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Abstract. Aiming at building a dialectal Chinese speech recognizer from a 
standard Chinese speech recognizer with a small amount of dialectal Chinese 
speech, a novel, simple but effective acoustic modeling method, named state-
dependent phoneme-based model merging (SDPBMM) method, is proposed and 
evaluated, where a tied-state of standard triphone(s) will be merged with a state 
of the dialectal monophone that is identical with the central phoneme in the 
triphone(s). It can be seen that the proposed method has a good performance 
however it will introduce a Gaussian mixtures expansion problem. To deal with 
it, an acoustic model distance measure, named pseudo-divergence based 
distance measure, is proposed based on the difference measurement of 
Gaussian mixture models and then implemented to downsize the model size 
almost without causing any performance degradation for dialectal speech. With 
a small amount of only 40-minute Shanghai-dialectal Chinese speech, the 
proposed SDPBMM achieves a significant absolute syllable error rate (SER) 
reduction of 5.9% for dialectal Chinese and almost no performance degradation 
for standard Chinese. In combination with a certain existing adaptation method, 
another absolute SER reduction of 1.9% can be further achieved. 

Keywords: Speech recognition, dialectal Chinese speech recognition, state-
dependent phoneme-based model merging, acoustic modeling, acoustic model 
distance measure.  

1   Introduction 

With regard to accented and dialectal speech recognition, a great deal of work has 
been done at various levels. Most of the dialect-specific automatic speech recognition 
(ASR) systems are concentrated on lexicon adaptation by capturing the pronunciation 
variations between standard speech and dialectal speech, and furthermore, 
characterizing these variation trends via a pronunciation lexicon [1-3]. Different from 
phone-level pronunciation modeling, the state-level pronunciation modeling is 
implemented to cover both the dialectal and the standard pronunciation characteristics 
[4, 5]. With regard to acoustic modeling, the adaptation techniques are most widely 
used through which dramatically significant improvement can usually be achieved  
[6, 7]. Some retraining mechanisms have also been proposed in which standard 
speech and dialectal/accented speech are pooled together [8]. Some researchers pay 
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attention to language adaptation for accented speakers [9]. Additionally, the decoder 
is adjusted to cope with the differences between standard speech and dialectal speech 
[2]. In practice, these approaches are always integrated together to achieve much 
better performance in dialectal/accented speech recognition.  

As far as acoustic modeling for accented speech recognition is concerned, a couple 
of methods are usually used, including: 1) Adaptation. The acoustic models trained 
with standard speech are transformed into accent-specific ones with a certain amount 
of accented speech by means of adaptation. The adaptation method has been applied 
by many researchers to the accented speech recognition with good results. However, 
while the pronunciations in the target accent/dialect being primarily considered, those 
in the original accent/dialect cannot be sufficiently covered simultaneously at acoustic 
level. 2) Retraining. It is the most straightforward approach that pools accented 
training data with standard data so as to retrain the acoustic models using combined 
data. In [10], it is shown that by simply pooling 34 hours of standard data with 52 
minutes of accented data the word error rate can be reduced from 49.3% to 42.7%. 
Although significant improvement was achieved with a small amount of accented data 
for “pooled” training, an obvious disadvantage was that the retraining was 
dramatically time-consuming. 3) Combination of acoustic modeling with state-level 
pronunciation modeling [4, 5]. In [4], state-level pronunciation modeling was 
integrated with acoustic modeling to better characterize the phone changes in which a 
syllable error rate (SER) reduction of approximately 2.39% was achieved for 
spontaneous speech recognition. The problem is that a large amount of accented 
speech data is needed and that the proposed method is sometimes too complicated to 
be readily applied. 4) Dialect detection [11, 12]. It is often used as a front-end in 
state-of-the-art ASR systems. In this method, dialect-specific recognizers have to be 
built for each dialect or sub-dialect, which also needs a large amount of dialectal data, 
and the performance, relies heavily on the outcome of dialect detection. 

