Nov. 2003, Vol.18, No.6, pp.747-755

A Method to Build a Super Small but Practically Accurate
Language Model for Handheld Devices

WU GenQing (ZfR1) and ZHENG Fang (K 75)*

Center of Speech Technology, State Key Laboratory of Intelligent Technology and Systems
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R. China

E-mail: {wgq, fzheng}@sp.cs.tsinghua.edu.cn
Received September 26, 2002; revised April 29, 2003.

Abstract In this paper, an important question, whether a small language model can be
practically accurate enough, is raised. Afterwards, the purpose of a language model, the problems
that a language model faces, and the factors that affect the performance of a language model,
are analyzed. Finally, a novel method for language model compression is proposed, which makes
the large language model usable for applications in handheld devices, such as mobiles, smart
phones, personal digital assistants (PDAs), and handheld personal computers (HPCs). In the
proposed language model compression method, three aspects are included. First, the language
model parameters are analyzed and a criterion based on the importance measure of n-grams is
used to determine which n-grams should be kept and which removed. Second, a piecewise linear
warping method is proposed to be used to compress the uni-gram count values in the full language
model. And third, a rank-based quantization method is adopted to quantize the bi-gram probability
values. Experiments show that by using this compression method the language model can be
reduced dramatically to only about 1M bytes while the performance almost does not decrease. This
provides good evidence that a language model compressed by means of a well-designed compression
technique is practically accurate enough, and it makes the language model usable in handheld

J. Comput. Sci. & Technol.

devices.

Keywords
based quantization

1 Introduction

1.1 About Language Modeling

Language modeling is a commonly used means
in information processing. It is often used in a
decoding procedure from a given lower layer se-
quence E = (ey,e2,...) to an upper layer se-
quence W = (wy,ws,...), the goal of which is
to find the maximum likely one among all pos-
sible upper-layer candidates, to provide a likeli-
hood/probability measure for the upper layer. Sup-
pose M = (mqy,mg,...) (where my = 1) is the in-
dex sequence for W, and (em,, €m,+1;- - - €m,s,—1)
is decoded into w; (t = 1,2,...). In such a decod-
ing procedure, the same (em,,€m,4+15---s€msrr—1)
could be decoded into several different w;’s, and
the same E could have several different index se-
quences M'’s, thus the decoding procedure can be
regarded as searching a maximum likely sequence
in an upper-layer sequence space, that is to say,
Wt = argmax{P(W)|E — W} (where — means

w

language model, language model compression, piecewise linear warping, rank-

“encoded into”). Therefore, the decoding is also
referred to as a search procedure. Several appli-
cations that use the language model are listed in
Table 1. The use of language model is actually
the utilization of context dependent information.
A popular kind of language model is the statistical
language model named the n-gram modell!!| which
is an n — 1 order Markov process. In such a model
framework, the current word is assumed to be de-
pendent only on the preceding n—1 words. In other
words,

<y wt—l)

(1)
In particular, the n-gram is called a uni-gram, bi-
gram, or tri-gram model when n = 1, 2, or 3, re-
spectively. For the bi-gram model, the probabil-
ity of a word sequence W = (wy,wsy, L,wr) is ex-
pressed as

P(wt|w1, . ,wt_l) = P(wt|wt_n+1, ..

P(W) = P(w) [[P(wilwe—) (2)

t=2

*The author currently is also with Beijing d-Ear Technologies Co., Ltd., fzeng@d-Ear.com.

748

J. Comput. Sci. & Technol., Nov. 2003, Vol.18, No.6

Table 1. Applications Using Language Model

Application Layer Lower (2 Seq.) Middle (Lattice) Upper (W Seq.)
LVCSR Acoustic signal Syllable/PPhoneme Word
ITandwritten Char. Recognition (ITCR) Tlandwritten character Character Word
Optical Char. Recognition (OCR) Printed character Character Word
Word Segmentation Character none Word
Pinyin Letter nonc Word
TFull Chinese Sentence TMTE Digit Digit none Word
Stroke Stroke none Word

Note: LVCSR stands for large vocabulary continuous speech recognition, IME for input method editor, and
Pinyin is the pronunciation representation of the Chinese character.

while for the tri-gram model

P(W) = P(wy)P(wa|wy) [| Plwilws—2,ws_1)

t=3

(3)
The bi-gram and tri-gram models are the most pop-
ular ones in LVCSR and some other applications.
No matter in what kind of application, a language
model contains high-layer context dependent infor-
mation that is helpful to determine or choose the
best result from all possible candidates. Because of
this, many researchers are spending a lot of efforts
in improving the performance of a language model
in their corresponding application fields.

