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ABSTRACT 

In this paper, we propose a state-dependent tied mixture (SDTM) 
models with variable codebook size to improve the model 
robustness for accented phonetic variations while maintaining 
model discriminative ability. State tying and mixture tying are 
combined to generate SDTM models. Compared to a pure mixture 
tying system, the SDTM model uses state tying to reserve the state 
identity; compared to the sole state tying system, such model uses a 
small set of parameters to discard the overlapping mixture 
distributions for robust model estimation. The codebook size of 
SDTM model is varied according to the confusion probability of 
states. The more confusable a state is, the larger its codebook size 
gets for a higher degree of model resolution. The codebook size is 
governed by state level variation probability of accented phonetic 
confusions which can be automatically extracted by frame-to-state 
alignment based on the local model mismatch. The effectiveness of 
this approach is evaluated on Mandarin accented speech. Our 
method yields a significant 2.1%, 9.5% and 3.5% absolute word 
error rate reduction compared with state tying, mixture tying and 
state-based phonetic tied mixtures, respectively.  

Index Terms— State-dependent tied mixture models, 
variable codebook size

1. INTRODUCTION 

Continuous-density hidden Markov model (CDHMM) triphones 
have been widely used in most state-of-the-art automatic speech 
recognition systems for robust model generation [1, 2]. With 
sufficient parameters, triphone models have strong ability to cover 
many substitution and insertion errors [3].  However, triphone 
models are independent from each other and have their own 
mixture distributions, many of which have overlapping 
distributions and lead to high model complexity with thousands of 
states and thousands upon thousands Gaussian distributions. 
Estimation of such a large amount of parameters requires a lot 
more training data for a reliable estimation [2, 4]. In addition, with 
the increased acoustic and phonetic variability as well as 
coarticulations in accented speech, mixture distributions tend to be 
inadequate for covering the high degree of acoustic variations 
within phonetic units.  

In this situation, state tying and mixture tying approaches can 
be adopted at different levels to reduce the redundant parameters 
and provides a good balance between recognition accuracy and 
training data availability [1, 2, 4]. State tying addresses the conflict 
between model accuracy and available training data [4]. Different 
triphone models are tied according to their acoustic similarity. 
Similar triphones are grouped when they are poorly trained or 
when they are acoustically close to each other, and share a 
common set of parameters. Data-driven method and decision tree 
based state tying approach [2, 5] are commonly used to generate 
generalized-triphone models and tied-state triphone models. 
Another method of complexity reduction is mixture tying in which 
a universal codebook of Gaussian distributions is shared by all 
HMM states while each state has different mixture weights. It aims 
at keeping the model accuracy by using a large number of Gaussian 
components with appropriate model complexity. Tied-mixture 
(TM) models and phonetic tied-mixture (PTM) model share 
parameters in the acoustic space, and are commonly used in 
mixture tying system [6]. In the PTM model, the whole set of 
Gaussian distributions in the acoustic space is classed into different 
independent sets consisted of Gaussian components for phone-
dependent HMM states. 

State tying and mixture tying address the fundamental 
conflict between the model complexity and robustness with a 
limited amount of training data, challenges still remain in these 
approaches, especially for accented speech recognition. State tying 
forces certain states to be identical which causes the acoustic 
parameters corresponding to tied states to be invariably 
overlapped, and seriously degrades the model discriminative 
ability to represent the high degree of phonetic confusions in 
accented speech. In conventional TM and PTM triphone models, 
all Gaussian distributions in different states or phone-dependent 
states are covered by a single codebook with large size, under-
training can be a severe problem since each state has a large 
number of mixture weight parameters to estimate, and a large 
number of mixture weights are small in magnitude [7]. Therefore, 
the efficiency of the mixture distributions is low and lacks enough 
discriminative ability to model the rich phonetic variations in 
accented speech. Moreover, for Gaussian sharing approach, only 
the shared Gaussians can be estimated efficiently, whereas the way 
the parameters are tied must be fixed beforehand [8].  