In China, Putonghua (or standard Chinese) is the official language through which 
people from different regions can be mutually understood. In addition to Putonghua, 
there are other 8 major dialects, which can be detailedly divided into over 40 sub-
dialects [6] or over 1,000 sub-sub-dialects [13]. Putonghua spoken by most Chinese 
people is usually influenced by their native dialect more or less. In this paper, we refer 
to Putonghua influenced by a certain Chinese dialect as dialectal Chinese. One of our 
motivations here is to build a robust recognizer for a certain dialectal Chinese based 
on the handy Putonghua model with a small amount of dialectal speech data (less 
than one hour). To build a robust and practical dialectal Chinese-specific recognizer, 
the following four requirements should be met: 1) the modeling method as simple as 
possible, which is a prerequisite for fast deployment of ASR systems; 2) only a small 
amount of dialectal speech data needed. In China, there are so many dialects that it is 
impossible to collect a large amount of speech data for each dialectal Chinese due to 
some economical considerations; 3) good performance in dialectal speech recognition 
as well as standard speech recognition. Essentially, a dialect-specific recognizer is 
regarded as the extension of a Putonghua recognizer. It is natural that the better 
performance should be obtained for dialectal Chinese speech recognition without (or 
almost without) any performance degradation for Putonghua speech recognition; 4) a 
complementary or additive approach to the existing adaptation techniques. It is 
generally believed that adaptation is one of the most effective ways for speech 
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recognition of a dialectal Chinese of interest. Hopefully, the proposed modeling 
method can be used as a complement for the adaptation techniques in order to further 
improve the performance. 

In order to reach the goal mentioned above, a novel, simple but effective acoustic 
modeling method is proposed in this paper, named as state-dependent phoneme-based 
model merging (SDPBMM) method. In SDPBMM, based on a same phoneme, the 
state-level parameters from a context-dependent Putonghua HMM and its phoneme-
related context-independent dialectal HMM are merged according to a certain 
criterion. The idea comes from the assumption that the HMM from standard speech 
can “borrow” some information from its corresponding HMM in the target dialectal 
speech in order to reduce the differences between the dialectal speech and the 
standard speech. To a great extent, the newly-merged HMM can cover both dialectal 
and standard speech acoustically. In this paper, with only 40-minute Shanghai-
dialectal speech data adopted, a cost-effective acoustic model for the target dialectal 
Chinese can be built from the Putonghua recognizer using SDPBMM method. It is 
experimentally shown that SDPBMM is able to meet the foresaid four requirements. 

As a side effect of SDPBMM, the number of Gaussian mixtures within the merged 
HMMs is increased definitely, we regard it as a Gaussian mixtures expansion 
problem. To deal with it, an acoustic distance measure, named pseudo-divergence 
based distance measure (PDBDM), is proposed based on the difference measurement 
of Gaussian mixture models, and then implemented under the assumption that the 
similarity between two states can be measured by an acoustic distance between them. 
As a result, PDBDM can differentiate the states that need model merging from those 
that do not need merging in SDPBMM. More importantly, PDBDM can downsize the 
parameter scale of HMMs almost without causing any performance degradation on 
dialectal Chinese speech. 

The remainder of this paper is organized as follows. The basic ideas of the 
SDPBMM will be described comprehensively in Section 2. In Section 3, a merging 
criterion, namely PDBDM, will be introduced which is to reduce the parameter scale 
in the SDPBMM-based HMMs. A series of experiments designed to evaluate the 
effectiveness of the proposed methods as well as the experimental results will be 
presented in Section 4. Finally, conclusions are drawn and future work is suggested in 
Section 5. 