However, the use of language model encounters
the following two difficulties.

The first one is the sparseness issue. For exam-
ple, in Chinese there are about 50K frequently used
words in LVCSR or Chinese full sentence IME ap-
plications. If we use the bi-gram language model,
there will be 50,000% = 2.5 x 10° word pairs (or bi-
grams for simplification); if we use tri-gram model,
there will be 50,000% = 1.25 x 10'* word pairs (or
tri-grams). It is true that all such grams (bi-grams
or tri-grams) do not occur equally and there will
often be a large number of grams that cannot be
seen or observed even in a huge training text cor-
pus. This is called sparseness. However, the practi-
cal probability calculation requires that none of the
gram probabilities be zero. How to assign a reason-
able and relatively accurate probability value to an
unseen gram is a big issue. It will directly affect
the decoding accuracy.

The second is the problem of the big model size
and the decoding efficiency resulted from it. It is
well known that the bigger the training text corpus
is, the more accurate the language model, and no
doubt, the bigger the language model. Normally,
for a 50K-word vocabulary, the size of a tri-gram
model will be several hundred mega bytes. Such a
big language model makes itself less usable. It costs

a lot of static storage and runtime memory, occu-
pies a lot of CPU resources, and lowers the search
efficiency.

1.2 Popular Methods for Language Model
Compression

The above two issues conflict with each other.
A balance should be made between them. It seems
easy to keep such a balance for applications in per-
sonal computer (PC) or better environments, and
there are quite some researchers who are focusing
on how to reduce the model size, or language model
compression (LMC) in other words, with the ac-
curacy of the language model kept, such as [2-5].
They have been achieving quite good results. These
methods include count-cutoffs, pruning, and clus-
tering.

The count-cutoffs method reduces the model
size simply by throwing away those n-grams oc-
curring less than k£ times, where k is a predefined
constant!>6,

The pruning method uses complex criteria to
choose and throw away those less important n-
grams. In the weighted difference method!”), the
difference between the tri-gram and the bi-gram,
or that between the bi-gram and the uni-gram, is
taken as a kind of measurement for pruning. For
example, if the probability values of P(ws|wq,ws)
and P(ws|wy) are almost the same, throwing away
P(ws|wy, wy) will not cause too much distortion.
In particular, this method uses the value

(w1, we, w3) — D(C (w1, wz, w3))]-

[log P(ws|ws, ws) — log P(ws|ws)]

to decide if it is necessary to keep the value
P(wsz|wy,wy) in the model. The Stolcke pruning!®!
uses more mathematically rigorous criteria that use
a kind of relative entropy-based technique. If the n-
gram (wq,we,ws) is pruned, the increased entropy

WU G Q et al.: Build a Small and Accurate Language Model 749

can be calculated as follows:

— P(wy,wq, ws)*

log P'(ws3|wy, wz) — P(ws|wy, ws)]

where P’ denotes the model after pruning.

In spite of these compressing techniques, the
compressed models are still a little bit too large to
use practically.

Some researchers proposed word-class language
model to reduce the model size and in the
meantime to improve the model accuracy and
robustness®8~101 Taking bi-gram as an example,
the idea can be expressed in the following equation:

T
P(W,C) = P(c1)P(wi]er) H P(et|ei—1)P(wi|er)

t=2

(4)
where ¢; means the word class (attribute) of word
wy, C is the word class sequence, P(c) is the
word class probability, P(w|c) is the word-attribute
probability and P(ct|ci—1) is the word-class tran-
sition probability. Because the number of word
classes is very small, therefore the size of the model
{P(cilej), P(wg|c;)|s, j, k} is also very small. How-
ever, the difficulty in determining the number of
word classes and the concrete word classes results
in dissatisfying model accuracy.

