
Paper number: C-06 Page 1 of 6

19th International Conference on Computer Processing of Oriental Languages, May 14-16, Seoul, Korea

Dynamic Query Organization and Response Generation in Spoken

Dialogue System

Li Fang, Zheng Fang, Wu Wenhu, Huang Yinfei
Center of Speech Technology (CST), State Key Laboratory of Intelligent Technology and Systems

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Email: lifang@sp.cs.tsinghua.edu.cn

Abstract

EasyNav is a Chinese spoken language dialogue system for campus navigation that we
introduced at ICSLP2000 [1]. Recently, we have initiated a significant redesign of some
modules to make it resolve some inefficient problem in EasyNav, such as analysis of complex
sentences, context processing. This Paper describes the query and response generation module
of our EasyNav 2.0 campus navigation information system. Dynamic query frame is
designed according to the requirement of the query module. Not only can this new mechanism
deal with most sentence types, but also construct the data retrieval of the query module
efficiently. Meanwhile, with the introduction of the query function priority, the performance of
the response generation module is improved. The new method is implemented in our campus
navigation system and the result of the test is impressive.

Keywords: dynamic query organization, response generation, spoken dialogue system,
EasyNav

1. Introduction

With the development of the spoken dialog system, how to
make it more practical has become one of the main topics in
this area. Generally, a typical spoken dialogue system may
consist of several components, such as speech recognition,
natural language understanding, and dialogue management,
speech synthesis. Recent years, there are many research
projects devoting into this field all over the world, such as
DARPA Communicator in America, ARISE, REWARD and
VERBMOBIL in Europe. Also many famous colleges and
institutes such as MIT-SLS Lab. CMU-ISL Lab. Lucent-Bell
Lab., ATR Lab. in Japan, Erlangen-Nuremberg Univ. in
Germany. Some institutes in China such as the Chinese
Academy of Sciences [2], The Chinese University of HK,
Taiwan Univ. TsingHua Univ., etc., all dedicate a great deal of
effort into the research of spoken dialog systems.

A main consideration of spoken dialog system is to facilitate
the interactions between humans and computers through natural
language, so that humans can make use of extensive resources
efficiently by using computers. Spoken dialog system must be
natural, intelligent and friendly: (1) Natural: There is no need to
set limit upon the utterance，so that user can use natural
language during the interaction. (2) Intelligent: System can deal
with the problems during the interaction, such as contradiction,
ambiguity, deflection from the topic etc. so that the interaction
can successfully go on. (3) Friendly: User has high degree of

freedom during the interaction and system can give feedbacks
to the user at any time. Now, there are several practical spoken
dialog systems served as the test bed for the research and
development of human language technologies, such as
GALAXY I and GALAXY II, based on which are some
task-oriented or domain-dependent applications (e.g.,
automobile classified ad. [3], restaurant guide and weather
information), which symbolize the great achievement in the
research of spoken dialog system.

This paper introduces the EasyNav 2.0 system — a Chinese
spoken dialog system for campus navigation information
accessing. Through this system, users can query about a special
site, search for some sites that match the request, find out the
route to a special site and get other information on campus.
Now a prototype of version 2.0 has been finished. Text instead
of speech is served as input and the output include both text
and an indication on a campus map. Query is limited to
information related to the campus of Tsinghua University but
query form is unlimited to user. The EasyNav system has been
served as an exhibition system of our lab, and it proved to be an
impressive navigation guide.

2. Architecture Design

The system architecture is shown in Fig. 1. The first four
modules process the text input and user intention is extracted
and stored into a query frame, which is then passed into query

Paper number: C-06 Page 2 of 6

module to search in the campus map database. The searching
result is used by response generation module to generate the
text output and the map indication.

Different from the client-server architecture of GALAXY [4],
EasyNav system is designed to run on single computer. More
consideration is put on the processing of special syntactic
phenomena of Chinese. For examples, word segmentation
module deals with the problem that there is no segmentation
symbol between Chinese words in a sentence, and semantic
analysis module deals with some Chinese idioms and elliptical
sentences, and campus map database is designed to be a
domain-independent multi-furcated tree structure (Fig. 2) [5],
which is powerfully expressive and easy to expand.