In this paper, we propose to combine state tying with mixture 
tying to generate state-dependent tied-mixture models for an 
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efficient complexity reduction of triphone models. Compared to a 
pure mixture tying system, the SDTM model uses state tying to 
reserve the state identity; compared to the sole state tying system, 
such model uses a small set of parameters to discard the 
overlapping mixture distributions for robust model estimation. 
Unlike conventional TM or PTM models where all HMM states or 
phone-dependent HMM states share a single codebook, our SDTM 
models use an independent codebook for each separate HMM tied 
state. Unlike commonly used decision tree based state tying 
method where each individual tied state has its own mixture 
distribution, our SDTM models allow different tied states 
belonging to a same decision tree share a same codebook. 
Furthermore, we generate variable codebook size based on the 
state level variation probability (SLVP) learned from data to 
improve the discriminative power of our model to deal with the 
high degree of phonetic confusions in accented speech. The 
variable-size codebook includes mixture distributions of its own 
model as well as those borrowed from the relevant triphone models 
governed by SLVP. The more confusable a model is, the larger 
codebook size it gets. The SDTM model with variable codebook 
size can be regarded as an intermediate level description between 
the CDHMM tied-state triphone models and the TM and PTM 
models. It achieves a better tradeoff between complexity and 
accuracy.  

The paper is organized as follows.  In Section 2, we describe 
the approach of combining state tying with mixture tying. Section 
3 outlines our method of generating variable codebook size based 
on SLVP. In Section 4, experimental results on accented Mandarin 
telephony speech are presented. We conclude in Section 5. 

2. STATE TYING WITH MIXTURE TYING 

The generation of SDTM model is a combination of state tying and 
mixture tying. In the SDTM model, state tying is used to reserve 
the state identity; mixture tying is used to improve the efficiency of 
Gaussians and discard the overlapping mixture distributions for 
robust model estimation. 

2.1. State Tying 
State tying is usually achieved by decision tree based state 
clustering [2]. Decision trees are phonetic binary trees in which a 
yes/no phonetic question is attached to each node. Initially, all 
states in a given item list, typically a specific phone state position, 
are placed at the root node of a tree. Depending on each answer, 
the pool of states is successively split and this continues until the 
states have trickled down to leaf nodes. All states in the same leaf 
node are then tied. The set of questions designed is based on the 
phonetic knowledge and is regarded as clustering rules. Generally, 
the phonetic questions are symmetric. The question at each node is 
chosen to maximize the likelihood of the training data given the 
final set of tied states. In this tree structure, the root of each 
decision tree is a basic phonetic unit with a certain state 
topological location, triphone variants with the same central phone 
but different contextual phones are clustered to different leaf nodes 
according to the clustering rules.  

2.2. Mixture Tying 
We use Gaussian clustering and merging based on the minimum 
local distance distortion to perform mixture tying. We establish a 
set of Gaussian components to form a codebook that is shared by 

tied states belonging to a same decision tree. Bhattachyaryya 
distance measure is used to determine the similarity between two 
Gaussian components. Given two Gaussian components, 

( )111 ,σμG  and ( )222 ,σμG , the Bhattachyaryya distance measure 
is represented as 
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where μ  and σ  are the mean and variance of a Gaussian 
component. Suppose we have M  decision trees, i.e., the whole 
acoustic space is divided into M  sub-acoustic spaces. Each sub-
acoustic space contains a set of Gaussian components derived from 
the accumulated mixture distributions of tied states within a same 
decision tree. Based on the Bhattachyaryya distance measure, a set 
of Gaussian components in a sub-acoustic space are clustered and 
merged by successive binary splitting. These components in a sub-
acoustic space are divided into different clusters, components in a 
same cluster are merged to form a single Gaussian component.  

 tied-state triphone *-b [1]+*

tied  m ixtures for '*-b[1]+*'

 tied-state triphone *-b[2]+*

 tied-state triphone *-b [1]+*
 tied -state triphone *-b[2]+*

SD TM  m odels

C D H M M  tied-state
triphone m odels

tied m ixtu res for
'*-b[2]+*'

Fig.1: The structure of SDTM model versus tied-state triphones.  

