 
model. Its object function can be expressed as follows: 
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where Z is the output feature vector set of a acoustic 
model, },...,2,1:{ JjzZ j == . A  denotes the corresponding 

acoustic model of these feature vector and θ  is the model 
parameter. 



 

In our MGCPM, we use the following probability density 
functions (pdfs) to describe the distribution of feature vector 

jz  
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Mean vector mu and covariance matrix mR make up of the 

parameter 
mθ  of the m th Gaussian distribution. mg  is the 

weight of the m th Gaussian distribution. 

In parameter estimation process, we make an assumption that 

jz obeys the mixed Gaussian distribution and the vectors in 

Z are independent on each other. Based on these, the object 

function (2) can be rewrote as 
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Taking the derivative of )(θh  with respect to parameter θ . 

When )(θh  reaches its extremum, the following equation will 

be satisfied  
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For simplicity, we define 
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From Equation (5) we obtain the iteration formula of mmm gRu ,,  
as follows 
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It is well known that if the true distribution of the data lies in the 
space of the assumed distribution and training data are sufficient, 
the pdfs parameterized by the ML estimates will converge to the 
true distribution of the data. 

Unfortunately, these conditions can hardly be satisfied in real 
speech recognition systems, so L.R. Bahl proposed the MMI 
training method for HMM, but it can’t be used for MGCPM 
training directly. In the following section, we will propose an 
equivalent-class based MMI learning method for MGCPM 
which is proved to be high efficient by experiment results. 

3. MMI FOR MGCPM 

During the training process using MLE, we only consider the 
object model and do not pay attention to the interference 
introduced by other models. As a result, the model parameter of 
our speech recognition unit (SRU) will overlap greatly in model 
space and decrease the model description ability. An alternative 
method to MLE is the MMI method. It attempts to maximize the 
discrimination between the correct model and the incorrect 
models. 

3.1. Object function 

During the MMI training process, it not only considers the 
model what the training data belongs to, but also takes into 
account the interactions among different models. The training 
process is to maximize the probability of the focused model 
given the acoustic observation sequence, and minimize the 
probability of other models. Models trained by this method can 
better describe the feature space. The object function of MMI 
can be stated as follows: 
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Using probability theory, we obtain the following equation 
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where 'A is the acoustic model corresponding to a SRU and 
θ is the model parameter which we have already mentioned in 
Section 2. The value of ))(( θAp  is a prior probability. In our 
experiment, we make a simplification that this value can be 
derived from the statistics of training corpus. 

3.2.  Parameter estimation 

If we assume the feature vectors in Z are independent, then the 
object function (10) can be rewritten as follows 
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when )|( θzp  reaches the maximum value, 

0)|((ln( =∇ θθ Zp  must be satisfied. Accordingly we obtain 

the following formula deduction procedure. 

1.formula deduction of mu  

Taking the deriative of ))(ln( θh  with respect to parameter θ , 
we will have  
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 can be represented by the following iterative equation. 

)16().(
1 1

∑ ∑
= =

∧
=

J

j

J

j
mjjdmjmd PzPu

Here { : 1,2,... }nA n N=  is the set of all possible acoustic model. 

In our speech recognition system, we choose Chinese syllables 
as our speech recognition units, and the number of units is 

397=N . 

2. Formula deduction of  
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According to above equation, we can obtain that  
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3.Formula deduction of mg  

Because mg must satisfy that ∑
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1, so this is a conditional 

extremum. By applying Lagrange operator, we will have the 
following expression: 
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Take the deriative of above expression with respect to parameter 
λ,mg , we will have 
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we get that  
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hence , finally  
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3.3. Implement of the algorithm 

Using Equations (16), (18), and (22), we can get the iterative 
training process for MMI algorithm. It is something like the 
gradient descent method. Following are the outline of MMI 
training process. 

Step1: Training the initial models using MLE algorithm; 

Step2: Calculate the prior probability )(θp according to 
training corpus; 

Step3: Training models using Equations (16), (18), and (22); 

Step4: If not convergent, go to Step3 and continue the iterative 
process else exit this procedure. 

Many factors can influence the final mode parameters obtained 
via the MMI algorithm, for example, the quality of our training 
sample, the algorithm complexity, the iteration control strategy 
and the update method for model parameter. Among all these 
factors, the algorithm complexity is the most important thing we 
should pay attention to. In the MMI training process, it involves 
the procedure that requires the computation of the likelihood of 

the acoustic observation sequence given all possible models; 
this is easily done for small-vocabulary systems, but not as 
easily done for large-vocabulary systems. Though it is a very 
useful training algorithm, it can hardly be applied into real 
speech recognition system without the decrease of computation 
amount. 

Based on this consideration, we applied the equivalent-class into 
the training process to reduce computation amount. 

3.4. Using equivalent-class 

In fact, the number of the speech recognition units that may 
interfere the focused training unit is not the same large as, or 
even much smaller than, the total number of units. Hence in the 
definition of the MMI training object function there is no need 
to consider all the units, but only those similar units. For each 
unit to be trained, there is one corresponding equivalent class 
(EC), i.e., a confusion set, which is the only part we consider in 
the ECB-MMI method. An N-Best strategy is used to find the 
EC for each unit, according to the model distance matrix or the 
recognition matrix. Experimental result shows that these two 
criteria both work well. 

