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ABSTRACT 

The pronunciation variability is an important issue that 
must be faced with when developing practical automatic 
spontaneous speech recognition systems. In this paper, the 
factors that may affect the recognition performance are 
analyzed, including those specific to the Chinese language. 
By studying the INITIAL/FINAL 2 (IF) characteristics of 
Chinese language and developing the Bayesian equation, 
we propose the concepts of generalized INITIAL/FINAL 
(GIF) and generalized syllable (GS), the GIF modeling 
and the IF-GIF modeling, as well as the context-dependent 
pronunciation weighting, based on a well phonetically 
transcribed seed database. By using these methods, the 
Chinese syllable error rate (SER) was reduced by 6.3% 
and 4.2% compared with the GIF modeling and IF 
modeling respectively when the language model, such as 
syllable or word N-gram, is not used. The effectiveness of 
these methods is also proved when more data without the 
phonetic transcription is used to refine the acoustic model 
using the proposed iterative forced-alignment based 
transcribing (IFABT) method, achieving a 5.7% SER 
reduction. 

1. INTRODUCTION 

For carefully produced read speech the current automatic 
speech recognition (ASR) systems can reach word 
accuracy over 90% while for casual and unplanned 
spontaneous speech its performance drops greatly 
[Fosler-Lussier 1999]. The difference in performance lies 
mainly in the difference of pronunciation style between 

the read and spontaneous speech, which can be detailedly 
studied at two levels, the phonetic level and the linguistic 
level. 

At the phonetic level, the casual or spontaneous speech 
contains much more phone change (substituted, deleted, 
and inserted) phenomena and sound change (nasalized, 
centeralized, voiced, voiceless, more rounded, syllabic, 
pharyngealized, and aspirated) phenomena because of 
variable speaking rates, moods, emotions, prosodies, 
co-articulations and so on, even when the speaker is 
tending to utter in canonical pronunciations [Decker 
1999][Greenberg 1999]. Other phenomena, such as 
lengthening, breathing, disfluency, lip smacking, 
murmuring, coughing, laughing, crying, 
modal/exclamation, silence, and noise, will also bring 
difficulties to ASR systems. 

At the linguistic level, there are a lot of spoken language 
phenomena, such as repetitions, ellipses, corrections, 
hesitations, and so on, resulting from the fact that people 
are often thinking while speaking in daily life. This makes 
it difficult to make full use of the statistical language 
model, for example the N-Gram language model. 

Compared with other languages such as English, Chinese 
has its own characteristics. Spoken language problems are 
made especially severe in casual Chinese speech since 
most Chinese are non-native standard Chinese speakers 
and are with complicated dialect and accent backgrounds. 
Some Chinese accents or dialects such as Cantonese are 
different from the standard Chinese as French is different 
from English. As a result, there is an even severe 



 

 

pronunciation variation due to the influence of speakers’ 
native pronunciations. Additionally, the homonym issue, 
the homograph issue, the retroflex issue, the tone change 
issue, the Chinese syllable’s short INITIAL/FINAL 
structure, and so on, that are specific to Chinese [Zheng 
1999] make the spontaneous Chinese ASR more difficult 
than other languages. 

To find a solution to the spontaneous speech and spoken 
language recognition, the following major aspects are 
mostly focused on in recent research. 

1. Choosing the speech recognition unit (SRU) set 

In the acoustic modeling stage, an SRU set should be well 
defined so that it can be used to well describe the phone 
changes and the sound changes, as well as the 
multi-pronunciation lexicon (MPL) to be discussed soon. 
Obviously, the definition of the SRU set and the MPL is an 
iterative procedure, the change of one may affect another. 
An annotated spontaneous speech corpus should also be 
available to train these SRUs, which at least has the base 
form (canonical) and surface form (actually observed) 
strings of SRUs. 

The common used SRUs can be phonemes, sub-phonemes, 
or allophones; and for Chinese they can alternatively be 
syllables, semi-syllables, or INITIALs/FINALs. For a 
specific recognizer, the SRUs are often of one 
pre-selected type. 

Two kinds of methods can be used to choose each SRU. 
One is based on the experts’ knowledge [Finke 1997] 
[Byrne 2001], where a detailed phonetically transcribed 
spontaneous speech database and a priori 
knowledge/rules on phonetics and linguistics are used. 
Another one is the data-driven method. An initial acoustic 
recognizer should be trained at first. Then three 
approaches are used: (1) the SRU recognition confusion 
matrix method [Liu and Xu et al, 2000]; (2) the specific 
grammar based generation rules [Cremelie 
1997][Cremelie 1999][Liu and Fung 2000]; and (3) the 
neural network [Fukada 1997] or the decision tree [Byrne 
1998] [Riley 1999] to predict possible pronunciation 
variations and their probabilities given the canonical 
pronunciation sequence. As a matter of fact, the experts’ 
knowledge based method and the data-driven method can 
be combined together [Ma 1998]. 

2. Constructing a multi-pronunciation lexicon 

Normally, a lexicon entry is a sequence of SRUs. If each 
SRU is phonetically canonical, the lexicon will be a 
single-pronunciation lexicon (SPL), which is the situation 
in traditional speech recognition. To model pronunciation 
variation, the SRU set is specially defined so as to cover as 
many as possible pronunciation variations of each 
canonical SRU, which results in an SPL being expanded 
into an MPL. In this sense, the MPL can be regarded to be 

expanded from a canonical SPL by expanding each SPL 
entry into several actually observed pronunciations. 

The MPL is definitely a superset of the SPL. So the 
introduction of MPL will obviously result in the confusion 
among lexicon entries. The choosing of a probabilistic 
MPL with a suitable size is a tradeoff between the 
description ability of multiple pronunciations and the 
increase of the inter-entry confusion. 

