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ABSTRACT 

Though the statistical language modeling plays an important 
role in speech recognition, there are still many problems that 
are difficult to be solved such as the sparseness of training 
data. Generally, two kinds of smoothing approaches, namely 
the back-off model and the interpolated model, have been 
proposed to solve the problem of the impreciseness of 
language models caused by the sparseness of training data. By 
expanding the idea of back-off to the re-estimation of not only 
the unseen word pairs but also all word pairs, a back-off 
model based modified method is proposed, referred to as the 
Enhanced Katz smoothing with deleted interpolation 
(EKSWDI). A uniform expression and two simplified 
versions for this modified model are also given. Experiments 
on a Chinese pinyin-to-character conversion system and the 
perplexity measure show that the proposed model has a better 
performance than the Katz smoothing method does. 

1. BACKGROUND 

Statistical language models are commonly used in the 
large-vocabulary speech recognition systems. The most 
frequently used one is the Markov model [1], where the word 
sequence is considered as the observation of an (N-1)-order 
Markov process called N-Gram. Under this assumption, the 
probability of a word sequence ( )nWWWT �21=  can be 
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most recent (N-1) words are considered to predicate the 
coming word. In spite of the simplicity and applicability of 
this formula, the most reasonable Maximal Likelihood 
Estimation (MLE) used to train the language model has fallen 
across many difficulties. Firstly, the huge corpus needed for 
more accurate n-gram estimation is difficult to collect, label, 
and process. Secondly, no matter how widely the training data 
covers, the real system should still face the severe 
data-sparseness problem because there won’t be enough 
domain-specific data available. In order to deal with the above 
problems, many smoothing methods are proposed. For a 
traditional tri-gram model (where N=3), the simplest approach 
is the linear interpolation among the uni-gram, bi-gram and 
tri-gram probabilities [2]. In this implementation, the total 
training data are divided into two distinct portions. Kept data, 
the larger one, is used to estimate the conditional probabilities 
of the focused words given the corresponding historical word 
sequences while held-out data, the smaller one, is used to 
estimate the weights among the three relative frequencies. 

Another prevalent method applied in the state-of-the-art 
speech recognizers is the back-off algorithm [3]. Both the 
back-off smoothing algorithm and the deleted-interpolation 
algorithm can generally yield a good performance, but they 
perform differently when the training data are different in size. 
The back-off re-estimation is more accurate for large training 
corpus, while the interpolation re-estimation for small one. 
Part of our work is to study the factors that cause the 
difference and to find approaches to the reconcilably use of 
them, and therefore a modified Katz smoothing based 
language model integrated with deleted-interpolation is 
proposed in the paper. 

This paper begins with a review and an analysis on both the 
standard Good-Turing (GT) estimation method and the Katz 
Smoothing (KS) method in Section 2. In section 3, the 
detailed algorithm of our proposed integrated model is 
described. In Section 4 we introduce the experimental setup 
and describe the perplexity and recognition results. 
Conclusion is drawn in Section 5. For the ease of explanation, 
all of the algorithms described in this paper are based on the 
bi-gram model, which can be extended to a higher order 
model easily. 

2.GOOD-TURING ESTIMATION AND KATZ 
SMOOTHING 

The basic idea of Good-Turing re-estimation is to partition 
n-grams according to their frequencies so that the n-grams’ 
parameter space can be shared. In the GT estimation, the 
frequency (also known as the occurring count) of any seen 
n-gram is discounted according to some transcendental rules. 
Moreover, the accumulated residual probability is 
re-distributed to the unseen n-grams. The standard rule is 
presented as follows,  

r

r

n

n
rr 1* )1( ++= ,     (1) 

where r  is the frequency of certain n-gram, *r  is the 
frequency after discounted and 

rn  is the number of n-grams 
that occur exactly r  times in the training data. After the 
normalization, the relative frequency 
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is taken as the re-estimated probability. The GT re-estimation 



 

can assign an approximate value to unseen n-grams (that is to 
say, n-grams with zero probabilities) to prevent candidates 
containing such n-grams from being neglected out of 
consideration. Nevertheless, the re-estimation is so rough that 
it can not distinguish those different unseen n-grams. For 
example, the word pair “nong2 ye4 (agricultural)�  and 
� jing1 ji4 (economy)” does not co-occur in a Chinese 
training corpus, neither does another different word pair 
“nong2 ye4 (agricultural)� and �dang3 (party)”, but the 
former word pair is more reasonable and therefore more 
possible to appear in new corpus.  

Katz [3] develops a modified version of this estimation by 
combining higher-order models and lower-order models when 
re-estimating the probability of unseen bi-grams, which is 
actually a kind of back-off model. According to Equation (2), 
all the zero-frequency bi-grams are approximated from the 
relative frequency of those occurring-once bi-grams, each of 
which is called a singleton. The Katz Smoothing supposes that 
the occurring probability of the zero frequency bi-gram is also 
associated with the focused word in the word pair. This idea 
can be exactly expressed as follows, 
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In Equation (4), )(ec  is the occurring count of the event e.  