The methods stated above work very well for
PC-oriented applications, but for PDAs or HPCs,
such a language model compressed via these tech-
niques is even unusable because of the rigorous
static storage, runtime memory, and computation
ability limitations.

Naturally, a question arises: is it possible to
reduce the size of a language model to less than
1 megabyte while the accuracy does not decrease
dramatically? The answer as well as our solutions
and results will be given in next sections.

2 Owur Proposed Methods
2.1 Basic Idea

In this paper, we propose a novel LMC method
from a different point of view.

Consider the question raised in the end of Sec-
tion 1. The answer to this question mainly lies in
the answer to the following question: is it possible
to relatively accurately estimate the probabilities of
unseen n-grams? If the answer is YES, the answer
to the former question could also be YES.

An efficient way to re-estimate the probabilities
of unseen n-grams is the Katz smoothing method,

a kind of back-off algorithm!!]
version!’2!, The basic idea of this algorithm is to
re-distribute or discount the occurrence probabili-
ties of seen n-grams to those unseen n-grams ac-
cording to their corresponding (n — 1)-gram, recur-
sively. Our previous proposal of big-discount re-
estimation!®!, where those n-grams with occurrence
counts not greater than a predefined big constant
are regarded as unseen ones, shows an improvement
in language model performance. This reminds us
that there is no inevitable connection between the
size and the accuracy of a language model.

, and its enhanced

From this point on, we will present our
LMC method with bi-gram as an example. In
order to easily perform online language model
adaptation3 and to reduce storage amount, we
store the occurrence counts (in integer number) in-
stead of the occurrence probabilities (in float num-
ber) for uni-grams, and the probabilities can be cal-
culated easily in real-time. The proposed method
includes the following steps: (1) throwing away
those bi-grams with less importance; (2) narrow-
ing down the value range of the occurrence counts
of uni-grams; and (3) assigning each bi-gram with
a rank-based predefined bi-gram probability value.
Obviously the performance of the compressed lan-
guage model after all these steps is dependent on a
well trained full language model, the seed language
model.

2.2 Training Seed Language Model

The maximum likelihood estimation (MLE) is
often used to estimate the parameters of the n-
gram language model. Because a full language
model with good performance is the footstone for
LMC, the important thing to do before the LMC
is to train a good language model from a huge text
corpus.

After calculating the occurrence counts of all
seen n-grams, we use the Katz back-off smooth-
ing method to give the full language model
parameters/!!]| and the bi-gram probability is given
as

Clwi—1,w;)/C(wi-1),
if r>rp
d,C(w;—1,w;)/Clw; 1),
Preatz (wilwi—1) = 0 <1<y
a(wi_l)PKatz(wi)v
ifr=0
(5)

750

where C(-) stands for the occurrence count of the
specified event, r stands for C(w;_1,w;) for con-
venience, rr is a count threshold for discounting
purpose, and a(w;_1) and d,. are the smoothing pa-
rameters for bi-gram. If n, denotes the number of
n-grams that occur exactly r times, d,. is calculated
as follows:

r* (TT + l)nTT+1

r ny
6
GRSy ©)

ny

d, =

After d, is determined, a(w;—1) can be calculated
as
1— Y Pga(wilwi_q)

w;ir>0
= Y Pr(w)

wi:r>0

a(w;—1) =

The training process of the tri-gram model is simi-
lar to that of the bi-gram model. Because the seed
language model contains almost all information ex-
tracted from the training corpus, the accuracy is of
course quite high.

In order to reduce the model size to less than 1
mega bytes, the bi-gram model instead of the tri-
gram model is used as the seed model in this paper.

2.3 Compressing the Seed Model

To get a high-performance compressed language
model, we should preserve important information
as much as possible and throw away less-important
and redundant information. And practically, we
should adopt some engineering methods to reduce
the storage amount.

2.3.1 Choosing Important Bi-Grams

Generally speaking, a bi-gram model trained
using a large corpus with several hundred million
words contains tens of millions of bi-grams, actually
each of which does not contribute equally. Based
on this, not all of them are necessarily within an ac-
ceptable range of error. Those with less importance
could be removed so as to diminish the model.