LibraryManager

sitesite

item itemattribute attribute

background map …road connections …

… …

attribute-val attribute-val…

(sub-)item (sub-)item…attribute attribute…

… …

3. Problems With Static Query Frame

In many systems, the semantic analysis of the input sentence is
often a whole-sentence analysis, which is keyword based and
gets information by analyzing the keywords that is recorded in
a predetermined table, which will be called static query frame
in this paper. The static query frame is passed to query module
and the query result is written back to the frame so that the
following processes such as response generation and history
record management can use it. EasyNav 1.0 utilize this method

in its implementation. The structure of static query frame is
shown in Table 1.

There are several deficiencies in the static query frame. First,
because of the limitation of the static query frame, it is difficult
for some complex sentences to be properly analyzed. Second,
the static query frame does not offer enough instructions for the
query module. Moreover, in some worse cases, the information
contained in static query frame may be redundant or incomplete
(e.g. the relationship among separate parts in a sentence can not
be denoted in this way). That makes it necessary for the
database query module to commit further semantic analysis
which results unclear partition of the modules and hard
maintenance.

Following is an example of the static query frame, “Where can
I buy some books published by Tsinghua publishing
company?”

In EasyNav 1.0, after the processing by the understanding
module (the first four modules in Fig. 1), a static frame shown
in Fig. 3 can be generated. In this query frame, it is obviously
that nothing is in charge of instructing how to search in the
database query module. Further more, it is ambiguous whose
attribute “Tsinghua publishing company” is. If this query frame
is passed into database query module, further semantic analysis
must be done.

The static query frame based query has to scan every slot in the
frame in order to decide which predefined query procedure to

Items in static query frame Comment
QueryType Query types, where etc.
AddOnInfo Additional query info，nearby

etc.
ReferenceName Reference item

FocusName Focus item
FocusCategory The category of focus item

Action Verb
SubObj Subject and object of an action

AttrName Attribute name
AttrVal Attribute value
OriVal Orientation value

MarchMode Walk, car etc.
MePos User position

Query Frame

Response
Generation

Query

Sentence
Analysis

Semantic
Analysis

Text Input

Text Output

POS TaggingWord
Segmentation

Fig. 1 EasyNav System

句式：哪里
(Query Type: Where)
主语：空
(Agent: NULL)
动作：买
(Action: Buy)
宾语：书
(Theme: Book)
一般属性：清华大学出版社
(General Attribute: Tsinghua publishing company)

Fig. 3 Static query frame

Table 1 The structure of static query frame

Fig.2 The database structure

Paper number: C-06 Page 3 of 6

be used according to the Query Type, Subject, Action, Focus
Name, and Attribute etc. When there exists an attribute, it is
query module’s responsibility to make certain whose attribute it
is. Although seemingly the static query frame contains every
parts of the sentence and is complete, it ignores the relationship
among words that should be resolved by the semantic analysis
module. Then some special procedure must be defined in the
query module to deal with some complex sentences. It
challenges the independent rule of modeling and is an obstacle
to the further development. So the static query frame, although
simple to implement, need be improved.

4. Dynamic Query Frame

4.1 The structure of Dynamic Query Frame

To solve the problem mentioned above, EasyNav 2.0 exploits a
dynamic query frame, which is bound tightly with the query
tasks. This kind of query frame has a nested structure, which
contains a lot of frames while each frame contains several slots.
It is formed dynamically during the semantic analysis. It
contains information about how to organize the query process.
All query module needs to do is just to resolve primitive query
commands.

The dynamic query frame consists of several frames, and each
frame consists of several slots. The slot can be one of three
following types: (1) value slot; (2) link slot; (3) function
slot. A value slot represents an input word from a user input
sentence (e.g. in Fig. 4, [Sub] in frame 5, slot 3). We use string
variables store these words and they act as function’s
parameters in the end. A link slot represents a link to other slot,
maybe within the same frame or not (e.g. [Site Name Set] in
frame 1, slot 5), and denote that the real value can be gained by
going along the link. A function slot represents a database
query (e.g. [Site Name Set] in frame 2, slot 0), and the real
value can be obtained by query into the database. The function
in function slot is one of the primitive query functions, which
are designed under carefully investigating the relationship
between the structure of the campus map database and the
query types practically used. It releases the database query
module from the semantic analysis during the query. Until now,
we have devised about 30 primitive functions and it seems
sufficient for the campus navigation. Table 2 shows the some of
these functions.

When passing the dynamic query frame to database query
module, the understanding module should indicate a starting
frame in order to instruct the query. The recursive traversing is
the core technique of designing the query module because of
the interlinking of the frames. When query module has
traversed all the useful frames from the starting frame, the
query task is finished naturally.