2   State-Dependent Phoneme-Based Model Merging 

2.1   Description and Formulation of SDPBMM 

In [4], a state-level pronunciation modeling method, the partial change phone models, 
was proposed, which could cover both the base form pronunciation and the surface 
form pronunciation simultaneously. The actually realized pronunciations except for 
the canonical pronunciation were merged with the pre-trained base form-based 
acoustic models in terms of the acoustic model reconstruction. Inspired by the idea, 
we make an attempt to take the standard pronunciation and dialectal pronunciation  
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into consideration in acoustic modeling. In SDPBMM, the context-dependent HMMs 
for standard Chinese are merged with their phoneme-related context-independent 
HMMs for dialectal Chinese at state level. In other words, the “correct” (base form) 
pronunciations in dialectal speech are involved in the merging instead of “wrong” 
(surface form) pronunciations adopted in [4, 5]. Due to the data sparseness issue, only 
monophone HMMs for dialectal Chinese are considered in SDPBMM. Compared 
with the acoustic model reconstruction based on triphone HMMs, a remarkably small 
amount of dialectal data is needed to build monophone HMMs and no further training 
process is necessary. 

Most the state-of-the-art ASR systems tend to use context-dependent triphone 
HMMs to achieve a higher accuracy. In order to reduce the model complexity, 
downsize the redundant Gaussian components and re-estimate the unseen triphones in 
training data, the decision tree based state tying method is commonly used [14]. The 
states from some triphones with the same central phoneme are presented by a decision 
tree in which the tied states are presented by a leaf node. The idea is illustrated in 
Figure 1. In the left part of Figure 1, all the second states of the an-centered triphones 
are presented by a decision tree. In addition, both a state of monophone from dialectal 
speech and a state of triphone from standard speech are composed of multiple 
Gaussian mixtures. To accomplish the merging, the second state from the dialectal 
monophone an is merged with the leaf nodes of an-centered decision tree, i.e. the tied 
states. The merging process is depicted in the right part of Figure 1. The merging 
takes place between a monophone from dialectal speech and a triphone from standard 
speech whose central phoneme is the same as the monophone at the state level. As a 
result, a merged tied-state consists of multiple Gaussian mixtures from both the state 
of standard triphone HMM and its corresponding state of dialectal monophone HMM, 
as denoted by black solid curves and red dotted curves in Figure 1, respectively. 
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Fig. 1. The topology before and after the application of SDPBMM 

Let x, s, and d be an input vector, a state from standard speech, and a state from 
dialectal speech, respectively, the original probability density function for continuous 
density HMM P(x|s) is 
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where wsk is the mixture weight of k-th mixture component of state s, K is the total 
number of Gaussian mixtures in state s. For simplification, Nsk(⋅) will be used to 
denote N(x;μsk;∑sk) of state s hereinafter.  

Let P'(x|s) be the revised output distribution of a merged state after applying 
SDPBMM, it can be represented as 

( ) ( ) (1 ) ( , ) ( )'P x s P x s P x s d P d sλ λ= + −  , (2) 

where λ is a linear interpolating coefficient between the standard and the dialectal 
acoustic models and is usually determined experimentally, and P(d|s) can be regarded 
as a kind of pronunciation modeling. Because the purpose here is to verify the 
effectiveness of SDPBMM, the pronunciation variations between standard 
pronunciation and dialectal pronunciation are not taken into consideration in this 
paper and therefore we set P(d|s) ≡ 1. Afterwards, Equation 2 can be further 
simplified as Equations 3 and 4. 
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Equation 3 is actually a kind of interpolation method [8]. In Equation 4, K and N 
are the numbers of Gaussian mixtures of state s from standard speech and state d from 
dialectal speech, respectively; nevertheless parameters K and N are not necessary to 
be equal to each other. Parameters w’

sk and w’
dn are new mixture weights in a merged 

state of SDPBMM, just as indicated in Equation 4, '
w w

sk sk
λ=  and '

(1 )w w
dn dn

λ= − . 