3. Acoustically modeling spontaneous speech 

The purpose here is to model the acoustic variations of 
spontaneous speech. The common used methods include: 
(1) using context-dependent modeling and Gaussian 
sharing technologies to model the pronunciation variation 
[Saraclar 1999]; (2) using the confusion matrix and 
possible pronunciation variation rules to model the 
intra-word and cross-word pronunciation variations [Liu 
and Xu et al, 2000]; (3) using fully data-driven maximum 
likelihood method to model pronunciation variations 
[Holter 1999]; and so on. 

4. Customizing the decoding algorithm 

After the MPL being introduced, the search space of the 
traditional acoustic decoding network will be greatly 
enlarged, especially when the context-dependent 
modeling is applied. The research aims at speeding up the 
decoder with the recognizer’s performance kept. For 
example, Finke (1999) proposed an improved time 
synchronous search algorithm to reduce the path 
expansion scale by introducing intermediate shared nodes 
during the path expansion. Holter (1999) proposed an A* 
algorithm based tree-trellis search algorithm that can score 
multiple pronunciation variations simultaneously in the 
path. 

5. Modifying the statistical language model 

Suppose each lexicon entry is a word. For N-gram 
language modeling based ASR systems, the decoding is 
based on the following equation 

  ˆ arg max ( | ) ( )
W

W P X W P W=       (1) 

where Ŵ  is the recognized word sequence given the 
acoustic signal X and W is any possible word sequence. 
Once an MPL is introduced, Equation (1) should be 
modified to reflect the multiple pronunciations for each 
canonical SPL entry, because P(X|W) is unable to reflect 
the pronunciation variations for word sequence W [Strik 
1999]. One method is to train the surface form word 
N-Gram using the following equation 

  
( )

ˆ arg max ( | ) ( )
W Baseform V

W P X V P V
=

=       (2) 

where V is one possible surface form word sequence of a 
base form word sequence and Baseform(V) gives the 



 

 

canonical word sequence of V. This model contains the 
pronunciation context information. But a much bigger 
surface form vocabulary {v} results in a much bigger 
sparseness issue for language model, because each 
canonical word often corresponds to several surface form 
words. Another way is to introduce an intermediate term 
P(V|W) such that 

  
( )

ˆ arg max ( | ) ( | ) ( )
W Baseform V

W P X V P V W P W
=

=    (3) 

But its disadvantage is that P(V|W), which is the output 
probability of V given its canonical word sequence W, 
does not actually reflect the context dependency of W’s 
pronunciation variant V. 

In this paper, we will only focus on the pronunciation 
modeling techniques at the acoustic level, so all the 
method are acoustically proposed without considering the 
language model except when specifically stated. 

The Chinese annotated spontaneous speech (CASS) 
corpus will be introduced in Section 2, which is a seed 
database. Based on the transcription and statistics of 
CASS corpus, the generalized INITIALs/FINALs (GIFs) 
are proposed to be the SRUs in Section 3 and therefore the 
MPL is established. In the following section, we construct 
the framework for the pronunciation modeling, where an 
adaptation method is used to refine the acoustic model and 
a context-dependent weighting method is used to estimate 
the output probability of any surface form given its 
corresponding base form. Section 5 lists the experimental 
results. In Section 6, a method is proposed to refine the 
model with more yet non-phonetically transcribed data. 
Summaries and conclusions are given in Section 7. 

2. CASS CORPUS 

The CASS corpus was created to collect samples of most 
of the phonetic variations in Chinese spontaneous speech 
caused by pronunciation effects, including allophonic 
changes, phoneme reduction, phoneme deletion and 
insertion, as well as duration changes [Li and Zheng et al, 
2000]. The CASS corpus is necessary for the definition of 
the SRU set, the construction of the MPL, and the training 
of initial acoustic models. Therefore, the CASS corpus 
can be regarded as a seed database. In this section, the 
details of CASS corpus will be given briefly. 

Made in ordinary classrooms, amphitheatres, or school 
studios without the benefit of high quality tape recorders 
or microphones, the recordings are of university lectures 
by professors and invited speakers, student colloquia, and 
other public meetings. The collection consists primarily of 
impromptu addresses, and was delivered in an informal 
style without prompts or written aids. As a result, the 
recordings are of uneven quality and contain significant 
background noises. The recordings were delivered in 

audiocassettes and digitized into single-channel audio 
files at 16 kHz sampling rate and with 16-bit precision. A 
subset of over 3 hours’ speech was chosen for detailed 
annotation, which formed the CASS corpus. This corpus 
contains the utterances of 7 speakers at a speed as fast as 
about 4.57 syllables per second on an average [Li and 
Zheng et al, 2000], and in standard Chinese with slight 
dialectal backgrounds. 

The CASS corpus was transcribed into a five-level 
annotation. 
•  Character Level. Canonical sentences (known as 

word/character sequences) are transcribed. 
•  Toned Pinyin (or Syllable) Level. A segmentation 

program was run to convert the character level 
transcription into word sequences, and then the word 
sequences were changed into sequences of toned pinyins 
through a standard word-to-pinyin lookup dictionary. 
After carefully checked, the canonical toned pinyin 
transcription was generated. 

•  INITIAL/FINAL Level. This semi-syllable level’s 
transcription only includes the time boundaries for each 
(observed) surface form INITIAL/FINAL. 

•  SAMPA-C Level. This level contains the observed 
pronunciation in SAMPA-C [Chen 2000][Li and Chen et 
al, 2000], which is a labeling set of machine-readable 
International Phonetic Alphabet (IPA) symbols adapted 
for the Chinese language from the Speech Assessment 
Methods Phonetic Alphabet (SAMPA). In SAMPA-C, 
there are 23 phonologic consonants, 9 phonologic 
vowels and 10 kinds of sound change marks (nasalized, 
centralized, voiced, voiceless, rounded, syllabic, 
pharyngrealized, aspirated, inserted, and deleted), by 
which 21 INITIALs, 38 FINALs, 38 retroflexed FINALs 
as well as their corresponding sound variability forms 
can be represented. Tones after tone sandhi, or tonal 
variation, are attached to the FINALs. 

