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ABSTRACT

In this paper we present a novel method to incorporate temporal correlation into a speech recognition system
based on HMM. An obvious way to incorporate temporal correlation is to condition the probability of the current
observation on the current state as well as on the previous observation and the previous state. But use this
method directly must lead to unreliable parameter estimates for the number of parameters to be estimated may
increase too excessively to limited train data. In this paper, we approximate the joint conditional PD by
non-linear estimation method. The HMM incorporated temporal correlation by non-linear estimation method,
which we called it FC HMM does not need any additional parameters and it only brings a little additional
computing quantity. The results in the experiment show that the top 1 recognition rate of FC HMM has been
raised by 6 percent compared to the traditional HMM method.

1. INTRODUCTION

Hidden Markov modeling (HMM) techniques have been used successfully for speech recognition in the last ten
years due to their ease of implementation and modeling flexibility. The success or failure of a HMM system
relies on how well the models can characterize the nature of real speech. The underlying assumption in this
scheme is that speech is quasi-stationary and these stationary parts can be represented by a single state of a
HMM. In the traditional HMM algorithms the probability of duration of a state decreases exponentially with
time which is not appropriate for representing the temporal structure of speech. With this in mind, a number of
attempts have been made to incorporate some additional knowledge into the traditional HMM scheme [1]-[2].
Typical methods of them are incorporating duration information, the inclusion of higher-order feature sets and
the use of correlation among neighboring outputs, etc.

Various approaches have been tried to take account of frame correlation for more realistic modeling.
M.Ostendorf et al. [3] propose Stochastic Segment Model, which consists of 1) a time warping of the
variable–length segment X into a fixed–length segment Y, and 2) a joint density function of the parameters of the
resample segment Y (Gaussian density). They think the segment model represents spectral/temporal structure
over the entire phoneme. Similarly, V.Digalakis et al. [4] propose Dynamical System Model. All the two methods
tries to directly express speech feature trajectories. While they seem to be successful in extracting dynamic cues
for speech recognition under a suitable trajectory assumption, they are not based on widely available HMM
technology.

In the case of continuous HMM’s, a Gaussian probability density function (PDF) assumption is made between
adjacent feature vectors in C.J.Wellekens[5] . In P.Kenny[6], a linear prediction technique is used to
parameterize frame correlation.

Paliwal [7] incorporated temporal correlation into discrete HMM’s by conditioning the probability of the current
observation on the current state as well as on the previous observation. With this approach, an output probability
distribution (PD) is constructed for each possible pair of state and observation symbols. In their model,
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parameters in this model to be estimated may increase too excessively to get reliable estimation for the output
PD’s. S.Takahashi [8][9] propose a bigram-constrained (BC) HMM which has solved this problem. The
probability of the current observation in BC HMM depends on the current state as well as on the previous
observation too. But a BC HMM is obtained by combining a VQ-code bigram and the traditional HMM. So the
number of parameters to be estimated in BC HMM is less than the number of the full parameterization method
proposed by Paliwal. A remarkable point of BC HMM is that it has provided a method to combine the joint
conditional PD by two separate conditional PD. N.S.Kim [10] propose an algorithm based on Extended
Logarithmic Pool which can estimate the joint conditional PD more precisely.



2. MODELING FRAME CORRELATION

In traditional HMM (we only discuss first order left-to-right Markov model), we think the probability of the
current observation only depends on the current state, while it doesn’t depend on the previous state and the
previous observation. The topology of traditional HMM is shown in figure 1(a). In this model the probability of
the observation vector

tY given that the current state is
tq is represented as ),|( λtt qYP which is

characterized by )( tq Yb
t

.