Similar to the Katz discounting Equations (3)-(6) for the 
Bi-gram model, higher order unseen n-grams can also be 
re-estimated by the (n-1)-Grams recursively. As the end of the 
recursion, the KS uni-gram re-estimation is taken to be 
equivalent to the GT re-estimation of this uni-gram.  

Compared with the standard Good-Turing re-estimation, Katz 
Smoothing will assign two different re-estimation values to 
the word pairs “agricultural economy” and “agricultural 
party” because of the different occurring frequencies of the 
words “economy” and “party”. Intuitively, this method can 
result in a better performance than the GT method can.  

However, Katz Smoothing has its own shortages. Since the 

discounting of n-grams with zero and non-zero frequencies is 
based on different order n-gram information, the results will 
be contrary to our expectation in a few cases. Considering the 
two word-pairs (u,v) and (u,w), there may be some unexpected 
result if the language model is being trained using the corpus 
where the first word-pair appears only a few times (no more 
than the predefined threshold T) while the latter one is 
completely unseen. For example, if the following results are 
observed for u and v: 

5)( =wC , 0)( 1 =wwC , 1)( 2 =wwC , 2.0)( 1 =wPs
,

3.0)( 2 =wPs
, 5.0)(1 =wd , 6.0)( =wα , 

It is thought that the probability of the first pair should be less 
than latter one in the KS method since )()( 12 wwCwwC >  
and )()( 12 wCwC > . However, according to Equation (3), we 
could get the smoothed probabilities 
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Unfortunately, the results are contrary to our expectation. In 
other words, the probability is not so smooth as we expect. 
After browsing the corpus, we find that this phenomenon is 
very common, especially in the word-pairs with low counts. 
One possible solution is to consider the low-order n-gram 
information in all the cases. 

3.PROPOSED APPROACHES 

3.1 Enhancing Katz Smoothing by Integrating 
Deleted Interpolation  

The Katz Smoothing can be expressed in a form of the 
interpolated model 

( ) ( ) ( ) ( )( ) ( )vPvuuvPvuuvP KSGTKS ,1, λλ −+=   (7) 

In fact, in order to satisfy the Equation (7) the weight λ in the 
KS method must be chosen such that 
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Obviously, the key difference between the back-off and the 
interpolated models is that the interpolated model considers 
the information from lower-order n-gram distributions while 
the back-off model do not when re-estimating the 
probabilities of n-grams with non-zero counts. This is why the 
two models perform differently in different corpora. Based on 
the interpolated form of back-off model, lower-order n-gram 
distributions can be easily integrated into the Katz Smoothing 
by redefining the weight function. The modified equation can 
be rewritten as 



 

1.Train a KS based back off language model on the training 
corpus; For each word pair (u,v), store the probability 

( )uvPGT
 and ( )vPKS

 and the occurring time in the train 
corpus. 

2.Prepare a held-out corpus; 

3.For the each word pair (u,v), compute  the number of times  
( )vuN , that this bi-gram takes place in the held-out data set; 

4.For the occurring time r from 1 to R, try to maximize  
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with the limitation of (12) and (13) by the undetermined 

( )
( )
( )

( )





=
−

−
>

=
0

1,
1

0,

,
rfor

vu

u

rforvu

vu
r

β
α

µ
λ .                   (10) 

In order that the probabilities of all unseen bi-grams are not 
altered after the Katz Smoothing, the value of weight function 

( )vu,µ  should be selected to make the accumulated 
probability of the word pairs occurring r times unchanged. 
That is to say 
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Generally, we can define the weight function in Equation (10) 
as a linear interpolated formula of ( )vc  and ( )( )vucr ,=  as 

( ) ( ) ( ) ( )vCrrvur ⋅+= 21, λλµ .                  (12) 

For a given frequency r , by substituting Equation (12) for 
the weight function in Equation (11), we get 
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Therefore we have 2⋅R coefficients (i.e., 1λ  and 2λ ) and R 
constrains, where R is the range of r. Then the coefficients can 
be estimated as the held-out algorithm shown in Figure 1: 

Figure 1. The held-out algorithm of parameter estimation 

The held-out algorithm is often used in the 
Deleted-Interpolation algorithm [4], therefore the modified 
model is referred to as the Enhanced Katz Smoothing With 
Deleted Interpolation (EKSWDI).  

3.2 Simplified Versions  

EKSWDI can be implemented easily in the decoding module. 
However, we should calculate all the coefficients by many 

times’ executions (to be precise, R times)) of the forth step of 
the held-out algorithm given in Figure 1. Furthermore, the 
storage perplexity for all the coefficients is a very high. In 
order to make this model more practical in real-time systems, 
two simplified versions are presented.  

Above all, let us consider the assumptions of these two 
versions. Firstly, the Katz Smoothing assumes that the 
probability of frequent bi-grams estimated under the MLE 
criterion is adequately believable, which leads to the weights 
in these cases being assigned as constant one with no 
reduction in performance. Secondly, as we mentioned in 
Section 2, the lower-order n-gram information is more 
urgently required to be considered in case r is smaller. 
According to the two hypotheses, the weight function ( )vu,µ  
can be defined as a normalized relative ratio of the bi-gram 
probability to the uni-gram probability as in Equation (14). 
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This implementation, which is called EKSWRI, can be 
explained as the relative confidence measure of the bi-gram 
probability compared with the uni-gram probability. By this 
formula, the storage perplexity problem is easily overcomed 
because the weights can be obtained dynamically in run-time.  