•  Miscellaneous Level. Several labels related to 
spontaneous phenomenon are used to independently 
annotate the spoken discourse phenomena, including 
modal/exclamation, noise, silence, murmur/unclear, 
lengthening, breathing, disfluency, coughing, laughing, 
lip smack, crying, non-Chinese, and uncertain segments. 
Information at this level can be used for garbage/filler 
modeling. 

3. GENERALIZED INITIALS/FINALS 
AND GENERALIZED SYLLABLES 

According to the Chinese language characteristics, the 
SRUs are to be chosen at the semi-syllable level, in other 
words, the Chinese INITIAL/FINAL (IF) level. 

In spontaneous speech, there are two kinds of differences 
between the canonical IFs and their surface forms. One is 
the sound change or phone change from one canonical IF 
to a SAMPA-C sequence different from that of any 
canonical IF. For convenience, we refer to such a 
SAMPA-C sequence of an IF as one of its generalized IFs 
(GIFs). For example, INITIAL ‘zh’ may be changed into 



 

 

voiced ‘z’. The other is the change completely from one IF 
to another quite different IF, for example, INITIAL ‘zh’ 
may be changed into ‘z’. Obviously, the IFs can be 
regarded as special GIFs and the GIF set is a superset of 
the IF set. 

If we want to model the sound variability in the acoustic 
modeling and choose semi-syllable level units as SRUs, 
the first thing to do is to define the GIF set. 

3.1 Definition of an Initial GIF Set 

The canonical IF set consists of 21 INITIALs and 38 
FINALs, totally 59 IFs. By searching in the CASS corpus, 

we initially obtain a GIF set containing over 140 possible 
SAMPA-C sequences; two examples are given in Table 1. 
However, some of them occur for only a couple of times 
which can be regarded as least frequently observed sound 
variability forms and will be removed from the GIF set in 
the subsequent step. 

Once an initial GIF set is determined, a GIF transcription 
should be made for later use according to the SAMPA-C 
Level transcription. We call this kind of transcription a 
dynamic transcription in comparison with the original five 
levels’ transcriptions. Dynamic transcriptions are useful in 
both the training and the testing procedures. 

 

Table 1. Examples for IFs and their possible pronunciations in IPA & SAMPA-C format. 
Pronunciation IF 

(Pinyin) (IPA) (SAMPA-C) 
Comments 

z ts /ts/ Canonical 
z ts 

v 
/ts_v/ Voiced 

z t© /ts`/ Changed to ‘zh’ 
z t© 

v 
/ts`_v/ Changed to voiced ‘zh’ 

e ° /7/ Canonical 
e °r /7`/ Retroflexed, or changed to ‘er’ 
e È /@/ Changed to /@/ (a GIF) 

 

Table 2. A canonical Chinese syllable and its possible pronunciations in IPA & SAMPA-C with output 
probabilities. 

INITIAL FINAL Syllable 
 (Pinyin) (IPA)  (SAMPA-C) (IPA)  (SAMPA-C)

Output Probability 

chang t©H /ts`_h/ §Ð /AN/ 0.7850 
chang t©H  

v 
/ts`_h_v/ §Ð /AN/ 0.1215 

chang t©  
v 

/ts`_v/ §Ð /AN/ 0.0280 

chang <deletion> <deletion> §Ð /AN/ 0.0187 
chang ¸ /z`/ §Ð /AN/ 0.0187 
chang <deletion> <deletion> i§Ð /iAN/ 0.0093 
chang tsH /ts_h/ §Ð /AN/ 0.0093 
chang t©H /ts`_h/ uÐ /UN/ 0.0093 

 

3.2 Generation of an Initial Generalized 
Syllable (GS) Set 

Because we focus only on the acoustic level pronunciation 
modeling and no Chinese word information will be made 
available in this research, our lexicon will not consist of 
Chinese words. Instead, Chinese syllables will be taken to 
form the lexicon entries. To generate an MPL for the 
recognizer, the surface form syllables should be found. 

Similar to GIF, we refer to any possible pronunciation of a 
given canonical syllable as one of its generalized syllables 
(GSs). A GS consists of a generalized INTIAL (a GIF) 

followed by a generalized FINAL (another GIF). All GSs 
form the GS set, a superset of the canonical syllable set 
having about 408 toneless syllables. According to the 
CASS corpus as well as the dynamic GIF transcription, it 
is easy to find all possible GSs. Then the GS-to-GIF MPL 
can be generated by expanding the syllable-to-IF SPL. 

Table 2 lists 8 MPL entries expanded from the canonical 
syllable ‘chang’, where each entry has an output 
probability P((GIF1, GIF2) | Syllable), defined as the 
probability of the GS or GIF pair (GIF1, GIF2) given its 
corresponding canonical syllable. These probabilities can 
be learned from the CASS corpus. This gives a 



 

 

probabilistic GS-to-GIF MPL, where each entry is a 
Chinese GS with a probability. 

3.3 Determining the Final GIF Set and the 
Final GS set 

Now the method for fixing the GIF set (i.e. SRUs) and the 
GS set (and hence the MPL) is as follows. 