The merge algorithm based on likelihood loss computation 
[9] is illustrated in the following equations. Given two Gaussian 
components, ( )111 ,σμG  and ( )222 ,σμG  with their relevant 

occurrence counts in the training set 1c  and 2c . When 
1G  and 2G

are merged to form a signal Gaussian component, the new 
component has the following coefficients: 
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Fig.2: a weighted coefficient matrix of SDTM models. 
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The likelihood loss due to the merge of 
1G  and 2G  is 

2
logloglog 2211

21

σσσ ccc −−
=Δ +

  (3) 

The most similar pair of Gaussian components is thus 
defined to be the pair that, when merged, gives the least likelihood 
loss. The clustering and merging procedure can be performed 
iteratively. This obtained codebook of Gaussian components is 
shared across all of the tied states within a same decision tree. The 
difference between the state tying triphone models and SDTM 
models is illustrated in Fig. 1. 

2.3. Structure of SDTM Models 

In SDTM models, the emission probability distributions of tied 
states within a decision tree share the same codebook with 
different mixture weights. Suppose we have M  decision trees, the 
codebook for each class is composed of K  codewords, i.e., 
Gaussian components. The structure of SDTM can be represented 
as a weighted coefficient matrix { }

mNMKkmnmk vp
××

⋅ ,,|  as shown in 

Fig. 2, where kmv ,  is the k th codeword belonging to class m , 

and nmkp ,|  is a coefficient which has the probabilistic interpolation 
and can be regarded as mixture weight. u  denotes the tied-state, 

mN  the total number of tied-states of the m th class. Given a tied 
state n  in a certain decision tree of class m , the state output 
distribution is  

( ) ( )
=

=
K

k
kmnmknm vxfpuxP

1
,,|, ||   

Mm ≤≤1 , mNn ≤≤1    (4) 

where the mixture weights nmkp ,|  satisfy 
=

=
K

k
nmkp

1
,| 1 . 

The SDTM model can be regarded as a bridge between the 
CDHMM tied-state triphone models and the conventional TM and 
PTM models. Compared to CDHMM, the SDTM model uses state 

tying to reserve state identity and can be considered as a special 
form of CDHMM in which tied states are separate from each other, 
and mixture distributions of those tied states belonging to a same 
decision tree are tied. From Fig. 2, if the codebook 
{ }Kkv km ,,2,1,, =  of class m  is different from state to state in 
a decision tree, the SDTM model becomes a CDHMM tied-state 
model. Compared to TM or PTM, the SDTM model separates the 
whole acoustic space into M  classes according to the total number 
of decision trees instead of using a universal codebook of Gaussian 
components for all HMM states or phone-dependent HMM states. 
Different codebooks are assigned to different decision trees. If all 
the codebooks { }Kkv km ,,2,1,, =  belonging to different classes 

are accumulated to form a universal codebook kv , where 

=
=

M

m
kmk vv

1
,

, the SDTM models back off to conventional TM 

models. On the other hand, if the codebooks of different state 
location topology with a same phonetic unit are clustered, the 
SDTM models back off to conventional PTM models. 

3. VARIABLE CODEBOOK SIZE 
GENERATION 

3.1. State Level Variation Probability 

In order to capture the diversity of variations in accented speech at 
state levels, we estimate the SLVP from frame-to-state alignment 
that considers the frame level error caused by local model 
mismatch. The alignment is between the frame sequence and the 
HMM state sequence, and it does not require the HMMs to have 
the identical state number that allows the topology of HMMs to be 
flexible. Taking the frame level errors into consideration enables 
the estimation to be reliable, and the spurious mappings at the state 
level caused by noise can be discarded. 