2.2   Analysis 

In SDPBMM, it is very easy to build context-independent monophone HMMs via just 
a quite small amount of dialectal data, and the merging is performed based on a 
standard triphone decision tree at state level. The SDPBMM-based acoustic model 
does not need retraining, which will save time and efforts dramatically. In essence, 
the SDPBMM-based acoustic model is still a standard recognizer just with much 
more acoustic coverage on dialectal speech, and so it is expected to be able to achieve 
good performance for both dialectal speech and standard speech recognition. 
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3   Pseudo-divergence Based Distance Measure  

With the application of SDPBMM, the acoustic coverage is enlarged so that the 
accuracy for dialectal speech recognition can be improved; however, the Gaussian 
mixtures in the merged states are definitely increased. The efficiency is lowered due 
to much time consumption during the decoding procedure. For example, when a 
standard state consisting of 14 Gaussians is merged with a dialectal state of 6 
Gaussians, the number of Gaussian mixtures is increased by 43% and thereby the time 
consumption is increased by 56% if all standard states are involved in the merging 
process. This is a Gaussian mixtures expansion problem. To deal with it, a mechanism 
has to be proposed to tell the states that need merging from those that do not need 
merging. Intuitively, there exists a different level similarity among states of dialectal 
monophone and states of standard triphone. Presumably, some measures can be taken 
to evaluate the similarity which can act as a criterion to classify the states 
participating in merging process. In practice, the similarity can be measured by the 
distance between two states instead. 

In HMMs, each state is represented by a probability distribution function (PDF) in 
terms of mixed Gaussian mixtures. Several approaches have been proposed to 
measure the distance between two HHM states. 1) The relative entropy or Kullback 
Leibler distance (KLD) [15], which can represent the distance comprehensively but 
accordingly the computation complexity will easily go beyond control with the 
increased dimension. 2) Extended KLD, which is a practical way to approximate the 
distance [16]. But it can not be used to deal well with mixed-mixture PDFs and great 
time consumption is required. 3) Parametric distance metric for mixture PDF [17], 
which can effectively measure the distance directly between PDFs with mixed 
mixtures from the model's parameter. Actually, this approach is an issue of linear 
programming and can be solved via simplex tableau. However, sometimes the optimal 
solution can not be obtained under some rigid constraints. In this paper, as a tradeoff 
between precision and efficiency, a distance measure, named pseudo-divergence 
based distance measure (PDBDM), which was initially used and implemented in 
speaker recognition [18], is modified here to act as the distance measure between a 
state of dialectal monophone HMM and a tied-state of standard triphone HMM.  

3.1   Basic Idea of PDBDM 

In this section, the basic idea of PDBDM is to be illustrated in detail. First, the 
dispersion between two HMM states is defined as 
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where A and B are two HMM states, dA,B(i, j) is the distance between the i-th mixture 
from A and j-th mixture from B. M and N are the total numbers of Gaussian mixtures 
in A and B, respectively. Accordingly, the self-dispersion is 
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Then the pseudo-divergence between two HMM states is formulated as1: 
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the statistical difference, the distance between two HMM states is redefined as 
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As for the distance between two single Gaussian mixtures, i.e. dA,B(i, j) in Equation 
5, there are normally four options, the Euclidean distance measure, the Mahalanobis 
distance measure, the weighted Mahalanobis distance measure and the 
Bhattachyaryya distance measure. The Bhattachyaryya distance measure is adopted 
here because it is thought to be able to characterize the distance more precisely by 
taking the difference of covariance into account [17]. Given two Gaussian mixtures, 
λ1(μ1, ∑1) and λ2(μ2, ∑2), the Bhattachyaryya distance measure is defined as  
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3.2   Combination of SDPBMM with PDBDM 

A state from a dialectal monophone HMM and its corresponding state on a basis of the 
same phoneme from a standard triphone HMM form a pair for the calculation of 
distance. The distances of all pairs are computed using Equation 9. Subsequently, a 
certain percentage, i.e. 70% relative to the amount of pairs, is set as a threshold in the 
descending order of distance so that the pairs with a large distance have a higher 
priority to be chosen to participate in the merging. The idea is depicted in Equation 11. 