For any canonical syllable b, all of its possible GSs 
{ }1 2, , , Ks s sL  are listed in a descending order of output 

probability, that is to say, ( | ) ( | )i jP s b P s b for any i j≥ ≤ , 

of course 
1

( | ) 1
K

k
k

P s b
=

=∑ . A predefined accumulated 

output probability (ACP) threshold ACPT  is used to choose 

the first R GSs to be reserved such that 
1

1 1

( | ) ( | )
R R

i ACP i
i i

P s b T P s b
−

= =

≥ >∑ ∑  while those thrown GSs are 

merged into the most similar reserved one. Afterwards, the 
final GS set is determined. According to the probability 
definition, the ACP can be thought of as a coverage 
percentage of pronunciation variations (CPPV) which 
determines the MPL size. 

By collecting all the GIFs appearing in all the reserved 
GSs, the final GIF set is determined. Accordingly, these 
well-chosen GIFs are taken as SRUs and the dynamic GIF 
Level transcription should be modified so as to be used in 
the training procedure. In order to well model the 
spontaneous speech, additional garbage models are also 
built for lengthening, breathing, disfluency, lip smacking, 
murmuring, coughing, laughing, crying, 
modal/exclamation, silence, noise, and non-Chinese. 

In the CASS corpus, the threshold is chosen as 95%ACPT = , 

and we finally have 86 GIFs and 576 GSs. 

3.4 Probabilistic GIF N-Grams 

From the statistics of the dynamic GIF transcription, the 
GIF output and transition probabilities are estimated for 
later use. The GIF output probability is defined as the 
probability of a GIF given its corresponding IF, written as 
P (GIF | IF). To include the GIF deletion, P (<Del> | IF) 
will also be estimated. 

The GIF N-Grams, including unigram P(GIF), bigram 
P(GIF2 | GIF1) and trigram P(GIF3|GIF1,GIF2), give the 
GIF transition probabilities.  

4. PRONUNCIATION MODELING 

Given an acoustic signal A  of spontaneous speech, the 
goal of the recognizer is to find the canonical syllable 
string B  that maximizes the probability P(B|A). 
According to the Bayesian Rule, the recognition result is 

  * arg max ( | ) arg max ( | ) ( )
B B

B P B A P A B P B= =   (4) 

In Equation (4), ( | )P A B  is the acoustic modeling part and 
( )P B  is the language modeling part. In this section we 

focus only on the acoustic modeling and propose some 
approaches to the pronunciation modeling. 

4.1 Theory 

Assume B  is a string of N  canonical syllables, i.e., 

1 2( , , , )NB b b b= L . For simplification, we apply the 

independence assumption to the acoustic probability, 

  
1

( | ) ( | )
N

n n
n

P A B P a b
=

≈ ∏        (5) 

where na  is the partial acoustic signal corresponding to 

syllable nb . In general, by developing any term in right 

hand of Equation (5) we have 
  ( ) ( ) ( ),

s

P a b P a b s P s b=∑       (6) 

where s  is any surface form of a canonical syllable b , in 
other words, s  is one GS corresponding to b . Therefore, 
the acoustic model is divided into two parts, the first part 

( ),P a b s  is the refined acoustic model while the second 

part ( )P s b  is the output probability of s  given b . 

Equation (6) provides a solution to the sound variability 
modeling by introducing a surface form term. In the 
following subsections, methods for these two parts will be 
given. 

4.2 IF-GIF Modeling 

According to the characteristics of Chinese language, any 
syllable consists of an INITIAL and a FINAL. Because 
our speech recognizer is designed to take semi-syllables as 
SRUs, term ( ),P a b s  should be rewritten in terms of 

semi-syllables. Assume ( ),c cb i f=  and ( ),g gs i f= , where 

ci  and gi  are the canonical INITIAL and the generalized 

INITIAL respectively, while cf  and gf  the canonical 

FINAL and the generalized FINAL respectively. 
Accordingly, the independence assumption results in 
  ( | , ) ( | , ) ( | , )c g c gP a b s P a i i P a f f≈ ⋅     (7) 

More generally, the key point of the acoustic modeling is 
how to model the IF and GIF related semi-syllable, i.e., 
how to estimate ( | , )P a IF GIF . There are three different 
choices: 
•  Use ( | )P a IF  to approximate ( | , )P a IF GIF .  This is 

the acoustic modeling based on IFs, named as the 
independent IF modeling. 

•  Use ( | )P a GIF  to approximate ( | , )P a IF GIF [Liu and 
Xu et al, 2000][Saraclar 2000]. This is the acoustic 
modeling based on GIFs, referred to as the independent 
GIF modeling. 



 

 

•  Estimate ( | , )P a IF GIF .  This can be regarded as a 
refined acoustic modeling taking both the base form and 
the surface form of the SRU into consideration. Thus we 
refer to it as the IF-GIF modeling or refined acoustic 
modeling. 

It is obvious that the IF-GIF modeling is the best choice 
among these three kinds of modeling methods if there are 
sufficient training data. This kind of modeling method 
needs a dynamic IF-GIF transcription. 

The IF transcription can be obtained directly from the 
Syllable Level transcription via a simple syllable-to-IF 

lexicon, and this transcription is canonical. The GIF 
transcription is obtained by means of the method 
mentioned in Section 3.1 once the GIF set is determined. 
By comparing the IF and GIF transcriptions, an actual 
observed IF transcription, named as IF-a transcription, is 
generated, where the IFs corresponding to deleted GIFs 
are removed and the IFs corresponding to the inserted 
GIFs are inserted. Finally the IF-GIF transcription is 
generated directly from the IF-a and GIF transcriptions. 
Table 3 is an example to illustrate how the IF-GIF 
transcription is obtained. 

 

Table 3. Steps for the generation of IF-GIF transcription. 
Step Type Transcription 

0 IF ic1 fc1 ic2 fc2 ic3  fc3 ... 
1 GIF ig1 fg1 ig2  ig3 g4 fg3 ... 
2 IF-a ic1 fc1 ic2  ic3 c4 fc3 ... 
3 IF-GIF ic1-ig1 fc1-fg1  ic2-ig2  ic3-ig3 c4-g4 fc3-fg3 ... 