It is also very convenient to retrieve and store the context by
exploiting the dynamic query frame. Due to the independence
of every frame, it needs not to begin the query only from the
starting frame. When something must be stored as history

information, just query from the appropriate frame and slot to
retrieve what is needed.

4.2 Example of Dynamic Query Frame

In EasyNav 2.0, the dynamic query frame is shown in Fig. 4.
The semantic analysis of current version is done on the
concepts, while that of the previous version is done on the
whole sentence. A frame can represent each part of the input
sentence according to some semantic rules, and the whole
sentence can be represented as a list of frames and the
relationship among the parts of the sentence can be represented
by the links of these frames. Thus the query frames vary
according to different user input, so this kind of query frame is
called “Dynamic Query Frame”. In Fig. 4 there are example
sentence “Where can I buy some books published by Tsinghua
publishing company” and the dynamic query frame that formed
after the analysis of the sentence. It is clearly that every
relationship among the words is delivered by the structural
expression. For example, “Tsinghua publishing company” is an
attribute of “Publish”, which needs a procedure to be judged in

Function Name Description
([Parameter]: Return value)

QuerySiteLoc [Site name]: Site location
QuerySiteNameBySiteCat [Category]: Site name
QuerySiteNameByAgency [Agency name]: Site name
QuerySiteNameByAction [Action]: Site name
QuerySiteNameBySiteOrient [Reference site], [Orientation]:

Site name
QuerySiteLocSet [Site name set]: Site location set
QueryRoute [Site name of beginning], [Site

name of end]: Route
QueryRouteTime [Site name of beginning], [Site

name of end], [Method]: Time to
spend

QueryRouteLong [Site name of beginning], [Site
name of end]: Distance

QueryMatched
SetConfirmItem

[Item1], [Item2]: If identical

QueryAccord [Site name], [Attribute name],
[Attribute value]: If equal

SetSpecialAttr
SetGeneralAttr
SetObj
SetSub
SetObjectAttr
SetRange
SetEvaluation

[Set conditions]: Sites that match
the conditions

GetHere [NULL]: Current position
GetDefault [Agency name]: Default site name

of the agency
SelectOne Select one site from site set
SelectSome Select some sites from site set

Table 2 Primitive functions

Paper number: C-06 Page 4 of 6

the static query frame, becomes very obviously now. Moreover,
every place that needs a query function is filled with one of
primitive functions, which guide database query module to look

up in the database with the direction. There is no need for any
predetermined query procedure and every query is determined
by the input sentence. In this meaning, the dynamic query
frame based query is a kind of dynamic query itself.

5. The design of Query Module

As the dynamic query frame provides sufficient information
and a starting frame, using recursive technique to traverse all
the frames is a natural idea to design the query module. Every
level of the recursion deals with the current slot according to
three kinds of slots. With a value slot, just return its string value
to the caller. With a link slot, take its link destination (denoted

as a “frame index” and a “slot index”) as the next level of
recursion’s parameter and call next level. With a function slot,
the operation is a little complex. Because a function maybe has
some parameters, the first thing to do is retrieve the value of
these parameters. In dynamic query frame, the function’s
parameters are also links except that they can just link to slots
within the same frame as the function (e.g. a typical denotation
of a parameter is a “slot index”), so similarly as link slot, just
recursive call will get the values of parameters. After the
retrieval of the parameters, call the query functions respectively
to query the database. The symbol “<=” in Fig. 4 represents a
precondition. A precondition is actually a link to other slot and
will end at one or more functions, so in the same way to carry
them out.

Generally, the query conditions of user input operate on the
same query object. For example, in sentence “Where is the
nearest gate from here”, the query conditions are: (Type = Gate)
and (Special Attribute = Nearest). These conditions operate on
the same query object. From the recursive design we mentioned
above, it is obvious that these conditions will appear on
different recursive level. In order to optimize the query, it is
useful to keep a query result list, which stores the last query
result and serves as the searching set during the next query.
This mechanism can avoid reiteration on the whole database in
our implementation. For example, in Fig. 4, the query order is:
QuerySiteName(“ buy ”), SetObj(“ book ”),
SetObjAttr(“ publish ”), SetSub(“ Tsinghua publishing
company ”), and these queries operate with AND, so a result
list can make the searching set smaller and smaller and retrieve
the answer in the end.