,        distance( , )  

- ,   distance( , ) <

merging d s threshold

no merging d s threshold

≥⎧
⎨
⎩

 (11) 

The application of PDBDM in SDPBMM is based on the assumption that the 
distance can be used to characterize the similarity between two states instead, but in a 
reverse sense that a smaller distance corresponds to a bigger similarity. If the distance 
between two states is small, it can be safely inferred that there is less variability 
between them and in which case no merging is necessary because the original state 

                                                           
1  In the paper, the concept of divergence is not completely same as the classic definition of 

divergence, so pseudo-divergence is named.  
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from the standard speech has already covered the acoustic space sufficiently. As for 
the pairs with big distances, the merging is performed to cover both the standard and 
the dialectal speech acoustically. Notice the fact that in the right part of Figure 1, 
some states, for example l-an+d[2] and f-an+m[2], are not involved in the merging, 
which represents the purpose of PDBDM. It is expected that the scale of Gaussian 
mixtures can be downsized by PDBDM while no performance degradation takes place 
for dialectal speech recognition. 

4   Experiments and Results 

The Mandarin Broadcast News (MBN) database (Hub4NE), a read style standard 
Chinese speech corpus, was used to train the baseline system, the Putonghua 
recognizer. It contained about 30 hours of high quality wideband speech with detailed 
Chinese Iinital/Final (IF) transcriptions. The acoustic models of Putonghua-based 
baseline were tied-state cross-word standard tri-IF HMMs. Each tri-IF was modeled 
using a left-to-right non-skip 3-state continuous HMM, with 14 Gaussian mixtures per 
state. 39-dimensional MFCC coefficients with Δ and ΔΔ were used as features with 
cepstral mean normalization [19]. The HMMs achieve good performance statistically 
upon which many research was carried out [12]. Additionally, 6 zero-Initials were 
added to the standard IF set to help improve the performance and make the modeling 
process consistent. Another database, namely Wu dialectal Chinese database (WDC) 
[20], contained 100 native Shanghai speakers, 50 males and 50 females. The speech 
data of WDC was recorded under a similar condition to that of MBN. The use of this 
database was to minimize the channel affect. The WDC was composed of the speech 
from medium and strong Shanghai-accented speakers. Further details on the database 
can be found in [20]. Adopted in the following experiments as the recognition lexicon 
were 406 toneless Chinese syllables. 

Three data sets were selected from the WDC and MBN, one was the development 
training set, Dev_WDC, which consisted of about 40-minute Shanghai-dialectal 
Chinese speech by 10 speakers. The Dev_WDC was used to build 65 context-
independent dialectal mono-IF HMMs for SDPBMM, each monophone HMMs was 
of the exactly same topology as that of standard tri-IFs except that there were 6 
Gaussian mixtures per state. Another data set was Test_WDC composed of 20 
speakers' speech from the WDC. The third data set was Test_MBN from MBN also 
used for testing. The three data sets were not overlapping with one another. The 
detailed information for the data sets used in the experiments is listed in Table 1. 
Initially, the MBN-based Putonghua HMMs achieved SERs of 30.5% and 49.8% on 
Test_MBN and Test_WDC, respectively; there was an absolute degradation of 
approximately 20% on the Shanghai-dialectal Chinese speech. An SER of 54.1% on 
Test_WDC was achieved by the dialectal mono-IF HMMs built upon Dev_WDC. 
Because acoustic modeling was our research focus no language models were used. 
Our experiments were performed at the syllable level and the SER reduction was used 
as a measure of the improvement. Besides, HTK [21] was used in the experiments. 
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Table 1. Detailed information for the development and test sets 