Let b  and s  denote the baseform (canonical) and surface 

form (alternative) sequence. Let b
T

bbb uuuU ,,, 21=  and 
s
T

sss uuuU ,,, 21=  are the time sequence of baseform and 

surface form states, respectively. In addition, define 

TxxxX ,, 21=  the input acoustic vectors. T  is the total 
frame number of each input utterance. The procedure of estimating 
SLVP based on frame-to-state alignment is: 

1. Generate the baseform time state sequence bU  using the 
forced alignment, and keep the track of full state 
sequence at the same time. In addition, at each frame t , 
the output acoustic likelihood score 

( )b
tt

b
t uuxPL == |  is saved. 
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2. Generate the surface form time state sequence sU  using 
phone recognition, and also keep the track of full state 
sequence. Similarly, the output acoustic likelihood score 

( )s
tt

s
t uuxPL == |  at each frame is saved.  

3. At frame t , if sb uu ≠ , frame level error occurs. The 

frame level error is denoted as s
t

b
t LLE −= . The 

smaller the E , the more similar the two mapping states. 
If the frame level error of this type of state pair occurs 
frequently in the training set, it means the baseform 
phone state and the surface form state is always 
confused. Table 1 indicates an example of frame level 
errors. 

4. Set threshold1 to filter the state pairs which have the 
high frame level error score. These errors may be caused 
by the noise or the accidental frame level state mappings.  

5. Set threshold2 to discard those state pairs which have the 
rare occurrence numbers. Calculate the SLVP according 
to Eq. (5), where ji,  denote the state number and 

( )⋅Occ  is the total occurrence number. 

( ) ( )
( )=

is

ij

ij
ji

u

sb

sb
bs

uuOcc
uuOccuuP
,

,|  (5) 

When the SLVP for all the baseform and surface form state pairs in 
the training set has been calculated, stop. 

Therefore, a direct relation between the baseform state and 
surface form state can be established through the frame-to-state 
alignment. Obviously, it is not a one-to-one match during the 
alignment. A baseform state may be aligned to one or more surface 
form states and vice versa. On the other hand, conventional 
methods of state-to-state alignment relying on phoneme-to-phone 
alignment can only produce one-to-one match. Hence, SLVP can 
be estimated more flexibly and covers more combination of 
variations.

Frame  
index 

Baseform 
state sequence 

Surface form 
state sequence 

Frame level 
errors 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 

i1[2] 
i1[3] 
i1[3] 
i1[4] 
i1[4] 
i1[4] 
i1[4] 
i1[4] 
za[2] 
za[2] 
za[2] 
za[2] 
za[3] 
za[3] 
za[4] 
za[4] 
a[2] 
a[2] 

ze[4] 
ze[4] 
u[2] 
u[3] 
u[3] 
u[3] 
u[3] 
u[4] 
u[4] 
da[2] 
da[2] 
da[2] 
da[2] 
da[3] 
da[3] 
da[4] 
da[4] 
da[4] 

0.828867 
0.394684 
2.395267 
4.855088 
3.583070 
6.597553 
2.272062 
2.363436 
5.697863 
1.097567 
5.531465 
6.324440 
6.409951 
8.266272 
1.695197 
0.909124 

20.130319 
8.988168

Table 1: An example of frame-to-state mapping and local frame 
level errors. 

3.2. Adjust Codebook Size  

The SLVP can be incorporated into acoustic model at state level to 
adjust the codebook size of SDTM models. Based on the structure 
of SDTM shown in Fig.2, the state output distribution is as follows: 

( ) ( )
=

=
K

k
kCnCk

b
iii

vxfpuxP
1

,,| ||   

MCi ≤≤1 , 
iCi Nn ≤≤1   (6) 

where bu  is a tied state of a decision tree corresponding to the 
class iC , 

icN  is the total number of tied states of such decision 

tree, ( )kCi
vxf ,|  is a Gaussian density whose mean and variance 

are specified in the codeword kCi
v , . The codebook can be simply 

represented by a set of codewords { }Kkv kCi
,,2,1,, = . Similar 

description is for surface form state su in class jC  ( MC j ≤≤1
and ji CC ≠ ). In the following equations, ( )kCi

vxf ,|  is 

represented as ( )⋅kCi
f ,  for simplification. 

