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ABSTRACT
In this paper a new statistic model named Center-Distance Continuous Probability
Model (CDCPM) is proposed for speech recognition, which is based on
Center-Distance Normal (CDN) distribution. In a CDCPM, state parameters for each
mixture include a mean vector and a CDN distribution parameter. Unlike the
continuous Hidden Markov Model (CHMM), it preserves only the observation
probability density function (PDF) matrix B, in which PDFs are always
mono-dimensional ones and the scoring scheme is based on Embedded Multi-Model
(EMM) scheme. The experimental results across a giant Chinese speech database and
a real-world continuous-manner 2000 phrase system show that this model is a
powerful one, which extremely reduces the space and time complexities, preserving
good performance.

1. INTRODUCTION

Compared to the traditional HMMs [1-5], the center-distance continuous
probability model (CDCPM) preserves only the B-matrix and the observation
probability density function (PDF) is replaced by a one-dimensional (center-distance)
PDF. This replacement will reduce the time and space complexities to a great extent,
preserving good performance.

This paper will focus on the CDCPM and the forms of scoring functions of
observation feature vectors. Scoring functions based on mixed CDN density and
Nearest-neighbor (NN) rule are compared, the later is referred to as an Embedded
Multi-Model (EMM) scheme and performs better.

2. FEATURE EXTRACTION

In our experiments, speech signal is digitized at 16KHz sampling rate with 8KHz
cut-off , emphasized using a simple 1st-order digital filter with transfer function
H z z( ) = − −1 10.95 . The pre-emphasized speech is then blocked into frames of 32 msec
in length spaced every 16 msec. Having been weighted by the Hamming Window,
each frame is represented by D-order (where D=16) LPC cepstral coefficients [6] and
denoted by a vector

! …c( ) ( ( ), ( ), , ( ))t c t c t c tD= 1 2 . Regression analysis [3] is applied
to each time function of the cepstral coefficients over several adjacent frames every 16
msec. The result is denoted by another vector

! …r( ) ( ( ), ( ), , ( ))t r t r t r tD= 1 2 .For



convenience, define the weighted Euclidean distance measure between two vectors!
x1 and

!
x2 as:
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where
!
x ’s can be cepstral vectors or regression vectors and

! …w = ( , , , )1 2w w wD is
the weight vector. In our experiments, the d’th component of the weight vector is
chosen to be the reciprocal of the statistical variance of d’th cepstral component so
that each component contributes statistical equally in distance measure. Actually, this
kind of weighted Euclidean distance measure is a Mahalanobis distance measure
where the covariance matrix is simplified to a diagonal matrix.

Now the utterance can be represented by time functions of cepstral vector sequence

{ }!
c( )t and the regression vector sequence { }!

r( )t . There are two ways to combine

the two kinds of features. The first method is to combine them into one large
D*2-dimensional vector as

! ! !
v c r( ) ( ( ), ( ))t t t= α where α is a balance coefficient.

And the distance measure between 1
!
v and 2

!
v in the D*2-dimensional Euclidean

space is defined as
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The second method is to use the cepstral vector and its corresponding regression
vector separately, in both clustering and scoring procedures. Both cepstral vectors and
their corresponding regression vectors are described by their own probability density

functions (PDFs), see Section 3 for details. Let n
cb t( ) ( ( ))
!
c be the PDF of cepstral

vectors in state n, and n
rb t( ) ( ( ))
!
r the PDF of regression vectors in state n, the score of

an observation vector
!
v( )t in state n is then computed by

n n
c

n
rb t b t b t( ( )) ( ( )) ( ( ))( ) ( )! ! !

v c r= ∗ , (3)
where α is of no use. The later method has been proved better [8-9].

3. THE CDCPM

3.1 The Center-Distance Normal Distribution
Let p x x( ; , )x µ σ be the PDF of a normal variable ξ with mean value x

µ and

standard deviation xσ . Define η ξ µ= − x , we have the PDF of η as

p y y yx
x

x( ; ) exp( / ),σ
πσ

σ= − ≥
2

2
2 02 2 . (4)

By calculating the mean value of this distribution, we can change it to another form:

p y yy
y

y( ; ) exp( / )µ
πµ πµ= −

2 2 2
, (5)

where yµ is the mean value of η . In fact, η is the distance between a normal variable

ξ and its mean value x
µ , thus the derived distribution is referred to as

Center-Distance Normal (CDN) distribution.



In D-dimensional case, denote the (weighted) Euclidean distance between a

D-dimensional normal vector
!

ξ and its mean value vector x

!
µ by another random

variable η. Assume η is a CDN variable, then its CDN PDF is
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Strictly speaking, p y( ; , )
! !
x xµ µ is the PDF of y( , )

! !
ξ µ x instead of that of

!
ξ , it is just

for convenience and comparison. The distribution parameters x

!
µ and yµ in Eq. (6)

can be estimated easily.

3.2 The Center-Distance Continuous Probability Model
A left-to-right CDCPM is similar to a left-to-right HMM except that the CDCPM

ignores A matrix, and is based on CDN distribution. A mixture density CDCPM can
be described by the following parameters: N, the number of states per model; M, the
number of mixtures per state; D, the number of dimensions of the feature vector;

xnm xd
nm!