The very important thing in this step is the
measure of importance. There are several alterna-
tives for the measurement of importance to decide
which to remove and which to preserve.

The first one is to use the joint probability to
measure the importance. Given a bi-gram (wy, ws),

J. Comput. Sci. & Technol., Nov. 2003, Vol.18, No.6

the joint probability can be calculated as follows:

C(wl, ’wg)
> Clwi,ws)

wi, w2

P(wl,wg) = (8)

The denominator of (8) remains the same for
all bi-grams, so the importance of a bi-gram
(w1, ws) can be measured by the occurrence count
C(w1,wsz) equivalently. Assume {(wi,ws)|wi, wa}
is the whole bi-gram space. In this space, bi-
gram (wi,ws) with a bigger occurrence probability
P(wy,ws) (or a bigger occurrence count C (w1, ws))
is referred to as the one with higher importance,
and this measure is called an Importance Measure
by Joint bi-gram Probability (IMJbP).

The second one is to use the following condi-
tional probability to measure the importance of a
bi-gram (wy,ws):

C(wl, ’wg)

P(w2‘w1) = C(wl)

(9)
That is to say, the bi-gram with a bigger condi-
tional probability is referred to as one with higher
importance. We call this measure an Importance
Measure by Conditional bi-gram Probability (IM-
CbP). Roughly thinking, the IMCbP should be
more reasonable than the IMJbP. It can be seen
from the following example. Consider two bi-
grams, where C(wi1,w;2) = 1 with C(wq1) = 10
and C(wa1,wss) = 1 with C(wg;) = 1,000. The
counts of these two bi-grams are equal, therefore
their joint probabilities are equal, but the counts
of their corresponding histories are quite different.
Because C(wy1) is much less than C(ws1), bi-gram
C(w11,w12) should be much more important than
bi-gram C(wa,wss) relatively.

Based on the above analysis, IMCbP is used as
the importance measure. Only those bi-grams with
conditional probability greater than a predefined
threshold will be kept in the compressed model.

On the other hand, we should also check
whether some of the preserved bi-grams are redun-
dant. Let us see an example. Suppose the back-
off smoothing algorithm™) gives the kept bi-gram
(w1, ws) a re-estimated probability approximately
the same as its initial probability estimated from
the training corpus, that is to say, either way leads
to almost the same result, or one of these two is
redundant. In this situation, it is unnecessary to
keep this bi-gram because its probability can be
calculated using the back-off algorithm.

By this kind of checking, some redundant bi-
grams can be removed.

WU G Q et al.: Build a Small and Accurate Language Model

After these two steps in the first-stage process-
ing, the model size will become much smaller while
the performance of the model is almost preserved.

2.3.2 Compressing Uni-Gram Count Value Range

It is necessary to use multiple bytes to present
the occurrence count of a uni-gram in the seed lan-
guage model trained using a huge training corpus.
Usually, a 4-byte word (long integer) is used for uni-
gram. This will obviously increase the model size
because we store the counts instead of the proba-
bilities in our language model. An alternative way
to reduce the model size is to store the count value
with short integer, which suggests us to compress
the count values into a small range.

The famous Harvard linguistic professor George
Kingsley Zipf issued the classical law about the sta-
It shows that
the frequency of occurrence of some event (p), as
a function of the rank (i) when the rank is deter-
mined by the above frequency of occurrence, is a
power-law function p; > 1/i* with the exponent a
close to [14], as shown in Figs.1-3. From this law,
it can be concluded that most n-grams occur with

tistical characteristic of language.

very low frequencies, and our previous experiments
have also proven this fact!*4.

1000 — —
“ L Uni-gram distribution
£ 800
2 600 \
£ 400 \
50 4
= o200| M,
- L NWM:.....
T ST
TEERNEEES3E

Uni-gram count

Fig.1. Uni-gram distribution.

4.000.000 Bi-gram distribution

3,000,000

2,000,000

Bi-gram number

1,000,000

l'\

0
=R R R O Vo B Yo B B~ B o e)
— = N o i C I~ & 2

Bi-gram count
Fig.2. Bi-gram distribution.