Furthermore, since Equation (14) is still a little bit 
complicated in the implementation of the language models 
most commonly used in current speech recognition systems, a 
simple linear function of the count r as Equation (15) is 
considered to lower down the time consumption. 
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According to Equation (15), the recursive expression of 
modified Katz Smoothing, namely EKSWLI can be 
generalized as follows 
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However, these two simplifications do not always satisfy the 
constraint implied in Equation (11). We should re-estimate 
the value of )(uα  and normalize the distributions to make the 
probability sum-up be one.  

4. EXPERIMENTS 

The language model used in the following experiments is the 
tri-gram built on a huge corpus that contains about 200 
million words. The corpus covers the 4-year’s text data of 



 

“People’s Daily” (from 1993 to 1994 and from 1996 to 1997) 
and a few sections from other Chinese newspaper. The 
training data are all written texts in news style and in formal 
language. The vocabulary set consists of 50624 Chinese 
words, which lengths vary from one to four. 

4.2 Perplexity Comparison for Different Models 

The perplexities of different models are calculated on a small 
corpus that contains about 100,000 words. This corpus is also 
news style and taken from “People’s Daily” of Year 1999. 
The results are shown in Table I. In the table, KS means the 
standard Katz Smoothing back-off model and is used as the 
baseline. EKSWDI means the model using the algorithm and 
the weight function discussed in Section 3.1. From the results, 
we can see that this model achieves a better performance than 
the KS does with regards to the perplexity. It is because of the 
improvement of the model’s depicting ability achieved by 
lifting the probabilities of those less-frequent word pairs. 
EKSWRI means the model using simplified weight function 
according to the ratio of probabilities from different order 
n-gram expressed in Equation (16) while EKSWLI means the 
model using a simplified linear interpolated formula 
introduced in Equation (17). It is noticed that though the 
perplexity of EKSWLI is slightly larger than that of EKSWRI 
or EKSWDI in both bi-gram and tri-gram based experiments, 
it is still a good choice to make the computation more 
efficient. 

Table 1: Perplexity Measure on Different Models 

Model Uni-gram Bi-gram Tri-gram 
KS 1817 442 274 

EKSWDI - 397 244 
EKSWRI - 402 250 
EKSWLI - 429 267 

4.2 Performance Comparison in Chinese 
Pinyin-to-Character Conversion System 

In order to test the sole performance of the language model 
and the word decoding procedure without any influence of the 
recognition errors introduced from the acoustic stage, we 
develop a system, namely EasyConv, to convert Chinese 
pinyin strings (sentences in toneless pronunciation) into 
character strings (known as sentences in text). This system 
takes the correct Chinese pinyin strings of testing sentences as 
the inputs and then tries to seek the best path in the word 
graph by the Syllable-Synchronous Network Search (SSNS) 
algorithm which is based on a kind of modified Viterbi Beam 
search strategy [5]. And finally, it outputs the putative 
character strings corresponding to the input pinyin strings. 
Due to the purpose and architecture of this system, there are 
only substitution-errors and there won’t be any 
insertion-errors or deletion-errors. The test data is a corpus 
taken from recent Chinese papers including 1,560 sentences 
that do not appear in the training corpus. By using the new 
model, the error rate can be reduced by over 30%. The results 
are listed in Table II. 

Table II: Character error rate (CER) comparison among 
models in a Chinese Pinyin-to-Character Conversion system 

Model KS EKSWDI EKSWRI EKSWLI 
CER  6.5% 4.5% 4.7% 5.0% 

5. SUMMARY 
The Enhanced Katz Smoothing With Deleted Interpolation is a 
back-off model integrated with the interpolation of the 
low-order n-gram information. It assumes that not only the 
probabilities of unseen n-grams but also those of seen n-grams 
should be re-estimated according to the low-order n-gram 
probabilities. This amendment has the following merits: 

z Stronger smoothing ability.  
It is reasonable to assume that the re-estimation of an 
n-gram to be smoothed depend on not only the occurring 
counts of itself and its historical (n-1)-gram but also the 
frequencies of all its sub-sequences. The GT 
re-estimation doesn’t take account of this hypothesis 
while the KS does. In the KS algorithm, all the 
corresponding low-order n-grams are used to smooth the 
probabilities of unseen n-grams only. The EKSWDI 
inherits the KS’s idea and applies it to all the n-grams no 
matter whether they appear in the training data or not, 
which results in stronger smoothing ability.  

z Uniform expression and more flexible expandability  
The expression of EKSWDI is a uniform one. The Katz 
smoothing method can be regarded as one of its special 
cases. The selection of the weight function is entirely free 
under the constraint of normalized characteristic of the 
probability sum-up. Therefore, we can choose different 
functions according to different requirements. 
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