Let ( )buxP |′  be the new output distribution of the 
baseform state after taking SLVP and the effects of other surface 
form states into consideration, we have 

( ) ( ) ( )=′
su

bssb uuPuxPuxP |||

( ) ( ) ( ) ( )
=

−+=
L

l

bssb uuPuxPuxP
1

||1| λλ  (7) 

where λ  can be regarded as a linear interpolation coefficient for 
combining the different acoustic models. It is determined by the 
probability of the baseform state being recognized as itself. For 
instance, if ‘p[2]’ has 70% probability to be recognized as ‘p[2]’ 
and 30% for other variations, then 7.0=λ .  

Accented variations are unidirectional [10], and are one-to-
many mapping representing different types of phonetic changes, 
e.g., db →  and pb → , Substituting Eq. (6) into Eq. (7) giving 
us 

( ) ( ) ( )
= ==

⋅′′+⋅′=′
L

l

K

k
kC

K

k
kC

b
l
ji

fpfpuxP
1 1

,
1

,|  (8) 

where L  is the total number of “borrowed” models related to the 
baseform state bu . In addition, the baseform state bu  and surface 

form state su  correspond to classes iC  and jC , tied states in a 
decision tree share one codebook mixture distributions. Therefore, 
the class confusion probability ( )i

l
j CCP |  is equivalent to SLVP 

( )bs uuP | . p′  and p ′′  are the weights of the mixture 
distribution, they are 

ii nCkpp ,|⋅=′ λ
( ) ( )

j
l
j nCki

l
j pCCPp

,|
|1 ⋅⋅−=′′ λ   (9) 

For simplification, the output distribution can be expressed as 
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( ) ( )
+

=
⋅′′′′=′

LKK

k
b fpuxP

1
|    (10) 

where p ′′′  is the relevant mixture weight. It includes both p′  and 

p ′′ , satisfies 
+

=
=′′′

LKK

k
p

1
1 , and is proportional to the class 

confusion probability ( )bs uuP | . From Eq. (10) we can see that 
the codebook size is augmented, and varies according to the value 
of L . The new codebook includes its original mixture distribution 
as well as those borrowed from the surface form states. If a tied 
state has a higher confusability, it gets more mixture distributions 
from the codebook of the relevant surface form states for higher 
model robustness. The codebook size of the reconstructed 
baseform acoustic model varies according to the confusability of 
states. If the matrix of SLVP is diagonal, the codebook size of 
SDTM model is unchanged. Otherwise, it is adjusted based on the 
SLVP. Using borrowed codebook of mixture distributions from 
alternative surface form states adjusts the original mixture 
distribution structure of baseform state, which enables the 
borrowed mixture distributions to cover the boundaries of the 
original mixture distribution. More Gaussians in this region makes 
it possible to model in detailed distributions that may be ignored 
by simply increasing the codebook size through mixture splitting 
method. 

zh
ch

ong

Reconstructed
HMM states

Gaussian
component pdfs

: Orignal component
: Borrowed component

sh

1
2

3

Fig.3: Use of the dominant Gaussian for variable codebook size. 

Moreover, each Gaussian in the codebook of surface form 
states does not have the identical contribution to accommodate 
accented changes. Only those Gaussians representing the confusing 
acoustic samples are required to considered and mixed in the 
baseform states as shown in Fig.3. In order to consider the 
unidirectional and asymmetric property of acoustic confusions in 
accented speech, an asymmetric acoustic distance measure 
described in [10] was used to select dominant Gaussians for 
mixture borrowing to form variable codebook size. 