µ µ= ( )( )
, the mean vector of the m’th mixture component in n’th state; ynmµ ,

the mean center-distance of the m’th mixture component in n’th state; and nmg , the

mixture gain of m’th mixture component in n’th state. Here 1≤n≤N, 1≤m≤M, 1≤d≤D,
and the observation PDF has the similar form, which is called a mixed CDN density.

3.3 The Scoring Scheme
Given an observation (feature vector) sequence O = ( , ), ,1 2

! ! !
#o o oT , where to

!
is a

cepstral vector or a combined feature vector, the matching score of the sequence with

the model { }Λ = ≤ ≤xn yn nb n N
! !µ µ, , ( )x 1 is calculated as follows:
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Similarly, mixed Gussian densities (MGD) [2], tied MGD [10], or other forms [11]
can be used as observation PDF or scoring function. The question is how to determine
the segmentation of the observation sequence, i.e., how to determine which state a
feature vector belongs to, see Section 3.5 for more details.

Mixed CDN densities have the following equations for cepstral and regression
representations, the Bayesian learning method [12] can be employed for a CDCPM to
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where 1≤n≤N, 1≤m≤M, 1≤d≤D and n
cb( ) ( )
!
c and n

rb( ) ( )
!
r are the PDFs of cepstral and

regression features in state n respectively. The scoring function for vector
!
v is

defined as in Eq. (3).
In this paper, we propose another form based on Nearest-Neighbor rule:
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3.4 Training the CDCPM
Once N, M, and D have been determined, the training procedure is simple: 1) Each

observation feature sequence O from the training set is segmented into N segments
(states) using some segmentation method such as the Non-Linear Segmentation (NLS)
method [13]. 2) For segment n, vectors of this segment from each observation
sequence are collected together and then grouped into M classes using some clustering
algorithm such as LBG algorithm [14]. 3) Estimate xnm

!
µ and ynmµ for each mixture

(class) of the specified segment n.

3.5 The State Transition Rule
For an isolated system, the given observation sequence is first segmented before it is

scored. The matching score with a CDCPM is calculated using Eq. (7). This scoring
strategy is useful and proved efficient [8, 15].

In a continuous recognition system multi-state left-to-right CDCPMs can be
adopted for meaningful speech recognition units, and mono-state CDCPMs for
SILENCE or GARBAGE models. The frame synchronization algorithm [16] and its
modified versions can be adopted to determine the state transition sequence in
recognizing procedure.

4. DATABASE DESCRIPTION

The speech database used to train and test here is a giant real-world Chinese
database [17-18] consisting of 25GB speech data about 230 hours’ utterances.

5. EXPERIMENTAL RESULTS

Experiments across three different databases have shown that CDCPMs are good
models [9]. In this paper, totally 46 experiments are done across the above database,
only one group is given due to space considerations, but all experimental results
support the conclusions to be given below.

5.1 Comparison on Forms of Scoring Functions
This group of experiments are designed to test which form of scoring function is

better. See Table 1. The SR units used here are Chinese finals, and the features are
cepstral coefficients. Two kinds of scoring functions are compared, one is based on
mixed CDN densities (MCDND) using Eq. (8) and another one is NN-based, named
Embedded Multi-Model Scheme (EMM), using Eq. (9).

In our experiments, the utterances by the first 20 males are used as the training set
while those by the second 20 males as the testing set. Listed in Table 1 are the average
rates over training and testing sets.

5.2 Experiments on a 2000-phrase Real-world System
A 2000-phrase continuous-manner speech recognition system has been established

based on CDCPMs, the vocabulary consists of 2000 Chinese phrases of 3 to 5
syllables. Also, the constrained frame synchronization algorithm is applied to
recognizing procedure. In Table 2, recognition rates for training and testing sets are



listed. Further research is in progress to enlarge the training data amount, data will be
taken from the above giant speech database.

6. SUMMARY

In this paper a new model named CDCPM is proposed. Through the experiments,
we have the following conclusions: (1) A CDCPM is a new simplified version of a
CHMM, the observation probabilities in matrix B is simplified to be a
mono-dimensional distance-based PDFs. The information that is contained in the D×D
covariance matrix of a CHMM is partly included in the weight vector of the distance
measure of the CDCPM. A simple rule instead of the transition matrix A is adopted to
make transitions, and the rule is based on observation probabilities. Not only the time
and space complexities are much smaller than those of the traditional CHMM, but also
the performance is not reduced. (2) The EMM scoring functions are better than mixed
CDN density scoring functions. Simply speaking, for N frames of unknown utterance,

a CDCPM based on EMM can be regarded as a somewhat mixture of M N

mono-mixture CDCPMs, and the resulted matching score is the maximum of the
unknown utterance among these mono-mixture CDCPMs. But actually this is more
complicated. It is an embedded multi-model scheme so we name it an EMM scheme.
The estimation of EMM scoring function parameters is much easier, some simple
clustering algorithm is enough, but the performance is better.
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Table 1. Comparison on forms of scoring functions

Top n 1 2 3 4 5 6 7 8 9 10 12 18

EMM 78.2 91.5 95.5 97.5 98.5 99.1 99.4 99.6 99.7 99.8 99.9 n/a

MCDND 70.2 86.2 91.6 94.5 96.2 97.5 98.2 98.8 99.2 99.4 n/a 99.9

Table 2. Performance of a 2000-phrase real-world system

Training Set 1st candidate Testing Set 1st candidate
M00 99.65% M10 97.80%
M01 99.90% M11 98.00%
M02 99.90% M20 95.40%
M03 99.95% M21 98.40%