Data set Database Details 
Dev_WDC WDC 10 speakers, 510 utterances, totally 40-minute speech 
Test_WDC WDC 20 speakers, 995 utterances, totally 60-mintue speech 
Test_MBN MBN 1,200 utterances, totally 80-minute speech 

 

The linear coefficient in Equation 3 was determined experimentally and λ was set 
to 0.72. With the application of PDBDM, there were 70% of tied states from 
Putonghua tri-IFs involved in the SDPBMM. The recognition results on the dialectal 
test set, Test_WDC, are listed in Table 2. It can be seen that the SDPBMM can reduce 
the SER by 6.2% absolutely on dialectal speech with only 40-minute dialectal 
Chinese speech data. However the number of Gaussian mixtures was increased by 
approximately 43%. To deal specifically with the Gaussian mixtures expansion 
problem, the PDBDM was adopted with the expectation that no degradation is 
introduced. Thus, the number of Gaussian mixtures in SDPBMM+PDBDM was 
decreased by 30% with a slight SER increase of 0.3% absolutely. Compared with the 
baseline, an absolute SER reduction of 5.9% was still achieved by the 
SDPBMM+PDBDM. It is shown that PDBDM can downsize the parameter scale 
without significant performance degradation. In the following experiments, 
SDPBMM+PDBDM was used as the default SDPBMM-based acoustic modeling. 

Table 2. The results for Putonghua, SDPBMM, and SDPBMM in conjunction with PDBDM 
on Test_WDC 

 Putonghua SDPBMM  SDPBMM+PDBDM 
States 3,230 3,230 3,230 
Gaussians 45,220 64,600 58,786 
Tri-IFs 7,411 7,411 7,411 
SER 49.8% 43.6% 43.9% 

4.1   Comparison Conditioned on Same Amount of Gaussian Mixtures  

As for SDPBMM-based acoustic model, it is naturally assumed that the improvement 
in dialectal speech recognition may result from the increase of Gaussian mixtures in 
the merged states. Compared with the Putonghua HMMs with 14 Gaussian mixtures 
per state, on average, there were 18.2 mixtures per state in SDPBMM-based HMMs. 
To make a fair comparison, another Putonghua acoustic model with 18 Gaussian 
mixtures per state was generated which had approximately equal parameter scale as 
that of the SDPBMM. The SER on Test_WDC was decreased from 49.8% to 49.1% 
compared with the baseline, but there still existed an SER gap of 5.2% absolutely in 
comparison with the SDPBMM. It is shown that increasing the parameter scale solely 
can not achieve significant improvement in dialectal speech recognition. 

4.2   Evaluation on Standard Speech Recognition 

The effectiveness of SDPBMM-based acoustic model on standard speech recognition 
can be seen from the results listed in Table 3 with Test_MBN taken as the test set. It is 
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shown that as expected, the SDPBMM can achieve a slightly higher SER (an absolute 
0.6% higher) on standard speech than the Putonghua acoustic model. It could be 
concluded that the SDPBMM can achieve significant improvement in dialectal speech 
recognition without significant degradation in standard speech recognition. 