4. RECOGNITION EXPERIMENTS 

We evaluated our approach in a Chinese telephony short phrase 
speech recognition task. There is no word n-gram in these short 
phrases so that we can isolate the effect of our approach without 
the influence from high-level information. All speech data were 
sampled at 8 kHz and 8 bit rate. The baseline acoustic model was 
trained using 100 speakers’ utterances with around 50 hours of 
Putonghua speech. The HMM topology is three-states, left-to-right 
without skips. The acoustic features are MFCC13 , 

MFCCΔ13  and MFCCΔΔ13 . Standard Chinese 21 initials 
and 38 finals were used to generate HMMs. Dev_set contained 
2000 utterances from 10 Cantonese-accented speakers and 10 Wu-
accented speakers, each speaker has 100 utterances. The Dev_set 
was used to estimate SLVP. The testing data consisted of two parts: 
Test_set1 includes 1800 Cantonese-accented and Wu-accented 
utterances from 18 speakers (8 females and 10 males), excluded 
from Dev_set. Test_set2 is used for performance comparison and 
consists of 900 Putonghua utterances selected from 9 native 
speakers. Speakers were instructed to speak the same phrases in 
these two test sets.  

We started from the context-independent initial and final 
CDHMM models, and used the HTK flat-start to generate state 
tying, mixture tying and SDTM models with variable codebook 
size, respectively. We established 177 decision trees. Through the 
use of these trees, the overall 25000 triphones were tied to 12 
Gaussian-component models with 5500 tied-states (M1), there 
were 66000 Gaussians in total. We generated a conventional PTM 
model in which 15140 (59*256) Gaussian components were 
clustered into 59 different codebooks shared by all phone-
dependent states (M4). The codebook size of M4 is 256. We also 
generated a state-based PTM model discussed in [7] where the 
codebook size was fixed and cloned from monophone models 
(M5). The total number of Gaussians of M5 is 15222 (59*3*86). 
Using mixture tying method shown in Section 2.2 as well as SLVP 
with variable codebook size adjustment, 66000 Gaussians of M1 
were tied to 12480, on average, the codebook size was 71 
(12480/(59*3)), i.e., each decision tree has 71 Gaussians and 
varied according to accented phonetic confusions (M6). For a fair 
comparison, we also generated state tying triphone models with 3 
Gaussian-component models, 16500 Gaussians in total (M2). 
Moreover, we mixed Dev_set2 data with training set, and retrained 
a tied-state triphone models with 16500 Gaussians (M3) for a 
better comparison.  

Fig. 4: Distribution of codebook size in SDTM models. 
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Fig.4 shows the codebook size distribution of the 
reconstructed models by taking into account of SLVP. It is found 
that the codebook size of decision tree distributes from 41 to 132 
according to its degree of accented phonetic variations. We found 
that the high degree of accented confusions relates to retroflexed 
affricatives such as ‘zh, ch, sh, r’. As a result, the codebook size of 
those is the largest among the 177 decision trees. Meanwhile, 
voiced stops, unvoiced stops and voiced fricatives also obtain a 
larger codebook size compared to other initial units due to the 
reason that they are short and flexible in pronunciations, especially 
in Wu-accented and Cantonese-accented speech. 

Besides 12 Gaussian-component models with 5500 tied-states 
models, these five models were compared at the same state 
complexity and the similar number of Gaussian components. The 
results are shown in Table 2. It shows that the use of SDTM 
models with variable codebook size achieves the lowest WER at a 
comparable model complexity. It gives significant 2.1% (M6 to 
M2), 9.5% (M6 to M4) and 3.5% (M6 to M5) WER absolute 
reductions compared with state tying, mixture tying and state-
based phonetic tied mixtures, respectively. Even in testing on 
Putonghua speech with the high identity between training set and 
testing set with fewer accented phonetic confusions, using our 
SDTM models with variable codebook size does not lead to 
performance degradation. Moreover, using the SDTM models 
yields additional 1.2% WER reduction with respect to the use of 
mixed data training model, which means the SLVP with variable 
codebook size improves the robustness of models to cover 
accented variations. In addition, the results suggest that reserving 
the state identity information together with a variable small size 
codebook for mixture tying is beneficial for keeping the model 
resolution. Compared to M1 model, our SDTM model achieves a 
comparable WER only with 1/5 Gaussian mixture numbers. We 
believe the improvement comes from the higher model robustness 
with variable codebook size and a more efficient mixture 
distribution of each codebook in our proposed model.   

Table 2: The SDTM model outperforms the state tying and the 
mixture tying models at a comparable model complexity. 