 

However, if the training data is not sufficient, the IF-GIF 
modeling will not work well or even work worse due to the 
data sparseness issue. 

A reasonable method is to generate the IF-GIF models 
from their associated models, where the adaptation 
techniques [Young 1999] can be used. There are at least 
two approaches. The IF-GIF models can be transformed 
either from the IF models or from the GIF models. The 
former method is called the base form GIF (B-GIF) 
modeling and the latter the surface form GIF (S-GIF) 
modeling. 

 
 

IF 

GIF1

GIF3 GIF2 

 

Figure 1. B-GIF modeling: adapting P(a|b) to P(a|b,s). 
Initial IF-GIF models are cloned from the associated 
IF model. In this example, base form IF has three 
surface forms GIF1, GIF2, and GIF3. Given model IF, 
three initial IF-GIF models, namely IF-GIF1, 
IF-GIF2 and IF-GIF3, can be generated from it. 

The procedure for generating IF-GIF models using B-GIF 
method is: 

Step 1. Train all K  IF models { }:1kIF k K≤ ≤  

according to the IF-a transcription. 
Step 2. For each k , generate the initial IF-GIF models 

by copying from model kIF  according to its 

corresponding kM  GIFs { }:1km kGIF m M≤ ≤ . The 

resulting IF-GIF model set is 

{ }:1k km kIF GIF m M− ≤ ≤ . This procedure is 

illustrated in Figure 1. 
Step 3. Adapt the IF-GIF models according to the 

corresponding IF-GIF transcription. We use the term 
‘adaptation’ here just for simplification; it is 
different from its original meaning. 

The procedure for generating IF-GIF models using S-GIF 
method is: 

Step 1. Train all M  GIF models { }:1mGIF m M≤ ≤  

according to the GIF transcription. 
Step 2. For each m , generate the initial IF-GIF models 

by copying from mGIF  model according to its 

corresponding mK  IFs { }:1mk mGIF k K≤ ≤ . The 

resulting IF-GIF model set is 

{ }:1mk m mIF GIF k K− ≤ ≤ . This procedure is 

illustrated in Figure 2. 
Step 3. Adapt the IF-GIF models according to the 

corresponding IF-GIF transcription, similarly to the 
B-GIF method. 

 

IF1 

 
 

IF3

 
 
IF2 

GIF 

 

Figure 2. S-GIF modeling: adapting P(a|s) to P(a|b,s). 
Initial IF-GIF models are cloned from the associated 



 

 

GIF model. In this example, three base forms IF1, IF2 
and IF3 share the same surface form GIF. Given 
model GIF, three initial IF-GIF models, namely 
IF1-GIF, IF2-GIF and IF3-GIF, are generated. 

The difference between the S-GIF method and the B-GIF 
method lies only in how we generate the initial IF-GIF 
models; the former method copies them from the base 
form models while the latter one from the surface form 
models. By comparing these two methods as illustrated in 
Figures 1 and 2, it is straightforward to deduce that the 
initial IF-GIF models using B-GIF method will have 
bigger within-model scatters than those using the S-GIF 
method. The theoretical analysis shows S-GIF method 
will outperform B-GIF method. 

The IF-GIF modeling enables multi-pronunciation for 
each canonical syllable. Considering the 
syllable-to-IF_GIF MPL, each entry has the HTK-like 
form [Young 1999] 
  c g c gSYL i i f f− −        (8) 

where ( , )c cSYL b i f= =  is the base form and ( , )g gs i f=  is 

its surface form. 

4.3 Context-Dependent Weighting – A Kind 
of Pronunciation Weighting 

In Equation(6), the second part ( )P s b  stands for the 

output probability of a surface form given its 
corresponding base form. 

A simple way to estimate ( )P s b  is to directly learn from 

the database with both base form and surface form 
transcriptions. The resulting probability is referred to as 
the direct output probability (DOP). For comparison 
purpose, no probability appears in any HTK lexicon entry 
means setting ( | )P s b const≡  and hence is called an equal 
output probability (EOP) scheme. 

The problem is that the DOP estimation will not be so 
accurate if the training database is not big enough. 
Actually, what we are considering in the pronunciation 
probability ( )P s b  are the base form and surface form of 

Chinese syllables, and at the syllable level the data 
sparseness remains a problem, therefore many weights are 
often not well trained. 

It is true that the syllable level data sparseness DOESN’T 
mean the semi-syllable (IF/GIF) level data sparseness, 
which suggests us to estimate the output probability via 
the semi-syllable level statistics instead. 

According to the Bayesian Rule, the semi-syllable level 
output probability of a surface form, i.e. a GIF, given its 
corresponding base form, i.e. an IF, can be rewritten 
according to the context information as 

  ( | ) ( | , ) ( | )
C

P GIF IF P GIF IF C P C IF=∑    (9) 

where C  is the context of the INITIAL/FINAL IF, it can 
be a bigram, a trigram or whatever related to IF. 
Supposing C  includes the current INITIAL/FINAL 
IF and its left context LIF , Equation (9) can be rewritten 

as 
  ( )( ) ( )( | ) | , |

L

L L
IF

P GIF IF P GIF IF IF P IF IF=∑  (10) 

In the sum on the right hand side of Equation (10), term 

( )( )| ,LP GIF IF IF  is the output probability given the 

context and term ( )|LP IF IF  is similar to the IF transition 

probability. These two terms can be learned from the 
database directly; hence Equation (10) is easy to be 
calculated offline. Based on the way of developing the 
output probability ( | )P GIF IF , this method is called the 
context-dependent weighting (CDW) and the estimated 
probability is called the context-dependent weight (CDW).  
If we define 
  ( )( ) ( )( | ) | , |LM GIF IF P GIF L IF P L IF= ,  (11) 

Equation (9) can be rewritten as  
  ( | ) ( | )

L

L

IF
IF

P GIF IF M GIF IF=∑ ,     (12) 

and according to Equation (10), we define another 
function as 
  ( | ) max ( | )

L
L

IF
IF

Q GIF IF M GIF IF=     (13) 

The above equations are focused on INITIALs and 
FINALs, and the IF pair ( ),LIF IF  could be either a 

(INITIAL, FINAL) pair or a (FINAL, INITIAL) pair. 