Though, there are some occasions that the query conditions
operate on different query objects. For example, in sentence “Is
the building in front of the library the auditoria” contains a
comparison of two different query objects (the building in front
of the library, and the auditoria). In this case, the starting frame
of the dynamic query frame contains such slot: “[Affirm
Result]=QueryAccord()<={1}.[SetAccord], {4}.[SetAccord]”,
which indicate that there are two query objects in this query
frame, so another result list will be needed to deal with the
second query object. After the query, the two result lists will be
compared to judge if they are identical. In more complex
sentence, using similar mechanism to keep N result lists will
work.

这附近有没有便宜的食堂？
(Is there any cheap dining room nearby?)

查询函数：Query类别（“食堂”）
(Query function: QueryCategory(“Dining Room”))
Result List：八食堂，七食堂，教工食堂，西餐厅……
(Result List: Dining room 8, Dining room 7, Teacher’s
dining room, West dining room)
查询函数：Set一般属性（“便宜”）
(Query function: SetGeneralAttr(“Cheap”))
Result List：八食堂，教工食堂
(Result List: Dining room 8, Teacher’s dining room)
查询函数：Set范围（“这里”， “附近”）
(Query function: SetRange(“here”, “nearby”))
Result List：NULL
(Result List: NULL)

Fig. 5 Make use of priority in response generation

哪里可以买到清华出版社出版的书
(Where can I buy some books published by Tsinghua publishing
company)
{

[应答内容]={1}.地点名]
([Response Content]={1}.Site Name)
[应答内容]={1}.地点位置
([Response Content]={1}. Site Location)

{1
[地点位置]=Query地点位置([地点名])
([Site Location]=QuerySiteLocation([Site Name]))
[地点名]=SelectOne([地点名集合])
([Site Name]=SelectOne([Site Name Set]))
[地点名集合]={2}.[地点名集合]
([Site Name Site]={2}. [Site Name Set])

}
{2

[地点名集合]=Query地点名([动作]) <= {3}.[设置受事]
([Site Name Set]=QuerySiteName([Action]<={3}.[SetObj]))
[动作]=买
([Action]=Buy)

}
{3

[设置受事]=Set受事([受事]) <= {4}.[设置物品属性]
([SetObj]=SetObj([Obj])<={4}.[Set Object Attr])
[受事]=书
([Obj]=Book)

}
{4

[设置物品属性]=Set物品属性([动作]) <= {5}.[设置施事]
([Set Object Attr]=SetObjAttr([Action])<={5}.[SetSub])
[动作]=出版
([Action]=Publish)

}
{5

[设置施事]=Set施事([施事])
([SetSub]=SetSub([Sub]))
[施事]=清华大学出版社
[Sub]=Tsinghua publishing company

}
}

Fig. 4 Dynamic Query Frame

Paper number: C-06 Page 5 of 6

6. Response Generation

The response generation module is in charge of organizing the
result retrieved from the database to form the text output and
for further processing by the speech synthesizer. For response
generation, it is important to be accurate, intelligent and
friendly. It must also provide as many as possible information
not only in a successful query, but also in a failure. The reason
of a failure and the causing function should be reported to make
the interaction friendly. On the other hand, the response
generation module can direct the query module to avoid some
failure causing by too many query conditions.

After the traversing of the whole query frame, if the query is
successful, it is convenient to generate proper response with the
information contained in the query frame. If the query fails, it is
useful to introduce the priority of the functions so that the
response will be more intelligence and friendly. A higher
priority means it is executed earlier than lower one, so the
priority will be shown in the dynamic query frames. The
example is shown in Fig. 5. If the priority of the query
functions is: QueryCategory > SetGeneralAttr > SetRange,
Once the result list is empty, we can try to get rid of current
function (e.g. SetRange) in order to get a non-empty result list
(e.g. result list: Dining room 8, Teacher’s dining room). Thus a
successful query is achieved and a response can be “there is no
cheap dining room nearby, but Dining room 8 and Teacher’s
dining room are both cheap dining rooms.” With this
mechanism, a lot of queries that contain empty result will
return some middle results and the originally stiff response can
be refined, thus improve the performance of the dialog system.

When applying this mechanism, there exist some difficulties,
such as how to produce more natural reply, especially to
explain an error. The response generation must know
something about the semantic roles of reply words in order to
arrange them to be a natural sentence. There are two solutions
for the problem.

First, by recording the words used in query sentence, we can
arrange them to a natural sentence according to a series of
templates when there is an error. We record the words in a static
query frame-like structure (called Record Structure). Each item
in the record represents a part of the input sentence and has two
data members: string value and Boolean value. String value
contains words itself. Boolean value indicates whether the
according function returns successfully. It is obvious that each
item has its counterpart function in one query. During each

function, we record these two data members of according item.
If all the functions success, the reply is easy to generate as
before. When some function fails, the query process is
interrupted and a special error procedure begins. Every item in
the record will be scanned in order to fit for some template. The
error explanation will be given according to that template.