5. CONCULSIONS 

We presented a method to combine state tying with mixture tying 
to generate state-dependent tied-mixture (SDTM) models with 
variable codebook size for an efficient complexity reduction of 
triphone models. The codebook size is governed by state level 

variation probability of accented phonetic confusions which can be 
automatically extracted by frame-to-state alignment based on local 
model mismatch. The more confusable a state is, the larger its 
codebook size gets for a higher degree of model resolution. 
Compared to a pure mixture tying system, the SDTM model uses 
state tying to reserve the state identity; compared to the sole state 
tying system, such model uses a small set of parameters to discard 
the overlapping mixture distributions for robust model estimation. 
We have shown that our proposed model leads to significant WER 
absolute reduction of 2.1%, 9.5% and 3.5% compared with state 
tying, mixture tying and state-based phonetic tied mixtures, 
respectively. In addition, our method provides an additional 1.2% 
WER reduction with respect to the use of mixed data training 
model. It proves that the variable codebook size with state tying 
and mixture tying together improves the robustness of the model 
while keep good model resolution. We achieved a good balance 
between model complexity and robustness. 

6. REFERENCES 

1. X. Huang, A. Acero, H. Hon and R. Reddy, Spoken language 
processing: A guide to theory, algorithm, and system 
development.  Upper Saddle River, NJ: Prentice Hall PTR, 
2001. 

2. S. Young, et al., The HTK book (for HTK Version 3.2). 
Entropic Cambridge Research laboratory, 2002. 

3. Jurafsky, D., Ward, W., Zhang, J.P., Herold, K., Yu, X.Y. and 
Zhang, S., “What kind of pronunciation variation is hard for 
triphones to model?” In Proc. ICASSP, pp.577-580, 2001. 

4. L. Gu and K. Rose, “Sub-state tying in tied mixture Hidden 
Markov Models,” in Proc. ICASSP, pp.1013-1016, 2000. 

5. X. Luo and F. Jelineck, “Probabilistic classification of HMM 
states for large vocabulary continuous speech recognition,” in 
Proc. ICASSP, pp.353-356, 1999. 

6. J. Park, H. Ko, “A new state-dependent phonetic tied-mixture 
model with head-body-tail structured HMM for real-time 
continuous phoneme recognition system”, in Proc. ICSLP, 
pp.1583-1586, 2006. 

7. A. Lee, T. Kawahara, K. Takeda and K. Shikano, “A new 
phonetic tied-mixture model for efficient decoding,” in Proc. 
ICASSP, pp.1269-1272, 2001. 

8. Y. Liu and P. Fung, “State-Dependent Phonetic Tied Mixtures 
with Pronunciation Modeling for Spontaneous Speech 
Recognition” IEEE Trans. Speech and Audio Processing, 
Vol.12, No.4, pp.351-364, Jul. 2004. 

9. L. Deng, A. Acero, L. Jiang, J. Droppo and X.D. Huang, 
“High-performance robust speech recognition using stereo 
training data,” in Proc. ICASSP, pp.301-304, 2001. 

10. P. Fung and Y. Liu, “Effects and Modeling of Phonetic and 
Acoustic Confusions in Accented Speech Recognition”. 
Journal of the Acoustical Society of America, Vol.118, Issue 5, 
pp.3279 – 3293, Nov. 2005. 

Word Error Rate (WER) %
System Total 

Gaussians
(Test_set1) 

Accented speech
(Test_set2) 

Putonghua speech
State tying 
models (M1) 

66000 
(5500*12)

15.8% 7.9% 

State tying with 
less Gau. (M2)

16500 
  (5500*3) 

18.3% 8.1% 

Mixed training 
models (M3) 

16500 
  (5500*3) 

17.4% 8.8% 

PTM  
Models (M4) 

15140 
  (59*256) 

25.7%  11.3%  

State-based 
PTM (M5) 

15222 
  (59*3*86)

19.7%  10.5%  

Our SDTM 
models (M6) 

12480 16.2%  7.9%  
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