To give the syllable level output probability estimation 

( )P s b  as in Equation (6), we have three different 

methods: 
  CDW-M: ( ) ( ) ( )| | |

cs b g c i g cP s b w P i i M f f≈ = ⋅  (14) 

  CDW-P:  ( ) ( ) ( )| | |s b g c g cP s b w P i i P f f≈ = ⋅  (15) 

  CDW-Q: ( ) ( ) ( )| | |s b g c g cP s b w Q i i Q f f≈ = ⋅  (16) 

where ( , )c cb i f=  and ( , )g gs i f=  are as in Section 4.2. 

Obviously Equation (14) considers the intra-syllable 
constrains, which is believed to be more useful. Because 
of Equation (7) especially when using Equation (14) or 
(16), the sum of approximated ( )P s b  over all possible s  

for b  is often not 1.0, that’s the reason we call it weight 
instead of probability. 

If we do not consider the IF-GIF modeling, instead we 
assume that in Equation (6) ( ) ( ),P a b s P a s≈ , in other 

words the acoustic modeling is exactly the independent 
GIF modeling. In this case the use of the CDW results in 
that the probabilistic syllable-to-GIF MPL will have 



 

 

entries in the form of 
  |s b g gSYL w i f       (17) 

where the weight |s bw  can be taken as any one from 

Equations (14), (15), and (16). Nothing taken for |s bw  

means the equal probability or weight. 

4.4 Integrating IF-GIF modeling and 
Context-Dependent Weighting 

When considering both the CDW and the IF-GIF 
modeling, we can combine Equations (8) and (17) 
together and have the probabilistic syllable-to-IF/GIF 
MPL with entry in the form of 
  |s b c g c gSYL w i i f f− −     (18) 

4.5 Measuring the Pronunciation Lexicon 
Intrinsic Confusion 

Though the introduction of MPL is useful to describe the 
pronunciation variation, it also enlarges the 
among-syllable confusion. From Figure 2, it is obvious 
that we still cannot judge the original canonical IF given 
only the observed GIF without a language model or GIF 
level context information even if the recognizer can 
achieve 100% acoustic accuracy, because the observed 
GIF might be generated from several different IFs. Only 
arg max ( | )

IF
P GIF IF  will be chosen as the final result no 

mater which IF generates this GIF. This is an intrinsic 
feature of the introduced MPL related to a specific 
weighting scheme. But there are enough reasons to think 
that the CDW weighting will be better than either the EOP 
weighting or the DOP weighting because it contains GIF 
level context information. In this section, we will 
theoretically analyze the confusion extent of the MPL 
related to different weighting schemes [Song 2001]. 

The pronunciation lexicon intrinsic confusion (PLIC) is to 
be defined as a function of a given MPL L and a weighting 
scheme W on L based on the following two assumptions: 

1. The acoustic model is ideal with accuracy 100% for any 
testing set; and 

2. No word level or syllable level language model is being 
used. 

Assume { }B b=  is the canonical syllable set and { }S s=  

is the generalized syllable set, and the observation 
mapping between any b B∈  and its possible surface form 
s S∈  is given in L, with a joint probability 

( , ) ( | ) ( )P s b P s b P b= ⋅  forming the weighting scheme 

{ }( | ), ( ) | ,W P s b P b b B s S= ∈ ∈ . 

PLIC is designed to reflect the syllable level intrinsic 
confusion extent for a given L and a given W on L, and is 
defined as the lower bound of syllable error rate (SER) 

under the above two assumptions, as follows. 

  ( )( , ) ( ) 1 max ( | )
b B

s S

PLIC L W P s P b s
∈∈

= ⋅ −∑    (19) 

where P(s) is the probability of the syllable observation s, 
and ( | )P b s is the a posteriori probability of s belonging to 
b, and max ( | )

b B
P b s

∈
 is the probability of s being recognized 

as the b' with a maximum a posteriori probability.  
According to the Bayesian equation, Equation (19) can be 
rewritten as  

 

 ( , ) ( | ) ( ) max ( | ) ( )
b B

s S b B

PLIC L W P s b P b P s b P b
∈∈ ∈

 
= ⋅ − ⋅ 

 
∑ ∑  

              (20) 

Based on CASS corpus and the choosing of MPL as stated 
in Section 3.3, the PLIC values for different weighting 
schemes, EOP, DOP, CDW-P, CDW-Q, and CDW-M, are 
compared and illustrated in Figure 3. 

From Figure 3, we can conclude that PLIC is a decreasing 
function of CPPV hence that of the lexicon size. The 
CPPV value of 100% means the MPL contains all possible 
pronunciations of any canonical syllables, and with the 
CPPV value decreases to some extent (about 60%) the 
lexicon becomes an SPL. A tradeoff should be made 
between the lexicon’s confusion extent and the description 
ability of pronunciation variations. 

Though the PLIC is not strictly proportional to the SER, 
lower PLIC values will statistically correspond to higher 
recognition accuracy. From Figure 3 it is seen that, no 
matter how big the CPPV value is, the CDW-M weighting 
scheme always reaches a lowest PLIC value among those 
five weighting schemes. So it is straightforward that 
CDW-M will achieve the best recognition performance, 
theoretically. 