That is to say, though a 4-byte integer is se-
lected to store the occurrence count of a uni-gram,

751

most of the uni-grams have very small occurrence
counts. This is very similar to the voice signal in
the telephone line where the amplitudes of most of
the sample data are very small. In the voice sig-
nal processing, the A-law or the p-Law is adopted
to compress the signal. The basic idea of the A-
Law or the p-Law is to compress a linear PCM
sample (13 bits) down to 8 bits (one byte). Such
an idea can be borrowed into the compressing of
the n-gram counts, in other words, to compress the
count value according to a warping curve. In or-
der to simplify the calculation, we use a piecewise
linear function as follows:

C < Cy

10
C > Cy ()

o' = { <
CQ+S'(C—00),
where Cy is a connecting point that all values less
than Cy will remain unchanged, and s is the slope
that is always much less than 1, as illustrated in
Fig.4. This is referred to as a piecewise linear warp-
ing method.

30,000,000

Tri-gram distribution

20,000,000 l‘

10,000,000 rl

I'ri-gram number
—

0 b=
4 7 10 13 16 19 22 25
Tri-gram count

Fig.3. Tri-gram distribution.

Ao

(v/

‘max

Fig.4. Piecewise linear compression curve.

2.3.3 Approximating Bi-Gram Probabilities by
Rank

Above, we use a piecewise linear compression
function for uni-gram count compression. Anyway
this method is not suitable for bi-gram count com-
pression because compressing the bi-gram count
value range will result in a much bigger accuracy

752

loss. To avoid this, we choose to approximate the
bi-gram probabilities directly.

The main idea here is to approximate the oc-
currence probability according to its rank instead
of its actual value so that no probability values are
stored because the rank-related probabilities can
be trained offline and they are fixed instead of dy-
namic. An easy way to estimate the probabilities
is to use a codebook. The calculation is simple as
follows. Suppose there are n bi-grams (g|w;) shar-
ing the same history w; in the compressed model.
We call such a wy an n-style history. Sort these bi-
grams in a descending order of the bi-gram count
values, and the number i-th bi-gram will be as-
signed with a probability Plfflde, which can be cal-
culated offline as

NZ Pi(-|wy)
code W1ilVw, =1
Pi,n - Z 1 (11)

W1 Ny, =n

where P;(-|wy) is the probability of the number i-
th bi-gram with the history w; in the full language
model and N,,, the number of bi-grams with his-
tory w; in the compressed model. The assigned
value is actually the average probability of the -
th n-gram with n-style history. This method is
very effective because it considers not only the po-
sition of the n-gram but also the number of the
n-grams with the same history. We call the pro-
posed method a rank-based quantization method.

The statistical results of the codebook are listed
in Table 2.

Table 2. Probability Codebook of Bi-Grams

2

" 0 1 2 3 4
1 0.385

2 0.322 0.157 - - -
3 0.285 0.139 0.091

4 0.273 0.132 0.081 0.060 -

2.3.4 Real-Time Probability Accessing

After all the above three steps, a compressed
language model is now available. The piecewise
linear warping method is used to compress the
uni-gram counts and the rank-based quantization
method is used to approximate the bi-gram prob-
abilities. Therefore the probability of the com-
pressed model could be accessed as follows. If the
target bi-gram can be found in the compressed lan-
guage model, the probability will be accessible in
the lookup table, i.e., the probability codebook;

J. Comput. Sci. & Technol., Nov. 2003, Vol.18, No.6

otherwise, the back-off algorithm will be performed
over the compressed uni-gram counts to give the
probability.

As mentioned in Section 1, the decoding pro-
cedure can be regarded as searching a maximum
likely sequence in an upper-layer sequence space,
and it will lead to tremendously frequent accessing
to the model. In order to meet the real-time re-
quirements in a PDA, the main part of the model
is stored in the disk or the flash card, and a hash
cache mechanism, which stores the most latest fre-
quently used unit in the memory cache pool, is
used. This technique improves the accessing speed
at least 5 times and reduces the memory cost to
about 20K bytes.

As a matter of fact, the compressed language
model is not normalized. In other words, the sum
of the probabilities of all the n-grams with the same
history does not equal 1.0, actually, it is only a lit-
tle bit greater than or less than 1.0. The probabil-
ity normalization is an easy thing to do, however
our primary experiments show that the normaliza-
tion does not improve the performance of the com-
pressed model. This is also explainable theoreti-
cally. Practically, what affects the model perfor-
mance more is the relative relation between any
two bi-grams with the same history instead of the
absolute value of each bi-gram.