For the Gaussian distribution, if we define the overlap area of 
two single variance Gaussian as follows 
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then the distance between the Gaussian distribution with 
diagonal covariance matrix can be formulated as 
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By calculating the distance between each SRU, we can obtain 
the model distance matrix. 

Unfortunately, even though this method is very accurate, the 
model-similarity computation amount is also something 
undesirable for us. So in our experiment, we use another method 
to find the EC for each unit. 

The number of SRUs is often greatly larger than the number of 
SRUs in a confusion set. By analyzing the recognition result, we 
find an import phenomenon that some confusion SRUs take 
great part of error samples in total samples of all the confusion 
SRUs. We can use these SRUs to make up of our equivalent 
class. The following table can illustrate this point.  

Table1 is obtained from our experiment where we choose 
syllable /shang/ as an example. The sample number of /shang/ 
we used in experiment is 434; we find the number of the error 
recognized samples is 130. In these samples, the most 
frequently occurred error sample is /zhang/ which almost takes 
up to 20% error samples in total samples. 

Table1 Error sample distribution of /shang/ 
Unit Number Unit Number Unit Number 

zhang 27 sha 26 Chang 20 

Sheng 12 sa 5 shao 5 

shi 4 dang 4 xiao 3 

jia 3 zheng 2 ba 2 
Dao 1 san 1 she 1 



 

We also find that the number of samples that greatly influence 
the recognition result is much small. In the above table, only 
about 8 samples that we should pay attention to. Based on this 
phenomenon, we can use another N-Best strategy to find the 
equivalent class of each unit, that is the use of recognition 
matrix. We only need to count the number of error samples by 
analyzing the recognition result and sort the number to choose 
the most influential SRUs. The value of N can vary according to 
a specific purpose (for example, computation complexity or 
model description ability. Obviously, the more large the N is, 
the more large the computation complexity will be, and the 
better the model description ability would be). We choose 10 in 
our experiment.  

All the N-best candidates will make up the recognition matrix in 
which one element stands for one unit in EC. It’s obvious that 
the computation amount will reduce greatly by applying this 
matrix to the MMI training process. For example, if we choose 
N=15,then the computation amount in likelihood computation 
will decrease by (397-15)/397=96%. It brings out approximate 
90% overall computation amount reduction. 

4. EXPERIMENTAL RESULTS  

The experiment is made across a continuous Mandarin speech 
database recorded by 38 males. Each speaker uttered one set of 
sentences in a continuous mode. The database contains 250,657 
Mandarin syllables totally. We used 30 males’ utterances to 
train the MGCPMs. The remaining part is used for testing. All 
the recorded materials were obtained in an officelike 
environment through a close-talk noise-canceling microphone. 
They are digitized at a sampling frequency of 16KHZ. A 32ms 
Hamming window is performed on each frame of the speech. 
And then the cepstral coefficients derived from LPC of order 16 
are extracted for every 16ms.The acoustic model used for 
experiment is MGCPM with 6 states and 16 mixtures each state. 

Table 2 gives the experiment results using MMI, ECB-MMI, 
and compares it with the results using MLE. 

Table 2. Comparison of three algorithms 
Method 1 2 3 4 5 

MLE 72.01 78.30 81.66 83.91 86.57 
MMI 76.77 83.15 86.68 89.01 91.74 

ECB-MMI 75.32 81.97 85.55 87.89 90.68 

Table 2 shows the hit rates of top 5 candidates. The results 
indicate that the performance has been raised by about 5% when 
using the MMI method and raised by 3~4 percent when using 
ECB-MMI, compared with the traditional MLE. The ECB-MMI 
has a great deal of reduction in computation complexity, which 
is the most preferable aspect of this learning method. 

The result shows that the enhancement of hit rates when using 
MMI indeed owe to the consideration of other SRUs that may 
interfere the training process of the focused SRU. And the more 
economical algorithm ECB-MMI can lead to 90% reduction in 
computation amount but only with about 2% recognition rate 
reduction compared to MMI for MGCPM. 

We have already pointed out that MLE is not so desirable is 
partly because of the insufficient training data. This is proved by 

our experiment. We design an experiment where the model 
mixture is 8 for each state. It can be regarded as the increase of 
training data. We found that MMI algorithm does not have too 
much advantage compared with MLE algorithm because the 
increase of training data. In this situation, the hit rate of MMI 
algorithm only increased about 1%. But if we do not have 
sufficient training data, the MMI can overcome this 
shortcoming by using the mutual information. That is to say, the 
MMI algorithm is a good learning method for us to choose. 

5. CONCLUSIONS 

This paper has reported an effective equivalent-class based 
learning method for MGCPM and introduced the N-best 
strategy that finds the confusion set, i.e., equivalent-class (EC). 
The N-best strategy based on a recognition matrix is shown to 
be very effective. 

Experimental results show that ECB-MMI gives considerable 
reductions in recognition error rate for speech recognition unit 
and greatly reduces the computation amount. 

In the experiment, we find that the recognition rates of some 
SRUs are not improved as much as we expected. This needs us 
to make an overall analysis on the training procedure. Maybe it 
is partly due to some bad samples of the training data; maybe 
the iterative procedure of MMI should be modified; or maybe 
the N-Best strategy to find the EC is not so good. All these need 
us to do further research in the future. 
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