For example, if the user input is “Is there any cheap dining
room nearby?” In the Record Structure, Item “Cat” contains
(dinning room, TRUE), and item “Evaluation” contains (cheap,
TRUE), and item “Range” contains (Nearby, FALSE) and all
other items contains (NULL, TRUE) after searching in the
database by functions. It indicates that function “SetRange”
fails. With the example templates shown in Fig.6, the error
explanation should be: There is no cheap dinning room nearby.
We have implemented this solution and find it can efficiently
give the error explanation in most cases.

The other solution is to ask semantic analysis module generate
answer frame and error frame. Answer frame and error frame
are similar with query frame in structure and have most of the
same advantages.

Answer Frame just deals with the correct reply, that is, none of
the function gets an empty result. If there exists an error, for
example, no “cheap” attribute for all dining rooms found, then
the query procedure is interrupted and a corresponding slot in
the error frame is pointed by a link. Error frame contains all
error cases that will be encountered during this query. So with

(1) Cat (not NULL, FALSE): There is no [Cat].

(2) Cat (not NULL, TRUE) AND Evaluation (not NULL,
FALSE): There is no [Evaluation] [CAT].

(3) Cat (not NULL, TRUE) AND Evaluation (not NULL,
TRUE) AND Range (not NULL, FALSE): There is no
[Evaluation] [Cat] [Range].

Fig.6 Example templates

这附近有没有便宜的食堂？
(Is there any cheap dining room nearby?)
(Answer Frame)
{

[应答内容]= AnswerSiteLocation([地点名]，[地点位
置])

([Response Content]= AnswerSiteLocation([Site
Name], [Site Location]))

}
(Query Frame)
{

{1
[地点位置]=Query地点位置([地点名])
([Site Location]=QuerySiteLocation([Site Name]))
[地点名]=SelectOne([地点名集合])
([Site Name]=SelectOne([Site Name Set]))
}

.

.

.
}
(Error frame)
{

[无类别]= ErrorReply([类别])
[无属性]= ErrorReply([便宜]，[类别])
[无范围]= ErrorReply([附近]，[便宜]，[类别])

}
Fig.7 Answer frame and error frame

Paper number: C-06 Page 6 of 6

very slight modification of the query frame mechanism, we can
achieve a more flexible response generation both for correct
answer and error explanation. Now we are still working on it.

7. Summery

This paper has focused on the redesign of query and generation
module of our EasyNav system. This new system exploits
query under direction of a list of frames, which are generated
dynamically by the semantic understanding. We have found
that this mechanism was able to effectively handle the complex
query task. Moreover, for friendly response it is useful to
introduce the priority of the query functions. With these
mechanisms are used, the performance of this dialogue system
is improved.

We have tested lots of sentences with varies query types such
as Where, Which, How, How long, How far and their sub-types.
All the sentences chosen are frequently used during campus
navigation. Almost all sentences can be analyzed by our system
and obtain satisfied replies. It is a strong proof for the success
of our system .

Although there are unrecognized sentences, some of them are
due to the insufficient lexicon, which can be expanded
gradually. The error explanation still need to be refined in order
to produce more natural reply. In the near future, with the
research on domain independent, this system will have more
practical applications.

References

[1] Huang Y.F, “Language Understanding Component for
Chinese Dialogue System”, ICSLP’2000, pp. 1053-1056,
Beijing, China, Oct.2000

[2] Chao HUANG, Peng XU, et al. “LODESTAR: A
Mandarin Spoken Dialogue System for Travel Information
Retrieval” EUROPEAN CONFERENCE ON SPEECH
COMMUNICATION AND TECHNOLOGY, EuroSpeech,
1999, v3, p 1159-1162

[3] DAI L.R., “The feature of human-computer dialogue
system and the design of system”, (in Chinese), Journal of
Anhui University, December, 1997

[4] S. Sneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
“Galaxy-II: A Reference Architecture for Conversational
System Development”, ICSLP’98, pp. 931-934, Sydney,
Australia, December, 1998

[5] Yan P.J., Zheng F., “Word-class stochastic model and
knowledge representation in a spoken language dialogue
system”, (in Chinese), Journal of Tsinghua University
(Science and Technology), 2001, Vol.41, No.1, p. 69-72