2.3.5 Influence of Vocabulary Size

It is well known that in Chinese a sentence is
a sequence of words without any separate denota-
tion between the adjacent words. Chinese charac-
ters are the basic units for Chinese language, and a
Chinese word may contain one character or more.
This fact will lead to a serious situation that the
vocabulary is very flexible. First, the set of Chinese
characters can be used as the vocabulary directly.
Because the common character set size is not too
large (usually about 6,700), the language model
size is relatively small. Actually, in real applica-
tions, some characters always occur simultaneously
in a specific order and represent a particular con-
cept, and they are used to form a multi-character
word, thus the vocabulary will be extended to con-
tain multi-character words. Obviously, the vocab-
ulary size is determined mainly by the number of
the multi-character words.

The model is trained in such a process. First,
the corpus is segmented into word streams accord-
ing to the vocabulary. Second, each word is as-
signed with an identity number and the model is

WU G Q et al.: Build a Small and Accurate Language Model 753

trained. It can be seen that the language model size
will increase with the vocabulary size; similarly, the
performance of the model will increase with the in-
crease of the vocabulary too. Considering this situ-
ation, suppose w; and wy are two words in a small
vocabulary and the bi-gram (wj,ws) is not in it
but in a large vocabulary. There is often such an
example. Bi-gram (wy,w) appears in an LM with
a smaller vocabulary while bi-gram (wiwsz,w) ap-
pears in an LM with a larger vocabulary. From
the smaller vocabulary point of view, (Wiwz,w)
is taken as a tri-gram (wj,ws,w). This example
shows a bi-gram in an LM with a large vocabulary
may contain the same information as a tri-gram in
LM with a small vocabulary. In other words, the
context-dependent information can be embedded in
words instead of word n-grams when using a large
vocabulary, which will obviously reduce the size of
the language model when the amount of informa-
tion is the same.

Therefore, increasing the vocabulary size can
also act as an alternative method to reduce the
model size. In our system, the vocabulary size is
about 50K.

3 Experiments

The full tri-gram language model, i.e., the seed
language model, used in this paper is trained with
a large corpus containing about 200 million Chi-
nese words. The corpus includes 4 years’ text data
from the People’s Daily (of the years of 1993, 1994,
1996, and 1997) and some texts from other newspa-
pers. The vocabulary is made up of 50,624 Chinese
words, where there are 6,201 monosyllable words
(12.3%), 37,976 bi-syllable words (75.0%), 1,615
tri-syllable words (3.2%) and 4,832 quad-syllable
words (9.5%)!17].

After the full language model is compressed, the
resulted language model has the size of less than 1
mega bytes.

Three test corpora are chosen. Corpus A
(35,025 characters) is a political lecture given
by the Chinese President JIANG Zemin. Cor-
pus B (1,800 sentences with 23,310 characters)
is taken from the Chinese National High-Tech
R&D 863 Project, and Corpus C (375 sen-
tences with 3,466 characters) includes news taken
from the web site of PhoenizTV in Hong Kong
(http://www.phoenixtv.com.cn).

The application using which the comparison
experiments are done is a full Chinese sentence
Pinyin-to-character conversion system, i.e., a full
Chinese sentence IME via Pinyin.

Experimental results are given in the following.

3.1 Character Error Rate Against Model
Size

Experiments are done to show how the model
performance changes while the model is compressed
from a quite large one to a very small one. Fig.5
gives the curve of the character error rate against
model size. It shows that the model performance
keeps almost unchanged when the size is com-
pressed to less than 10M bytes. As it can be seen
from the figure, the error rate of Corpus A is very
low, so Corpus A must be very similar to the train-
ing corpus, and it can be called as a low-perplexity
corpus, while Corpus C is a high-perplexity one.
The experiment result indicates that the compres-
sion method works very well for a high-perplexity
corpus (such as Corpus C), because the polyline for
Corpus Cin Fig.3 is very flat.