Table 3.  The results for Putonghua and SDPBMM on Test_MBN 

 Putonghua SDPBMM  
SER 30.5% 31.1% 

4.3   Integration with Adaptation 

Adaptation is one of the most effective ways for dialectal speech recognition. Most 
widely used adaptation techniques include the maximum linear likelihood regression 
(MLLR) and the maximum a posteriori adaptation (MAP) methods [19]. For 
comparison, the adaptation was performed with exactly the same amount of dialectal 
speech data as in the experiment regarding SDPBMM. Considering that MLLR is 
much beneficial when there is only a small amount of adaptation data available [7], 
we adopted MLLR for model adaptation. The MLLR adaptation was performed based 
on the Putonghua acoustic model, denoted as MLLR, in which all the standard tri-IFs 
were classified into 65 classes, and mean update was performed in transformation 
matrix. Note that, Dev_WDC was also used as the adaptation data in MLLR 
adaptation. As a result, an SER of 44.1% was achieved on Test_WDC which was still 
slightly higher than the SER of 43.9% by SDPBMM with exactly the same data set. 
The results are listed in columns SDPBMM and MLLR in Figure 2, respectively. It is 
shown that compared with MLLR, SDPBMM can achieve a comparable performance 
on dialectal speech recognition with only a small amount of dialectal data available.  
In addition, it is assumed that SDPBMM primarily concentrates on addressing the 
issues of the phonetic mismatch between the dialectal speech and the standard speech. 
As a matter of fact, the adaptation can be a good solution to channel mismatch. 
Therefore it is expected that the SDPBMM in combination with a certain adaptation 
method can have the potential to further improve the performance on dialectal speech 
recognition. To verify the assumption, another development data set of Shanghai-
dialectal Chinese, Dev_WDC1, was selected from WDC database, which consisted of 
410 utterances by 10 speakers (approximately 30 minutes). By using Dev_WDC and 
Dev_WDC1, two new acoustic models were built, namely SDPBMM+MLLR and 
MLLR+SDPBMM, where the order in the names means the order that the components 
were performed. In SDPBMM+MLLR, the SDPBMM was performed using 
Dev_WDC based on Putonghua HMMs followed by the MLLR adaptation using 
Dev_WDC1; and vice versa. The results are also listed in Figure 2. From the figure, it 
can be clearly seen that in combination with the MLLR adaptation, another two 
absolute SER reductions of 1.9% and 1.8% on dialectal Chinese speech can be further 
achieved by SDPBMM+MLLR and MLLR+SDPBMM, respectively. The results 
correspond to columns SDPBMM+MLLR and MLLR+SDPBMM in Figure 2, 
respectively. Another phenomenon is that SDPBMM+MLLR and MLLR+SDPBMM 
achieved approximately an equal SER, which is to say, the SDPBMM and MLLR can 
collaborate perfectly irregardless of the application order. In conclusion, SDPBMM 
and MLLR are additive and exchangeable algebraically. 
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Fig. 2. Comparison with MLLR adaptation on Test_WDC and integration with MLLR adaptation 
on Test_WDC and Test_WDC1 

5   Conclusions and Future Work 

In the paper, a novel, simple but effective acoustic modeling method for dialectal 
Chinese speech recognition, SDPBMM, is proposed. Though it will introduce a 
Gaussian mixtures expansion problem, a corresponding PDBDM acting as a merging 
criterion is proposed to be integrated into SDPBMM, which can result in no 
significant degradation for dialectal Chinese speech recognition. From a series of 
experiments, it can be concluded that the SDPBMM has the advantages: 1) It is 
simple but practical for acoustic modeling when there is quite a small amount 
dialectal speech data available; 2) It can make a significant performance improvement 
for dialectal speech recognition; 3) It can have good performance for both standard 
and dialectal speech recognition; 4) It can achieve comparable performance to 
adaptation with only a small amount dialectal speech data available; 5) It is additive 
to adaptation, that is to say, the application of SDPBMM and adaptation in any order 
can further improve the performance for dialectal speech recognition. In a word, the 
SDPBMM is one of the most effective acoustic modeling methods for read-style 
dialectal Chinese speech recognition. In this paper, the experiments were done on 
Shanghai-dialectal Chinese, but no dialect-specific prior knowledge is incorporated in 
SDPBMM, thus, this method can be easily generalized to other dialectal Chinese. 

Another issue is that the experiments in this paper were based on read speech. In 
our next step the research on spontaneous speech will be carried out where 
pronunciation modeling [22] should be taken into account. It is believed that the use 
of pronunciation modeling can help build much precise acoustic model to better 
characterize pronunciation variations between dialectal Chinese and Putonghua, not 
only for spontaneous speech but also for read speech. 
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