5. EXPERIMENTAL RESULTS 

All experiments are done across the CASS corpus. The 
CASS corpus is divided into two parts, the first part is the 
training set with about 3.0 hours’ spontaneous speech data 
and the second is the testing set with about 15 minutes’ 
spontaneous speech data. The HTK is used for the training, 
adaptation and testing [Young 1999]. A 3-state 
16-gaussian HMM is used to model each IF, GIF or 
IF-GIF. The feature used here is 39-dimension 
MFCC_E_D_A_Z. The feature extraction frame size is 25 
ms with 15 ms overlapped between any two adjacent 
frames. 

Experimental results include (1) UO: unit (IF, GIF or 
IF-GIF) level comparison without the syllable lexicon 
constraint; (2) UL: unit level comparison with the syllable 
lexicon constraint; and (3) SL: syllable level comparison 



 

 

with the syllable lexicon constraint. The listed percentages 
are percent correct 
%Cor=%Hit=Hit/Num*100%=(Num-Del-Sub)/Num*10
0% and percent accuracy 
%Acc=(Hit-Ins)/Num*100%=(Num-Del-Sub-Ins)/Num*

100%, where Num is the total number of SRUs in the 
reference transcriptions, and Hit, Del, Sub and Ins indicate 
the  numbers of hit, deletion errors, substitution errors and 
insertion errors respectively [Young 1999]. 
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Figure 3. The Pronunciation Lexicon Intrinsic Confusion (PLIC) curves as a function of the weighting scheme and 
the syllable level coverage percentage of pronunciation variation (CPPV). 

 

Experiment 1. Independent IF modeling. The first 
experiment is done to test the canonical IF modeling and 
the result is listed in the second big column of Table 4. 
The lexicon used here is a single-pronunciation 
syllable-to-IF lexicon with equal weight, because each 
syllable corresponds to a unique canonical INITIAL and a 
unique canonical FINAL. This is just for comparison. 

 
Table 4. Results of Independent IF/GIF Modeling. 

IF GIF 
Item 

%Cor %Acc %Cor %Acc 
UO 46.28 41.70 44.62 40.02
UL 50.34 42.30 47.55 39.95
SL 34.92 30.48 33.91 29.14

 

Experiment 2. Independent GIF modeling. This is the 

baseline system where an equal probability or weight is 
provided for the syllable-to-GIF MPL. Experimental 
result is shown in the third big column of Table 4. By 
comparing the two experiments, we find that in general the 
performance of independent GIF modeling is worse than 
that of independent IF modeling if no more pronunciation 
method is adopted. This is obvious because the GIF set is 
bigger than the IF set and obviously the PLIC of the GIF 
set is bigger than that of the IF set, which results in that 
GIFs are not better trained than IFs on the same training 
database. 

Experiment 3. IF-GIF Modeling. This experiment is 
designed to test the IF-GIF modeling, ( ),P a b s . Except 

the acoustic models themselves, the experiment condition 
is similar to that in Experiment 2. The B-GIF and S-GIF 
modeling results are given in Table 5. We have tried the 
mean updating, MAP adaptation and MLLR adaptation 



 

 

methods for both the B-GIF and the S-GIF modeling, and 
listed are the best results. 

From this table, it is seen that S-GIF outperforms B-GIF; 
the reason can be seen in Figures 1 and 2 and is explained 
in Section 4.2. Compared with the GIF modeling, the 
S-GIF modeling achieves an SER reduction of 3.6%. 

 
Table 5.  Results of the IF-GIF Modeling. 

B-GIF S-GIF 
Item 

%Cor %Acc %Cor %Acc 
UO 43.31 38.67 41.36 36.83
UL 46.67 38.25 46.47 38.85
SL 36.07 31.39 36.63 31.67

 
Table 6. Effects of the use of IF-GIF modeling and syllable 

bi-gram. 

w/ GIF 
modeling 

w/ IF-GIF 
modeling 

w/ IF-GIF 
modeling & 

Syllable 
Bi-Gram 

Item 

(SL) 
%C %A %C %A %C %A

DOP 35.85 31.15 - - - - 
CDW-P 36.00 31.31 - - - - 
CDW-Q 35.71 31.29 - - - - 
CDW-M 37.25 32.76 37.87 33.39 40.90 36.75

Experiment 4. Pronunciation Weighting. This 
experiment is designed to find a best way to estimate the 
pronunciation weight ( | )P s b . To avoid the influence 
from the IF-GIF modeling, we use GIF modeling only, in 
other words we assume ( ) ( ),P a b s P a s≈ . The EOP and 

( ) ( ),P a b s P a b≈  are not considered because they are 

much worse. In the syllable lexicon, two kinds of 
pronunciation weighting schemes, i.e. DOP and CDW, are 
used for each entry. The results for DOP and CDW 
methods are listed in second big column of Table 6. 
Though for CDW ( | ) 1

S

P S B ≤∑  and mostly it does not 

meet ( | ) 1
S

P S B =∑ as DOP does, CDW performs better 

than DOP.  Compared with the GIF modeling, the pure 
pronunciation weighting method CDW achieves a SER 
reduction of 5.1%. 

Experiment 5. Integrated Pronunciation Modeling. 
Either IF-GIF modeling or CDW pronunciation weighting 
improves the system performance individually; we have 
reason to believe that the integration of CDW and IF-GIF 
modeling will improve the performance much better. The 
result is given in the third big column of Table 6. The SER 
reduction is 6.3% totally compared with the GIF 
modeling. 