Error rate (%)

Model size (MB)

Fig.5. Character error rate against model size.

3.2 Performance of Uni-Gram Count Com-
pression

In this experiment, only the uni-gram model
is used during the decoding procedure. The seed
language model uses 4-byte integer (Long Word)
to store the uni-gram occurrence counts. For the
compressed language model, we compare the use of
2-byte integer (Word) and 1-byte integer (Byte) to
store the uni-gram counts in the piecewise linear
compression.

As shown in Table 3, using Word or Byte to
store the uni-gram counts in the piecewise linear
compression method leads to an absolute accuracy
decrease of 0.3% or 1.8%, respectively, compared
with the full language model. The accuracy de-
crease can be ignored practically.

754

J. Comput. Sci. & Technol., Nov. 2003, Vol.18, No.6

Table 3. The Conversion Accuracy (%) Using the
Piccewise Lincar Compression Function for Uni-Gram Counts

Method
. A B C Average
Corpus
Sced model 92.02 83.51 86.79 87.44
Word width (C,, = 65,533) 91.89 82.95 86.50 87.11
Byte width (O, = 255) 91.11 81.55 84.39 85.68

3.3 Performance of Compressed Model

Shown in Table 4 is the performance compari-
son among the compressed model, the full tri-gram
model and the full bi-gram model. Comparing the
compressed bi-gram model with the full tri-gram
model, we can see that the model size decreases to
0.3% and the average accuracy decreases by only
4.1%.

Table 4. The Conversion Accuracy (%)
of the Compressed TL.anguage Model Compared
with the Full Language Model

Model .

Corpus A B C Average
Full tri-gram model 99.31 98.90 9123 9719
(Size: 310MB) B ' - '
Tull bi-gram model 9875 96.39 93.91 96.36
(Size: 43MB) ’ h - '
Compressed bi-gram . .

97.07 90.94 92.03 93.35

(Size: 940K B)

4 Analysis and Conclusions

In this paper, after analyzing the purpose and
factors of a language model, we propose a new lan-
guage model compression method with three tech-
niques: an importance measure used to determine
which n-grams to keep and which to remove, a
piecewise linear warping method used to compress
the uni-gram count value range, and a rank-based
quantization method to re-estimate the bi-gram
probability values.

By using the novel language model compression
method, we can compress the model from several
hundred megabytes to less than 1 megabyte while
the performance is almost not reduced.

Why the result is so satisfying? The explana-
tion could be as follows.

As a matter of fact, a language model is used
to describe the co-occurrence probabilities of any
words. Therefore what affects its performance
is the description ability of words’ co-occurrence
probabilities no matter how large the model is.
Based on this, a good solution to reducing the lan-
guage model size is to preserve the high-density
information contained in a language model. The

reason why the proposed method achieves such a
good result lies in that it throws away the unusable,
less-usable and redundant information as much as
possible while only the most usable information is
kept.

The proposal of such a language model com-
pression method makes the language model usable
for applications in handheld devices, such as mo-
biles, PDAs, and handheld PCs, where storage and
memory are luxuries.

References

[1] Jelinek F, Mercer R L. Interpolated estimation of
Markov source parameters from sparse data. In Pat-
tern Recognition in Practice, Gelsema E S, Kanal L N
(eds.), Amsterdam, North-Holland, 1986.

[2] Di S, Zhang L, Chen Z et al. N-gram language model
compression using scalar quantization and incremental
coding. In International Symp. Chinese Spoken Lan-
guage Processing (ISCSLP’2000), Beijing, China, 2000,
pp.347-350.

[3] Goodman J. Language model size reduction by pruning
and clustering. In Int. Conf. Spoken Language Pro-
cessing (ICSLP’2000), Beijing, China, 2000.

[4] Whittaker E, Raj B. Quantization-based language
model compression. FEuroSpeech, Aalborg, Denmark,
2001, pp.33-36.

[5] Jelinek F. Self organized language modeling for speech
recognition. In Readings in Speech Recognition, Waibel
A, Lee K F (eds.), Morgan Kaufmann, 1990.

[6] Zheng F, Wu J, Song Z J. Improving the syllable-
synchronous network search algorithm for word decod-
ing in continuous Chinese speech recognition. J. Com-
puter Science & Technology, Sept. 2000, 15(5): 461—
471.