In BC HMM proposed by S.Takahashi think the probability of the current observation not only depends on the
current state but also depends on the previous observation which is shown in figure 1(b). It means that the
probability of the observation vector

tY given that the current state is
tq is represented as ),,|( 1 λttt qYYP −

which is characterized by )(
1 tYq Yb

tt −
. To actualize the estimation of parameters of the model and the reliability of

parameters estimation, BC HMM only need to characterize )|( 1−tt YYP and )( tq Yb
t

. Then )(
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computed by combining them. At last )( tq Yb
t

is replaced by )(
1 tYq Yb

tt −
which is used for speech recognition. So

BC HMM can avoid the problem caused by the full parameterization of Paliwal.
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However, the topology shown in figure 2 seems can reflect frame correlation more precisely which means that
the probability of the current observation not only depends on the current state but also depends on the previous
state and the previous observation. Then the probability of the observation vector

tY given that the current state

is
tq is represented as ),,,|( 11 λtttt qqYYP −−

which is characterized by )(
11 tqYq Yb

ttt −−
(

1−tq is the state in 1−t ).

The same as the model of Paliwal that using limited train data to full parameterize this model is nearly
impossible. So we need to find an approximate arithmetic to compute )(

11 tqYq Yb
ttt −−

.

Further, we can adopt the first-order forward and backward frame correlation model shown in figure 3. Then the
probability of the observation vector

tY given that the current state is
tq is represented as
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Figure 2
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Now we discuss how to estimate ),,,|( 11 λ−− tttt qqYYp using non-linear formula.
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Further, we approximate ),|,( 11 λttt qqYp −−
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Then, we use a non-linear estimation formula to compute the right term of the above formula, i.e.:
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At last, we obtain the non-linear estimation formula of ),,,|( 11 λ−− tttt qqYYp :
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3. FRAME CORRELATION (FC) HMM

In this section, we use the concept of non-linear estimation to incorporate the correlation of neighboring frames
into the traditional HMM. For simplicity, we only take the case of first-order forward frame correlation, which
means that the current observation symbol relates only with the observation and the state on the immediate
previous frame as figure 2 shows.

FC HMM ),,,,( FCBAN πλ = which incorporate frame correlation can be defined as follows:

1) N, the number of states in the model;

2) }{ iππ = , where NiiqPi ≤≤== 1],[ 1π is the initial probability of the model being in state i , and they
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4) )(ObB i= is the probability density function (pdf) for the observation O given that the state is i .

In our system we adopt a state observation density, )(Obi
, of the form, ∑
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i.e., a continuous mixture density where O is the observation vector (e.g., cepstral coefficient vector resulting
from the LPC analysis),

mic is the mixture weight for the mth component in state i , miµ is the mean vector

for mixture m in state i , and miU is the covariance matrix for mixture m in state i .

5) The frame correlation PD， )},,,({ 11 tttt qqYYfFC −−= , in which:

We approximate ),,,( 11 tttt qqYYf −− by a non-linear estimation formula ))(),(( 1 tqtj YbYbh
t−

.

In FC HMM, ]|[ 21 λTOOOP ! can be computed as follows:
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While using the forward-backward formula to reestimate parameters, )( jtα and )( jtβ are modified as

follows:
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Considering the principle that using mixture Gaussian density can approach any PD, we think that the
reestimated matrix B characterize the probability density function incorporated frame correlation, i.e.

),,,|( 11 λ−− tttt qqYYp .

4. COMPLEXITYANZLYZING

In this section, we analyze the computing complexity and memory complexity of FC HMM incorporated frame
correlation by non-linear estimation. Obviously, the model exploits the principle of that using mixture Gaussian
density can approach any PD, so ),,,|( 11

* λtttt qqYYp −− can be characterized by the weighted sum of M normal

distribution. As a result, the model does not bring any memory complexity.

Whenever the training of the model or the recognizing of the model, FC HMM only need to compute
),,,( 11 tttt qqYYf −− additionally. While the non-linear estimation formula ))(),(( 1 tqtj YbYbh

t−
is used to

approximate ),,,( 11 tttt qqYYf −− , only very limited addition and multiplication is added so FC HMM only needs a

little more computing complexity than the traditional HMM.

In the model proposed by Paliwal the number of the parameters of B matrix is up to NM 2 which is M
times than that of the traditional HMM. BC HMM needs to compute )|( 1−tt YYp in the training of the model so

it needs to estimate TM 2 parameters additionally. In addition, when recognizing BC HMM needs to compute
)|( 1−tt YYp additionally and especially it needs adjusting the weights of mixture Gaussian density so the

computing complexity of speech recognizing is augmented greatly.