Experiment 6. Integration of syllable N-gram. Though 
language modeling is not the focus of pronunciation 

modeling, to make Equation (4) a complete one, we 
borrow a cross-domain syllable language model. This 
syllable bigram is trained using both read texts from 
Broadcast News (BN) and spontaneous texts from CASS, 
the amount of texts from BN is much bigger than those 
from CASS, and therefore we call it a borrowed 
cross-domain syllable bigram. From the result listed in the 
fourth big column of Table 6, it is not difficult to conclude 
that this borrowed cross-domain syllable N-gram is 
helpful. The SER reduction is 10.7%. 

Figure 4 gives an outline of all above experimental results. 
The overall SER reduction compared with GIF modeling 
and IF modeling is 6.3% and 4.2% (all without syllable 
N-gram). 
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P(a|s) 
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SER 3.6% ↓  

+ 

CDW 

S-GIF 

B-GIF 

PronModelingGIF modeling
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SER 10.7% ↓  

DOP

  

Figure 4. A summary of experimental results. 

6. USING MORE DATA WITHOUT 
PHONETIC TRANSCRIPTION 

The above experiments have proved that the proposed 
methods, including the concept of GIF, the refined 
acoustic modeling (IF-GIF modeling), and the 
context-dependent weighting (CDW), are effective, but 
they seem much dependent on the phonetically transcribed 
database, the CASS corpus. A question is whether these 
methods are still effective when more data without 
phonetic transcription is used to refine the acoustic model. 
The solution is given in this section to the raised question. 

We regard the CASS corpus or a similar phonetically 
transcribed database as a seed database. The seed database 
is mainly used to define the GIF set and to initially train 
the CDW weights. A well designed seed database with IF 
N-Grams and GIF N-grams (N can be 1 through 3) well 
balanced and with most spontaneous phenomena well 
covered will be definitely helpful to the definition of the 
GIF set. 

The seed database cannot be very big because the 
transcription effort is extremely great. When more data 
with syllable level transcription yet without GIF level 
transcription is available, the data-borrowing and deleted 
interpolation [Jelinek 1998][Huang 1996][Kim 1997] can 
be useful ideas to refine the existing acoustic model. The 



 

 

problem is that the syllable level transcription is often a 
canonical syllable level transcription instead of a phonetic 
transcription. To solve the problem, we propose an 
iterative forced-alignment based transcribing (IFABT) 
method which is a data-driven one. The IFABT procedure 
can be described as follows. 

Step 1. Using the seed database to define a GIF set and 
a syllable-to-GIF MPL, to train the 
context-dependent weights, and to train the IF-GIF 
model. 

Step 2. Using the forced-alignment technique [Young 
1999] and the MPL to decode both the seed database 
and the given bigger database with syllable level 
transcription so that an IF-GIF transcription can be 
generated. 

Step 3. Using the two databases with the IF-GIF 
transcription to redefine the MPL and to retrain the 
context-dependent weights and the IF-GIF models. 

Step 4. If the overall recognizer performance does not 
achieve a predefined performance threshold across a 
supervising set (which is another set different from 
either the training set or the testing set), go back to 
Step 2, otherwise stop. 

We establish another three-hour database called CASS-II 
under almost the same condition as that of CASS corpus. 
CASS-II is only transcribed at the Chinese syllable and 
character level. By using the IFABT method and 
combining the two corpora into a six-hour database, we 
reduce the SER by about 5.7% across the same testing set 
as that used in the previous experiments. 

7. SUMMARIES AND 
CONCLUSIONS 

In order to model the pronunciation variability in 
spontaneous speech, firstly we propose the concept of 
generalized INITIAL/FINAL (GIF) and generalized 
syllable (GS) with or without probabilities, secondly we 
propose the GIF modeling and the IF-GIF modeling 
aiming at refining the acoustic models, thirdly we propose 
the context-dependent weighting method to estimate the 
pronunciation weights, and then we integrate the 
cross-domain syllable N-gram into the whole system. An 
iterative forced-alignment based transcribing (IFABT) 
method is finally proposed and verified for use in the case 
that only a small portion of database is phonetically 
transcribed. 

The purposes of the above method can be summarized as 
follows. (1) The definition of the GIF set and the GS set is 
to cover more pronunciation variations in spontaneous 
speech.  (2) The refined acoustic modeling (the IF-GIF 
modeling) is to introduce the difference of a GIF 
generated from different IFs so that the acoustic modeling 
is more refined. (3) The context-dependent weighting is to 
reduce the intrinsic confusion of the MPL and to improve 
the estimation accuracy of the lexicon entry probabilities 

(weights) by using the GIF level context information, and 
to solve the sparseness problem in the IF-GIF modeling. 
(4) The IFABT method is for use to better train the 
recognizer using an extra non-phonetically transcribed 
database. 

It can be seen that although the introduction of the IF-GIF 
modeling and the pronunciation weighting leads to 
performance reduction at the unit level compared with the 
IF modeling, the syllable level overall performance for 
IF-GIF modeling greatly outperforms the IF modeling. 
From the experimental results, we conclude that 
•  The overall GIF modeling is better than the IF modeling. 
•  By refining the IF and GIF, the resulting IF-GIF 

modeling ( | , )P a b s  is better than both the IF modeling 

( | )P a b  and the GIF modeling ( | )P a s , even if data is 
sparse, when the S-GIF/B-GIF adaptation techniques are 
used to provide a solution to data sparseness. 

•  The S-GIF method outperforms the B-GIF method 
because of the well-chosen initial models for adaptation. 

•  The context-dependent weighting (CDW) is more 
helpful for sparse data than direct output probability 
(DOP) estimating. 

•  The cross-domain syllable N-Gram is useful. 
•  The above methods are still effective even when only a 

small portion of the database is transcribed at the 
phonetic level by applying the proposed IFABT method 
to the seed database and the non-phonetically transcribed 
database. 
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