[7] Seymore K, Rosenfeld R. Scalable backoff language
models. In Int. Conf. Spoken Language Processing
(ICSLP’1996), Vol.1, Philadelphia, 1996, pp.232-235.

[8] Stolcke A. Entropy-based pruning of backoff language
models. In Proc. DARPA News Transcription and Un-
derstanding Workshop, Lansdowne, VA, 1998, pp.270-
274.

[9] Yan P J, Zheng F, Xu M X et al. Word-class stochas-
tic model in a spoken language dialogue system. In
Int. Symp. Chinese Spoken Language Processing
(ISCSLP’2000), Beijing, Oct. 13-15, 2000, pp.141-144.

[10] Niesler T R, Woodland P C. Variable-length category-
based n-grams for language modeling. Technical Re-
port, Cambridge University, UK, April 1995.

[11] Katz S M. Estimation of probabilities from sparse data
for the language model component of a speech recog-
nizer. In Int. Conf. Acoustics, Speech and Signal Pro-
cessing (ICASSP’1987), 1987, 35(3): 400-401.

WU G Q et al.: Build a Small and Accurate Language Model 755

[12] Wu G Q, Zheng F, Wu W H et al. Improved Katz
smoothing for language modeling in speech recogni-
tion. In Int. Conf. Spoken Language Processing (IC-
SLP’2002), Vol.2, Denver, 2002, pp.925-928.

[13] Wu G Q, Zheng F, Jin L, Wu W H. An online incremen-
tal language model adaptation method. FEuroSpeech,
Aalborg, Denmark, Sept. 3-7, 2001, 3: 2139-2142.

[14] Zipf G K. Selective studies and the principle of relative
frequency in language. Harvard University Press, Cam-
bridge, MA, 1932.

[15] Zheng F. A syllable-synchronous network search algo-
rithm for word decoding in Chinese speech recognition.
In IEEE Int. Conf. Acoustics, Speech and Stgnal Pro-
cessing (ICASSP’1999), Phoenix, USA, March 15-19,
1999, pp.I11-601-604.

WU GenQing is currently a Ph.D. candidate of
Center of Speech Technology, the State Laboratory of
Intelligent Technology and Systems, Tsinghua Univer-
sity. He received his B.S. degree in computer science
and technology from the Department of Computer Sci-
ence and Technology, Tsinghua University, in 1999.
He is now focusing on language modeling for speech
recognition. His current research interests include lan-
guage modeling, language model adaptation and lan-
guage model compression techniques.

ZHENG Fang is currently an associate professor
of Tsinghua University. He is the Director of Cen-
ter of Speech Technology, State Laboratory of Intel-
ligent Technology and Systems. Dr. Zheng graduated

from the Department of Computer Science and Tech-
nology of Tsinghua University and received his B.S.,
M.S. and Ph.D. degrees from Tsinghua University, in
1990, 1992 and 1997 respectively. He has been work-
ing in speech recognition and understanding at the De-
partment of Computer Science and Technology, Ts-
inghua University, since 1988, and now is with the
State Key Laboratory of Intelligent Technology and
Systems. He has published over 110 technical papers
on acoustic/language modeling, isolated/continuous
speech recognition, keyword spotting, dictating, lan-
guage understanding, and so on. He is now an IEEE
member, an ISCA member, a member of the Artificial
Intelligence and Pattern Recognition Technical Com-
mission of China Computer Federation, a member of
the Editorial Committee of the Journal of Chinese In-
formation Processing, and a key member of Oriental-
COCOSDA. He is serving as a reviewer of several do-
mestic and international journals. Recently, he has
been the General Chair of Oriental-COCOSDA’2003, a
member of the Scientific Committee of ISCA Tutorial
and Research Workshop (ITR-Workshop) on Pronun-
ciation Modeling and Lexicon Adaptation for Spoken
Language Technology 2002, and a member of the Tech-
nical Committee and International Advisory Commit-
tee of the Joint International Conference of the Fifth
Symposium on Natural Language Processing (CNLP)
and 2002 Oriental COCOSDA Workshop (SNLP-O-
COCOSDA).