5. THE EXPERIMENT RESULT

5.1. Speech Database and Features

The speech database used in experiment is “863 assessment” male speech database. The database consists of
1560 sentences which is parted to three groups as A, B and C. The number of sentences of each group is nearly
equal. 38 male each utters one part of sentences. The entire database is parted to the training set, the testing set 1
and the testing set 2. The Testing-Set 1 is the utterance of untrained-speaker. The Testing-Set 2 is the
untrained-utterance of trained-speaker.

In experiment, we adopt a five state first order left-to-right Markov model. The output probability of
observations in each state is characterized by 5-mixture Gaussian density. 16-dimension cepstral coefficients
derived by LPC analysis are used as features of each frame.

5.2. The effect of using non-linear estimation formula in Viterbi-decoding phase

At first, we use the non-linear estimation formula to incorporate frame correlation in Viterbi-decoding and we
think which can take advantage of frame correlation to adjust the decoding path and the probability of the path.
The recognition result is shown in table 1, from which we can find that the top 1 recognition rate of
HMM+FC-Viterbi is 2 percent higher than that of HMM (Viterbi). Moreover, figure 4 shows the
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syllables and the vertical axis represents the percentage of each ranking. From figure 4, we can see that the



non-linear estimation formula of frame correlation is helpful to correct recognition of syllables.

Model Recognition Set Top 1 Top 2 Top 5 Top 10

Training-Set 59.93 76.29 90.12 95.05

Testing-Set 1 32.50 48.29 70.05 82.98

HMM

+

Viterbi Testing-Set 2 41.22 58.96 80.47 89.88

Training-Set 62.66 78.42 91.86 95.83

Testing-Set 1 33.69 48.91 70.08 83.72

HMM

+FC-Vit
erbi

Testing-Set 2 43.90 61.65 82.38 91.13

Table 1: The recognition rate when using non-linear estimation formula in Viterbi-decoding
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5.3. Comparison of FC HMM and THMM

The recognition rate of FC HMM is shown in Table 2, and also is that of THMM so we can compare them
expediently. From which we can see that whether in Training-Set or Testing-Set recognition effect of FC HMM
are both better than that of THMM. To Training-Set, the Top1 recognition rate of FC HMM is 6 percent higher
than that of THMM. To Testing-Set 2, i.e. testing utterances of trained-speaker, FC HMM is 4 percent higher
than THMM. To Testing-Set 1, i.e. utterances of untrained-speaker, FC HMM is 3 percent higher than THMM.

Comparing to BC HMM reported by S.Takahashi[9]，FC HMM which characterizes frame correlation by using
non-linear estimation formula contributes a little higher performance than BC HMM. For FC HMM does not
bring any more memory complexity than THMM and it just brings a little more additional computing quantity
than THMM so we can say FC HMM is an efficient method to model frame correlation in HMM.

Model Recognition Set Top 1 Top 2 Top 5 Top 10

Train-Set 59.93 76.29 90.12 95.05

Test-Set 1 32.50 48.29 70.05 82.98HMM

Test-Set 2 41.22 58.96 80.47 89.88

Train-Set 66.01 81.10 92.70 96.59

Test-Set 1 35.78 51.53 72.02 84.42FC-

HMM Test-Set 2 45.63 63.50 82.80 91.23

Table 2: The recognition rate of FC HMM



6. Conclusion

In this paper we present a novel method to incorporate temporal correlation into a speech recognition system
based on traditional hidden Markov models (HMM’s). At first, we use the joint conditional probability to
represent frame correlation. Then, we use a non-linear probability estimation formula to characterize the
correlation of adjacent frames. The methods reported before bring either a large increase of the model parameters
or a lot of additional computing quantity. The FC HMM reported in this paper does not bring any more memory
complexity and it just brings a little more additional computing quantity so we can say FC HMM is an efficient
method to model frame correlation in HMM. Another advantage of the method is that it can be easily
incorporated into HMM which we have already had. How to more precisely non-linear estimate the first-order
forward frame correlation and how to use the method in high-order forward and backward frame correlation is
needed to furthermore researching.
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